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Executive Summary

Human activities and development in the ocean environment will have certain impacts on marine bird
populations. A first step in evaluating these impacts is to gain a clear understanding of species distribution
and abundance patterns to identify areas of high and low use. We follow a general method developed by
Kinlan et al. (2012) that takes a minimum amount of input data to identify species-specific areas of high
use (i.e., “hotspots”) and low use (i.e., “coldspots”) and evaluate the statistical power to detect these
locations based on existing survey data. We investigated species-specific hotspots and coldspots of
occurrence, non-zero abundance, and unconditional abundance at various spatial scales and the statistical
power to detect them at various effect sizes.

We applied these methods to twenty species of marine birds commonly found within the US Atlantic Outer
Continental Shelf (OCS) region: Common Eider Somateria mollissima, Surf Scoter Melanitta
perspicillata, White-winged Scoter M. fusca, Long-tailed Duck Clangula hyemalis, Razorbill Alca torda,
Atlantic Puffin Fratercula arctica, Laughing Gull Leucophaeus atricilla, Herring Gull Larus argentatus,
Least Tern Sternula antillarum, Roseate Tern Sterna dougallii, Common Tern S. hirundo, Royal Tern
Thalasseus maximus, Red-throated Loon Gavia stellata, Common Loon G. immer, Black-capped Petrel
Pterodroma hasitata, Cory’s Shearwater Calonectris diomedea, Sooty Shearwater Ardenna grisea, Great
Shearwater A. gravis, Audubon’s Shearwater Puffinus lherminieri, and Northern Gannet Morus bassanus.

Ninety standardized, science-quality datasets containing geographically referenced counts of marine birds
collected between 1978 and 2015 within the Atlantic OCS were used for this study. Individual datasets
were previously compiled into the Northwest Atlantic Seabird Catalog and summarized into discrete
spatial units of roughly 4 km in length. Independent analyses were completed for each species and season
(spring, summer, fall, winter) combination that had sufficient data.

This study provides additional guidance on the identification of species-specific hotspots and coldspots for
marine birds and the statistical power to detect them in the context of wind energy development on the
Atlantic OCS. However, these methods are adaptable to other geographic areas and use scenarios to aid
marine spatial planning and allocation of future survey efforts. We conclude with general recommendations
to consider when completing spatial power analyses and present an example interpretation of results for
Common Eider Somateria mollissima during the winter season in Nantucket Sound.
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1 Introduction

Interest in offshore renewable energy activities in the United States has increased dramatically in recent
years. Offshore wind energy facilities, in particular, have the potential to capitalize on areas within state
and federal waters that have persistent high winds and large energy production capabilities (Adams et al.
2016). However, offshore wind energy infrastructure will have certain negative impacts on marine bird
populations through collision and habitat loss. Understanding these impacts is an important part of
responsible marine planning and environmental stewardship, and requires a clear understanding of species
distribution and abundance patterns to identify areas of low use (i.e., “coldspots”) that could serve as
potential development sites and high use (i.e., “hotspots”) where development should be avoided.

A general framework for identifying species-specific hotspots and coldspots for marine birds and assessing
the statistical power to detect these locations based on visual survey count data was developed by Kinlan
et al. (2012). We utilize this approach and expand on examples from Kinlan et al. (2012) and Zipkin et al.
(2015). Much of the motivation, assumptions, and detailed methods underlying the statistical framework
will not be repeated here. Readers are highly encouraged to familiarize themselves with Kinlan et al.
(2012, especially Sections 1.1–2.9) and Zipkin et al. (2015) in order to gain a full understanding.

The purpose of this study is to explore refinements to the Kinlan et al. (2012) framework by investigating
species-specific hotspots and coldspots of occurrence, non-zero abundance, and unconditional abundance
at various spatial scales and the statistical power to detect hotspots and coldspots of various effect sizes.
Results from this study provide additional guidance on the identification of species-specific hotspots and
coldspots for marine birds. The methods presented in this report can be used to aid marine spatial planning
and allocation of future survey efforts.

This study focuses on the Atlantic waters of the continental United States, extending inshore to the coast
and offshore to the outer boundary of the Bureau of Ocean Energy Management (BOEM) Atlantic Outer
Continental Shelf (OCS) region (Figure 1). This area contains multiple locations where renewable energy
development is actively being pursued. The methods presented here, however, are not unique to this study
region and could be adapted for other geographic areas of interest.

2 Methods

2.1 Survey Data

Data used in these analyses comprised 90 science-quality, geographically referenced survey datasets from
the Northwest Atlantic Seabird Catalog (NWASC; formerly US Geological Survey Avian Compendium
Database [O’Connell et al. 2009]), currently maintained by the US Fish and Wildlife Service (Table 1;
additional details on individual datasets are provided in Winship et al. [2018, Appendix A]). Datasets
included at-sea counts of birds collected between 1978 and 2015 using standard fixed-wing aerial and
boat-based strip transect survey methodology. The width of the strip transect varied among surveys, but the
vast majority of boat-based surveys used a 300 m wide strip while most aerial surveys used a 400 m wide
strip. Eighty-seven survey datasets had counts that were continuously recorded and geographically
referenced at the time of each bird sighting, along with geographically referenced boat/plane location data
recorded at regular intervals (e.g., every five seconds). Three datasets collected between 1978 and 1988 (all
boat-based) had counts that were binned into discrete transect segments (e.g., 15 minute duration) during
data collection. Three aerial survey datasets (labeled as “aerial-camera” Platform in Table 1) used
high-resolution digital video to record bird sightings, which were then processed to obtain geographically
referenced counts for each species.
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Figure 1. Map of the study area
BOEM wind planning and renewable energy lease area boundaries are current as of July 25, 2018.
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Table 1. Datasets used for analyses
Datasets were extracted from the Northwest Atlantic Seabird Catalog (NWASC) and standardized to 4 km transect segments as described in Section 2.1. Seasons
were defined as spring (March 1 to May 31), summer (June 1 to August 31), fall (September 1 to November 30), and winter (December 1 to February 29).

Number of transect segments

NWASC Dataset ID Platform Start date End date Total Spring Summer Fall Winter

AMAPPS FWS Aerial Fall2012 aerial 09-29-2012 10-11-2012 3,144 0 0 3,144 0
AMAPPS FWS Aerial Fall2013 aerial 09-16-2013 09-27-2013 5,015 0 0 5,015 0
AMAPPS FWS Aerial Fall2014 aerial 10-06-2014 10-22-2014 3,056 0 0 3,056 0
AMAPPS FWS Aerial Preliminary Summer2010 aerial 08-03-2010 08-24-2010 1,235 0 1,235 0 0
AMAPPS FWS Aerial Spring2012 aerial 03-17-2012 03-31-2012 3,129 3,129 0 0 0
AMAPPS FWS Aerial Summer2011 aerial 07-30-2011 08-23-2011 3,799 0 3,799 0 0
AMAPPS FWS Aerial Winter2010-2011 aerial 12-03-2010 01-17-2011 574 0 0 0 574
AMAPPS FWS Aerial Winter2014 aerial 01-28-2014 02-11-2014 3,226 0 0 0 3,226
AMAPPS NOAA/NMFS NEFSCBoat2011 boat 06-04-2011 07-31-2011 1,363 0 1,363 0 0
AMAPPS NOAA/NMFS NEFSCBoat2013 boat 07-01-2013 08-18-2013 1,423 0 1,423 0 0
AMAPPS NOAA/NMFS NEFSCBoat2014 boat 03-12-2014 04-27-2014 952 952 0 0 0
AMAPPS NOAA/NMFS NEFSCBoat2015 boat 06-11-2015 06-18-2015 244 0 244 0 0
AMAPPS NOAA/NMFS SEFSCBoat2011 boat 06-20-2011 07-29-2011 900 0 900 0 0
AMAPPS NOAA/NMFS SEFSCBoat2013 boat 07-16-2013 09-09-2013 897 0 647 250 0
BarHarborWW05 boat 06-16-2005 10-19-2005 1,033 0 840 193 0
BarHarborWW06 boat 06-21-2006 10-15-2006 1,203 0 847 356 0
CapeHatteras0405 boat 08-04-2004 02-02-2005 268 0 159 0 109
CapeWindAerial aerial 03-17-2002 02-27-2004 4,599 1,088 1,099 1,156 1,256
CapeWindBoat boat 04-17-2002 09-12-2003 290 114 142 34 0
CDASMidAtlantic aerial 12-19-2001 03-08-2003 1,685 247 0 0 1,438
CSAP∗ boat 04-16-1980 10-12-1988 24,236 7,157 6,420 6,599 4,060
DOEBRIAerial2012 aerial-camera 03-26-2012 12-18-2012 4,433 1,434 798 1,462 739
DOEBRIAerial2013 aerial-camera 02-12-2013 12-31-2013 5,127 898 1,570 1,432 1,227
DOEBRIAerial2014 aerial-camera 01-01-2014 05-23-2014 2,310 1,004 0 0 1,306
DOEBRIBoatApr2014 boat 04-01-2014 04-05-2014 156 156 0 0 0
DOEBRIBoatApril2012 boat 04-25-2012 04-29-2012 160 160 0 0 0
DOEBRIBoatAug2012 boat 08-10-2012 08-14-2012 161 0 161 0 0
DOEBRIBoatAug2013 boat 07-30-2013 08-02-2013 162 0 162 0 0
DOEBRIBoatDec2012 boat 12-15-2012 01-03-2013 157 0 0 0 157
DOEBRIBoatDec2013 boat 12-11-2013 12-17-2013 167 0 0 0 167

continued on next page
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Table 1 continued

Number of transect segments

NWASC Dataset ID Platform Start date End date Total Spring Summer Fall Winter

DOEBRIBoatJan2013 boat 01-28-2013 02-05-2013 158 0 0 0 158
DOEBRIBoatJan2014 boat 01-26-2014 02-01-2014 160 0 0 0 160
DOEBRIBoatJune2012 boat 06-18-2012 06-21-2012 162 0 162 0 0
DOEBRIBoatJune2013 boat 06-18-2013 06-22-2013 163 0 163 0 0
DOEBRIBoatMar2013 boat 03-20-2013 03-26-2013 160 160 0 0 0
DOEBRIBoatMay2013 boat 05-05-2013 05-09-2013 162 162 0 0 0
DOEBRIBoatNov2012 boat 11-04-2012 11-11-2012 160 0 0 160 0
DOEBRIBoatOct2013 boat 10-26-2013 10-30-2013 165 0 0 165 0
DOEBRIBoatSep2012 boat 09-06-2012 09-09-2012 160 0 0 160 0
DOEBRIBoatSep2013 boat 09-06-2013 09-10-2013 165 0 0 165 0
DominionVirginia VOWTAP boat 05-14-2013 04-03-2014 78 24 18 12 24
EcoMonAug08 boat 08-14-2008 08-26-2008 455 0 455 0 0
EcoMonAug09 boat 08-17-2009 08-28-2009 436 0 436 0 0
EcoMonAug10 boat 08-18-2010 09-01-2010 488 0 474 14 0
EcoMonAug2012 boat 08-07-2012 08-24-2012 626 0 626 0 0
EcoMonFeb10 boat 02-03-2010 02-17-2010 341 0 0 0 341
EcoMonFeb2012 boat 02-03-2012 02-20-2012 532 0 0 0 532
EcoMonFeb2013 boat 02-10-2013 02-25-2013 504 0 0 0 504
EcoMonJan09 boat 01-29-2009 02-12-2009 378 0 0 0 378
EcoMonJun2012 boat 05-31-2012 06-14-2012 531 31 500 0 0
EcoMonMay07 boat 05-23-2007 06-02-2007 489 423 66 0 0
EcoMonMay09 boat 05-28-2009 06-09-2009 599 189 410 0 0
EcoMonMay10 boat 05-26-2010 06-09-2010 610 260 350 0 0
EcoMonNov09 boat 11-03-2009 11-19-2009 425 0 0 425 0
EcoMonNov10 boat 11-05-2010 11-21-2010 399 0 0 399 0
EcoMonNov2011 boat 10-31-2011 11-18-2011 443 0 0 443 0
EcoMonOct2012 boat 10-27-2012 11-13-2012 480 0 0 480 0
FLPowerLongIsland Aerial aerial 10-13-2004 03-30-2006 272 91 42 139 0
FLPowerLongIsland Boat boat 04-08-2004 06-01-2006 986 404 134 274 174
FWS MidAtlanticDetection Spring2012 aerial 03-06-2012 03-07-2012 188 188 0 0 0
FWS SouthernBLSC Winter2012 aerial 02-04-2012 02-21-2012 918 0 0 0 918
FWSAtlanticWinterSeaduck2008 aerial 02-07-2008 02-17-2011 9,405 82 0 0 9,323
GeorgiaPelagic∗ boat 11-15-1982 06-16-1985 1,822 538 578 508 198

continued on next page
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Table 1 continued

Number of transect segments

NWASC Dataset ID Platform Start date End date Total Spring Summer Fall Winter

HatterasEddyCruise2004 boat 08-15-2004 08-19-2004 65 0 65 0 0
HerringAcoustic06 boat 09-19-2006 09-28-2006 278 0 0 278 0
HerringAcoustic07 boat 10-14-2007 10-25-2007 322 0 0 322 0
HerringAcoustic08 boat 09-04-2008 10-09-2008 790 0 0 790 0
HerringAcoustic09Leg1 boat 09-12-2009 09-17-2009 129 0 0 129 0
HerringAcoustic09Leg2 boat 09-21-2009 10-01-2009 279 0 0 279 0
HerringAcoustic09Leg3 boat 10-06-2009 10-15-2009 257 0 0 257 0
HerringAcoustic2010 boat 09-12-2010 10-21-2010 539 0 0 539 0
HerringAcoustic2011 boat 09-08-2011 10-13-2011 773 0 0 773 0
HerringAcoustic2012 boat 09-13-2012 10-18-2012 734 0 0 734 0
MassAudNanAerial aerial 08-19-2002 03-29-2006 5,022 845 936 1,301 1,940
MassCEC2011-2012 aerial 01-11-2011 11-12-2012 2,535 669 503 869 494
MassCEC2013 aerial 01-21-2013 12-04-2013 2,247 498 499 920 330
MassCEC2014 aerial 01-30-2014 01-14-2015 1,513 167 501 171 674
NJDEP2009 boat 01-13-2008 12-18-2009 4,888 1,211 1,306 1,413 958
NOAA/NMFS NEFSCBoat2004 boat 06-25-2004 08-03-2004 1,101 0 1,101 0 0
NOAA/NMFS NEFSCBoat2007 boat 08-01-2007 08-28-2007 591 0 591 0 0
NOAAMBO7880∗ boat 01-02-1978 11-26-1979 5,470 1,337 2,132 1,509 492
PlattsBankAerial aerial 07-11-2005 07-29-2005 826 0 826 0 0
RISAMPAerial aerial 12-02-2009 08-31-2010 2,485 992 774 0 719
RISAMPBoat boat 07-10-2009 08-27-2010 329 56 183 39 51
SEFSC1992 boat 01-05-1992 02-09-1992 754 0 0 0 754
SEFSC1998 boat 07-09-1998 08-20-1998 1,286 0 1,286 0 0
SEFSC1999 boat 08-09-1999 09-25-1999 1,159 0 661 498 0
StatoilMaine boat 05-02-2012 10-15-2013 400 40 150 140 70
WHOIJuly2010 boat 07-08-2010 07-15-2010 64 0 64 0 0
WHOISept2010 boat 09-22-2010 09-29-2010 80 0 0 80 0

Totals 01-02-1978 06-18-2015 133,040 24,706 37,801 37,082 33,451
∗Discrete-time strip transects
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Prior to analysis, continuously recorded transect data were divided into spatially discrete transect segments
with a target length of 4 km. Any remaining transect segment (after dividing into 4 km bins) that was
greater than or equal to 2 km in length was treated as its own segment. Remaining transect segments that
were less than 2 km in length were added to an adjacent segment. The placement of segments that were
less than or greater than 4 km was randomized to prevent them from always occurring at the beginning or
end of a transect. The distance traveled along each transect was calculated using the boat/plane location
data assuming straight-line travel between recorded locations. Species-specific bird counts were summed
within each transect segment and geographically referenced using the geographic midpoint of each transect
segment. Counts of birds that were not identified to species were excluded from these analyses.
Additionally, because our analysis methods do not directly incorporate survey effort (Kinlan et al. 2012,
Sections 2.1–2.8), transect segments that were less than 2.5 km or greater than 5.5 km were excluded in
order to reduce any potential bias.

Data were divided into four seasons (spring, summer, fall, winter) and analyzed separately by season to
reduce the effect of the inherent temporal variability of species distributions. The spring season included
transect segments that were surveyed between March 1 and May 31; summer: between June 1 and August
31; fall: between September 1 and November 30; and winter: between December 1 and February 29.

2.2 Spatial Grid

A spatial grid with a resolution of 4.8 × 4.8 km was constructed over the study area using an oblique
Mercator projected coordinate system (origin: 35◦N 75◦W; azimuth: 40◦; scale: 0.9996; geodetic datum:
NAD83). The spatial resolution was chosen to match the size of a standard BOEM lease block. Segmented
transect data were linked to the spatial grid by matching the midpoint of each transect segment with the
grid cell in which it was geographically located. Transect segments with midpoint locations that were
outside the study area were excluded.

2.3 Species Analyzed

Twenty species of marine birds were selected for this study based on data availability and interest to
BOEM in the context of potential renewable energy development in the Atlantic OCS region (Table 2).
Selected species included four species of sea ducks (Common Eider Somateria mollissima, Surf Scoter
Melanitta perspicillata, White-winged Scoter M. fusca, Long-tailed Duck Clangula hyemalis), two alcids
(Razorbill Alca torda, Atlantic Puffin Fratercula arctica), two gulls (Laughing Gull Leucophaeus atricilla,
Herring Gull Larus argentatus), four terns (Least Tern Sternula antillarum, Roseate Tern Sterna dougallii,
Common Tern S. hirundo, Royal Tern Thalasseus maximus), two loons (Red-throated Loon Gavia stellata,
Common Loon G. immer), one petrel (Black-capped Petrel Pterodroma hasitata), four shearwaters (Cory’s
Shearwater Calonectris diomedea, Sooty Shearwater Ardenna grisea, Great Shearwater A. gravis,
Audubon’s Shearwater Puffinus lherminieri), and one gannet species (Northern Gannet Morus bassanus).

Table 3 shows the number of transect segments with at least one sighting and the total count for each
species by season. Analyses were not conducted if there were less than 50 transect segments with at least
one sighting within a single season for a given species. By this criterion, 69 species-season combinations
were analyzed.
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Table 2. Species analyzed

Common name Scientific name Family Order

Common Eider Somateria mollissima Anatidae Anseriformes
Surf Scoter Melanitta perspicillata Anatidae Anseriformes
White-winged Scoter Melanitta fusca Anatidae Anseriformes
Long-tailed Duck Clangula hyemalis Anatidae Anseriformes
Razorbill Alca torda Alcidae Charadriiformes
Atlantic Puffin Fratercula arctica Alcidae Charadriiformes
Laughing Gull Leucophaeus atricilla Laridae Charadriiformes
Herring Gull Larus argentatus Laridae Charadriiformes
Least Tern Sternula antillarum Laridae Charadriiformes
Roseate Tern Sterna dougallii Laridae Charadriiformes
Common Tern Sterna hirundo Laridae Charadriiformes
Royal Tern Thalasseus maximus Laridae Charadriiformes
Red-throated Loon Gavia stellata Gaviidae Gaviiformes
Common Loon Gavia immer Gaviidae Gaviiformes
Black-capped Petrel Pterodroma hasitata Procellariidae Procellariiformes
Cory’s Shearwater Calonectris diomedea Procellariidae Procellariiformes
Sooty Shearwater Ardenna grisea Procellariidae Procellariiformes
Great Shearwater Ardenna gravis Procellariidae Procellariiformes
Audubon’s Shearwater Puffinus lherminieri Procellariidae Procellariiformes
Northern Gannet Morus bassanus Sulidae Suliformes

Table 3. Number of transect segments with sightings and total counts for each species-season
combination
Only combinations with ≥50 transect segments with sightings were analyzed. Seasons were defined as spring (March
1 to May 31), summer (June 1 to August 31), fall (September 1 to November 30), and winter (December 1 to February
29).

Number of transect segments Total count

Species Spring Summer Fall Winter Spring Summer Fall Winter

Common Eider 931 188 666 2,392 218,818 29,570 43,977 604,991
Surf Scoter 832 – 815 2,031 16,572 – 28,344 51,511
White-winged Scoter 553 – 640 1,573 20,886 – 12,011 30,329
Long-tailed Duck 1,343 – 526 3,760 87,516 – 18,438 153,386
Razorbill 998 81 183 1,934 6,719 222 1,234 16,406
Atlantic Puffin 201 262 93 309 476 573 128 541
Laughing Gull 701 1,704 1,820 137 1,600 5,663 10,647 353
Herring Gull 5,449 3,129 7,870 5,252 42,382 11,145 57,715 27,209
Least Tern – 133 97 – – 523 1,165 –
Roseate Tern 59 214 81 – 203 843 531 –
Common Tern 594 1,735 743 – 2,655 9,115 7,503 –
Royal Tern 268 271 380 – 732 616 1,000 –
Red-throated Loon 1,752 – 415 2,735 5,275 – 1,907 9,158

continued on next page
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Table 3 continued

Number of transect segments Total count

Species Spring Summer Fall Winter Spring Summer Fall Winter

Common Loon 2,791 204 1,432 3,970 6,670 272 3,129 10,171
Black-capped Petrel 118 326 77 85 222 930 157 204
Cory’s Shearwater 101 2,939 1,683 – 217 13,154 7,915 –
Sooty Shearwater 740 1,566 107 – 5,801 30,481 284 –
Great Shearwater 564 6,123 6,444 122 5,178 124,466 88,740 316
Audubon’s Shearwater 115 817 259 158 410 2,497 842 324
Northern Gannet 6,059 1,236 4,968 7,743 37,409 2,814 23,098 62,253

Totals 459,741 232,884 308,765 967,152

2.4 Statistical Model

We assume counts of marine birds observed within discrete spatial units (i.e., transect segments) are the
outcome of a two-component hurdle model (Mullahy 1986) where the count for species i in season j is
non-zero according to a Bernoulli(θi j) distribution and the distribution of non-zero counts follows a
discrete probability mass function (truncated to include only positive integer values). Kinlan et al. (2012)
compared the fit of eight statistical distributions to non-zero counts of birds observed within discrete
spatial units. Their findings and conclusions from Zipkin et al. (2015, 2014) suggested the discrete
lognormal distribution provided the best consistent fit among the distributions considered1. Therefore, all
analyses were completed assuming a discrete lognormal distribution for the non-zero counts for each
species-season combination.

The probability mass function for the discrete lognormal distribution (truncated such that
xi j ∈ {1,2,3, ...}) is shown in Equation 1. Here, xi j denotes the realization of random variable Xi j and
represents the observed non-zero count for species i during season j, µi j is the mean and σi j is the standard
deviation of the corresponding continuous untruncated distribution of the natural logarithm of random
variable Xi j, and Φ() represents the cumulative distribution function of the standard normal distribution.

f (xi j | µi j,σi j) =
Φ

(
ln(xi j+0.5)−µi j

σi j

)
−Φ

(
ln(xi j−0.5)−µi j

σi j

)
1−Φ

(
ln(0.5)−µi j

σi j

) (1)

For each species-season combination, we estimated the θi j parameter of the Bernoulli distribution by
dividing the total number of transect segments with at least one sighting by the total number of transect
segments surveyed. This quantity is subsequently referred to as the reference prevalence for a given
species-season combination. The µi j and σi j parameters of the discrete lognormal distribution fit to all

1To further verify this, we fit each of the eight candidate distributions from Kinlan et al. (2012) to the non-zero counts for
each species-season combination using maximum likelihood estimation. The discrete lognormal was chosen as the best fitting
distribution according to Akaike’s Information Criterion corrected for finite sample sizes (AICc; Burnham, Anderson 2002) in 42
of the 69 species-season combinations analyzed. However, when comparing the AICc value of the discrete lognormal to that of
the best fitting distribution, all had ∆AICc < 4 (where ∆AICc is equal to the AICc value of the discrete lognormal distribution
minus the AICc value of the best fitting distribution) except five species-season combinations: Razorbill spring (∆AICc = 5.7),
Herring Gull summer (∆AICc = 8.4), Sooty Shearwater summer (∆AICc = 4.4), Black-capped Petrel summer (∆AICc = 4.4), and
Audubon’s Shearwater summer (∆AICc = 5.1). Vuong closeness tests gave little to no evidence that the best fitting distribution
provided a better fit than the discrete lognormal distribution in each of these five cases (0.097 ≤ p-value ≤ 0.345; Vuong 1989).
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non-zero counts for each species-season combination were estimated using standard maximum likelihood
estimation procedures. The resulting discrete lognormal distribution with estimated parameters µ̂i j and σ̂i j
is subsequently referred to as the reference distribution for a given species-season combination. The
expected value of random variable Xi j, subsequently referred to as the reference mean, was estimated
numerically by summing the products of xi j and f (xi j | µ̂i j, σ̂i j) for all integer values of xi j from 1 to
10,000,000.

Three unique model types naturally arise from the two-component hurdle model, each corresponding to a
distinct form of data commonly recorded during visual wildlife surveys:

1. the occurrence probability model, which relies only on the Bernoulli component of the hurdle model.
This model is best suited for binary data recorded simply as presence or absence of a given species.

2. the non-zero count model, which relies only on the non-zero (i.e., the discrete lognormal) component
of the hurdle model. This model is best suited for count data recorded only when a species is
observed.

3. the combined model, which incorporates both the Bernoulli and non-zero components of the hurdle
model. This model is best suited for survey data where both zero and non-zero counts are recorded
during data collection.

We performed separate analyses for each model type in order to interpret results in the context of differing
survey designs and data types.

2.5 Hotspot/Coldspot Identification

To identify species-specific hotspots and coldspots, we performed independent significance tests within
each grid cell for each of the three model types. In all cases, a species-specific hotspot was defined as a
location (i.e., grid cell) where the observed data value (i.e., number of transect segments with sightings for
the occurrence probability model, mean non-zero count for the non-zero count model, or mean count for
the combined model) was greater than the expected data value (i.e., reference prevalence for the
occurrence probability model, mean of random draws from the reference distribution for the non-zero
count model, or mean of the product of random draws from a Bernoulli(θi j) distribution and the reference
distribution for the combined model). A species-specific coldspot was defined as a location where the
observed data value was less than the expected data value.

For the occurrence probability model, we assumed that, in each grid cell, the number of transect segments
with sightings independently follow a binomial distribution with size (i.e., number of trials) equal to the
number of transect segments surveyed and probability of success (i.e., probability of observing a bird of a
specific species during a specific season) equal to the reference prevalence for a given species-season
combination. Following this assumption, hotspot and coldspot p-values were calculated by performing
one-sided exact binomial tests for each grid cell. Smaller p-values indicated greater evidence that a grid
cell was a species-specific hotspot or coldspot of occurrence.

For the non-zero count model, we performed simulation-based significance tests within each grid cell.
Independently for each species-season combination and for each grid cell k within the study area, we drew
Mi jk random samples from the reference distribution, where Mi jk corresponds to the number of transect
segments within grid cell k on which species i was observed during season j. We then calculated the
arithmetic mean of the Mi jk random samples. This process was repeated 100,000 times in order to obtain a
simulated distribution of sample means within each grid cell for each species-season combination. Hotspot
p-values were calculated as the proportion of the 100,000 simulations where the simulated mean non-zero
count was greater than or equal to the observed mean non-zero count for a given grid cell. Coldspot
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p-values were calculated as the proportion of simulations where the simulated mean non-zero count was
less than or equal to the observed mean non-zero count. Smaller p-values based on the non-zero count
model indicated greater evidence that a grid cell was a species-specific hotspot or coldspot of non-zero
abundance.

For the combined model, we again performed simulation-based significance tests. For each grid cell, N jk
random samples were drawn from a Bernoulli distribution with probability equal to the reference
prevalence for the given species during season j, where N jk corresponds to the number of transect
segments surveyed within grid cell k during season j. We also simulated N jk random draws from the
reference distribution for the given species-season combination. Each Bernoulli random sample value was
multiplied by the corresponding random sample value from the reference distribution, yielding N jk
simulated counts, including both zero and non-zero values. The arithmetic mean of the N jk simulated
counts was calculated and the process repeated 100,000 times for each grid cell and species-season
combination. Hotspot p-values were estimated by calculating the proportion of the 100,000 simulations
where the simulated mean count was greater than or equal to the observed mean count for a given grid cell.
Coldspot p-values were calculated as the proportion of simulations where the simulated mean count was
less than or equal to the observed mean count. Smaller p-values based on the combined model indicated
greater evidence that a grid cell was a species-specific hotspot or coldspot of unconditional abundance.

Because many simultaneous hotspot and coldspot p-values were calculated for each combination of
species, season, and model type–one for each grid cell surveyed in both the occurrence probability and
combined models and one for each grid cell where a species was observed during a given season in the
non-zero count model–all p-values were adjusted for multiple testing in order to limit the number of
potential false positive grid cells (i.e., grid cells with low p-values suggesting evidence of a hotspot or
coldspot when in truth they are not). Many methods exist for adjusting p-values for multiple testing that
control for different rates of false positives (Shaffer 1995; Wright 1992). We used the sequential method of
Holm (1979) to control the family-wise error rate, which ensures that the probability of at least one false
positive result is less than some user-defined threshold value (e.g., 0.05). For each species and season
combination, adjusted hotspot and coldspot p-values were calculated independently, assuming the number
of simultaneous tests performed was equal to either a) the number of grid cells surveyed during the
specified season (occurrence probability and combined models) or b) the number of grid cells in which the
specified species was observed during the specified season (non-zero count model).

2.6 Hotspot/Coldspot Persistence

In addition to identifying hotspots and coldspots for each species, season and model type, we also
investigated the consistency of hotspot/coldspot locations through time for each species-season
combination and model type. We calculated hotspot and coldspot interannual persistence following the
same methodology described in Section 2.5, except that calculations/simulations were conducted
separately for either a) each year in which there was survey effort during the specified season (for the
occurrence probability and combined models) or b) each year in which the specified species was observed
during the specified season (for the non-zero count model). For each grid cell, hotspot interannual
persistence was calculated as the proportion of years with survey effort/sightings in which the single-year
hotspot p-value was less than or equal to 0.05. Similarly, coldspot interannual persistence was calculated
as the proportion of years in which the single-year coldspot p-value was less than or equal to 0.05.
Calculations were completed using both the raw (i.e., unadjusted) and adjusted p-values separately.
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2.7 Power Estimation

For each combination of species, season, and model type, we estimated the statistical power to detect
hotspots and coldspots of effect size δ for a range of sample sizes. For all three model types, we estimated
power for hotspot effect sizes of δ = 3, 10, and 20, coldspot effect sizes of δ = 1⁄3, 1⁄10, and 1⁄20, and for all
sample sizes n from 1 to the larger of either a) 200 or b) the maximum number of transect segments
surveyed within a single grid cell during each season. All power calculations assumed a type I error rate of
0.05.

For the occurrence probability model, we calculated power assuming the number of transect segments with
sightings independently follow a binomial distribution with size equal to n and probability of success equal
to δ times the reference prevalence for a given species-season combination. In some instances, δ times the
reference prevalence was greater than one, which is outside the bounds of the probability of success
parameter in the binomial distribution. Power to detect hotspots of occurrence was undefined at the given
effect size for these species-season combinations.

For the non-zero count model, power was estimated by simulating random draws of size n from a discrete
lognormal distribution with expected value equal to δ times the reference mean and σi j parameter as
previously estimated (see Section 2.4) for species i during season j. The arithmetic mean of each random
sample was calculated, and the process repeated 100,000 times. The proportion of the 100,000 means that
exceeded a hotspot critical value was used as the estimate for power to detect a hotspot of effect size δ for
a given sample size. Power to detect a coldspot was estimated by the proportion of means that were less
than a coldspot critical value for a given sample size. Critical values were estimated by simulating random
draws from the reference distribution for each sample size, calculating the arithmetic mean of each, and
repeating the process 100,000 times. Hotspot and coldspot critical values were defined by the 95th and 5th
percentiles, respectively, of the distribution of simulated means from the reference distribution for each
sample size. For some species-season combinations, power to detect coldspots of non-zero abundance was
undefined for certain effect sizes because δ times the reference mean was less than or equal to one.

Power for the combined model was estimated by simulating random draws of size n from a Bernoulli
distribution with probability equal to the reference prevalence for each species and season combination.
Each Bernoulli random sample value was then multiplied by the corresponding random sample value
drawn during power estimation for the non-zero count model as described above (i.e., from a discrete
lognormal distribution with expected value equal to δ times the reference mean). The arithmetic mean of
each product of random samples was calculated, and the process repeated 100,000 times. Hotspot and
coldspot power estimates for a given sample size were calculated as the proportion of means that were
either greater than (hotspot) or less than (coldspot) the respective critical value for the combined model.
Critical values were estimated by simulating random draws of size n from each component of the hurdle
model (the Bernoulli component with probability equal to the reference prevalence and the reference
distribution for non-zero counts), calculating the arithmetic mean of the product of both components for
each sample size, repeating the process 100,000 times, and calculating the 95th (hotspot) and 5th
(coldspot) percentiles of the distribution of means. For some species-season combinations power to detect
coldspots of abundance was undefined for certain effect sizes because δ times the reference mean was less
than or equal to one. Note that for the combined model, the effect size δ was only introduced via the
non-zero count component (i.e., via the reference mean) of the hurdle model. We did not investigate the
relationship between sample size and power when the effect size was introducted through changes in the
occurrence probability (i.e., via the reference prevalence) of the combined hurdle model.

For each model type, we also calculated average power to detect hotspots and coldspots across all seasons
analyzed for each species, across all species analyzed within each season, and across all species and
seasons. Average power across seasons was calculated by taking the arithmetic mean of all seasonal power
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estimates within each grid cell that was sampled, separately for each species. Average power across all
species within each season was calculated by taking the arithmetic mean of all power estimates within
each grid cell that was sampled, separately for each season. Average power across all species and all
seasons was calculated by taking the arithmetic mean of the four seasonal average power values within
each grid cell that was sampled. For the non-zero count model, grid cells that were sampled but had no
recorded sightings of a particular species during a given season contributed a value of zero to the
calculations, assuming the species-season combination was analyzed. Seasons that were either not
analyzed for a given species or for which power to detect a hotspot or coldspot was undefined did not
contribute to the average power calculations.

2.8 Spatial Resolution

In order to explore the effect of spatial resolution (i.e., grid cell size) on hotspots/coldspots and the power
to detect them, we repeated all spatial analyses (Sections 2.5–2.7) using three additional spatial grids.
Additional grids were constructed by combining the original spatial grid cells (see Section 2.2) into blocks
of 2×2, 3×3, and 4×4 grid cells, corresponding to resolutions of 9.6 × 9.6 km, 14.4 × 14.4 km, and
19.2 × 19.2 km, respectively.

2.9 Stratification

The methodologies described for identifying species-specific hotspots/coldspots and estimates of power
assume the same reference prevalence and reference distribution across all grid cells for a given
species-season combination (i.e., the estimated parameters of the Bernoulli distribution and the reference
distribution remain constant throughout the study area). This assumption is important because hotspots
and coldspots are necessarily defined in relative terms. In this case a hotspot of abundance, for example,
defines an area of high abundance relative to the larger reference region (i.e., the study area). In certain
instances, however, it may be of interest to understand potential hotspots/coldspots and power to detect
them within unique strata of the reference region. Strata may be defined according to the values of some
additional covariate or covariates (e.g., distance from shore, where <5 km from shore could define
stratum A, 5–10 km stratum B, and >10 km stratum C). It is important to recognize that
hotspots/coldspots would then be defined uniquely within each strata such that a hotspot of abundance
within stratum A, for example, would define an area of high abundance relative to stratum A only.

To provide examples of how stratification can affect estimates of power and significance test p-values, we
implemented a method to identify the core and non-core areas of abundance for four species-season
combinations: Common Eider in winter, Herring Gull in fall, Roseate Tern in summer, and Red-throated
Loon in winter. For each species-season combination, we identified the core area of abundance based on
the predicted relative density values from Winship et al. (2018) following the core area of abundance
calculation in Curtice et al. (2016, Section 3.6). This calculation resulted in each grid cell of the input data
being designated as either inside or outside the core area of abundance for each species-season
combination. We then spatially matched each transect segment to the resulting grid and coded each as
belonging to one of the resulting two strata. Because the spatial grid used in Winship et al. (2018) did not
completely cover our study area, some transect segments were excluded from this part of the analysis.

We then reran all analyses separately for each stratum. We re-estimated the θi j parameter of the Bernoulli
distribution and refit the discrete lognormal distribution to all non-zero counts within each stratum
separately. Finally, we re-estimated significance test p-values and power to detect hotspots and coldspots
of each effect size and model type within each stratum.
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2.10 Implementation

Model fitting and all analyses were completed using R version 3.4.4 64-bit (R Core Team 2018).
Candidate distribution model fitting relied on the following R packages: gsl version 1.9.10.3 (Hankin
2006), poweRlaw version 0.70.1 (Gillespie 2015), VGAM version 1.0.5 (Yee 2010), and code provided in
Clauset et al. (2009). Additional R packages used throughout the analyses included raster version 2.5.8
(Hijmans 2016), rgdal version 1.2.7 (Bivand et al. 2017), and rgeos version 0.3.23 (Bivand, Rundel 2017).

3 Results

The reference prevalence (i.e., the estimated θi j parameter of the Bernoulli distribution), reference
distribution parameters (i.e., the estimated µi j and σi j parameters of the discrete lognormal distribution),
and reference mean (i.e., the expected value of the reference distribution) are shown in Table 4 for each
species and season combination. Northern Gannet during spring had the greatest proportion of transect
segments with sightings (reference prevalence = 0.245) for any analyzed species-season combination,
while Black-capped Petrel during fall had the least (reference prevalence = 0.002). The expected count for
a transect segment with at least one sighting was greatest for Common Eider during summer (reference
mean = 374.28) and least for Common Loon during summer (reference mean = 1.33).

Table 4. Parameter estimates
Reference prevalence, reference mean, and maximum likelihood parameter estimates from the discrete lognormal
distribution fit to non-zero counts for each species-season combination. See Section 2.4 for more details.

Species Season Reference prevalence Reference mean µ̂i j σ̂i j

Common Eider spring 0.038 212.45 1.626 2.655
Common Eider summer 0.005 374.28 1.613 2.860
Common Eider fall 0.018 67.87 1.874 2.110
Common Eider winter 0.072 188.52 1.408 2.680
Surf Scoter spring 0.034 17.87 1.745 1.475
Surf Scoter fall 0.022 38.63 2.219 1.670
Surf Scoter winter 0.061 25.44 2.029 1.529
White-winged Scoter spring 0.022 45.04 -0.693 2.760
White-winged Scoter fall 0.017 19.89 1.139 1.832
White-winged Scoter winter 0.047 16.28 0.900 1.832
Long-tailed Duck spring 0.054 38.61 1.830 1.861
Long-tailed Duck fall 0.014 31.47 1.482 1.914
Long-tailed Duck winter 0.112 28.96 1.875 1.688
Razorbill spring 0.040 7.08 1.188 1.192
Razorbill summer 0.002 2.70 0.528 0.872
Razorbill fall 0.005 6.58 0.244 1.623
Razorbill winter 0.058 8.30 0.794 1.514
Atlantic Puffin spring 0.008 2.41 0.244 0.961
Atlantic Puffin summer 0.007 2.14 -0.317 1.140
Atlantic Puffin fall 0.003 1.37 -0.512 0.841
Atlantic Puffin winter 0.009 1.74 -0.282 0.960
Laughing Gull spring 0.028 2.21 -0.272 1.144
Laughing Gull summer 0.045 3.23 -0.534 1.502

continued on next page
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Table 4 continued

Species Season Reference prevalence Reference mean µ̂i j σ̂i j

Laughing Gull fall 0.049 5.43 -0.256 1.705
Laughing Gull winter 0.004 2.64 -0.341 1.297
Herring Gull spring 0.221 6.77 -0.570 1.925
Herring Gull summer 0.083 3.19 -1.260 1.724
Herring Gull fall 0.212 6.29 -0.287 1.794
Herring Gull winter 0.157 4.88 -1.528 2.037
Least Tern summer 0.004 3.69 -1.348 1.834
Least Tern fall 0.003 13.83 0.849 1.770
Roseate Tern spring 0.002 3.36 0.244 1.207
Roseate Tern summer 0.006 3.64 -0.073 1.401
Roseate Tern fall 0.002 8.21 -1.408 2.259
Common Tern spring 0.024 4.34 0.662 1.165
Common Tern summer 0.046 4.68 -0.007 1.528
Common Tern fall 0.020 9.29 0.179 1.830
Royal Tern spring 0.011 2.50 -0.634 1.370
Royal Tern summer 0.007 2.31 -0.307 1.191
Royal Tern fall 0.010 2.56 0.368 0.934
Red-throated Loon spring 0.071 2.83 -0.602 1.440
Red-throated Loon fall 0.011 5.20 -1.131 1.960
Red-throated Loon winter 0.082 3.33 -0.776 1.601
Common Loon spring 0.113 2.36 -0.144 1.138
Common Loon summer 0.005 1.33 -0.423 0.773
Common Loon fall 0.039 2.19 -0.130 1.074
Common Loon winter 0.119 2.31 -0.926 1.414
Black-capped Petrel spring 0.005 1.91 -1.631 1.484
Black-capped Petrel summer 0.009 2.75 -2.696 1.998
Black-capped Petrel fall 0.002 2.08 -0.286 1.105
Black-capped Petrel winter 0.003 2.41 0.193 0.987
Cory’s Shearwater spring 0.004 2.18 -0.361 1.171
Cory’s Shearwater summer 0.078 4.25 -1.724 2.015
Cory’s Shearwater fall 0.045 4.59 -0.855 1.810
Sooty Shearwater spring 0.030 8.74 -3.573 2.785
Sooty Shearwater summer 0.041 12.30 -5.917 3.359
Sooty Shearwater fall 0.003 2.48 -15.628 3.792
Great Shearwater spring 0.023 8.56 0.495 1.665
Great Shearwater summer 0.162 11.42 0.027 1.985
Great Shearwater fall 0.174 12.78 1.139 1.597
Great Shearwater winter 0.004 2.61 -0.624 1.394
Audubon’s Shearwater spring 0.005 4.44 -5.537 2.832
Audubon’s Shearwater summer 0.022 2.80 -1.510 1.714
Audubon’s Shearwater fall 0.007 2.98 -0.337 1.378
Audubon’s Shearwater winter 0.005 2.08 -0.422 1.158
Northern Gannet spring 0.245 5.34 -0.622 1.819
Northern Gannet summer 0.033 2.27 -1.223 1.492

continued on next page
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Table 4 continued

Species Season Reference prevalence Reference mean µ̂i j σ̂i j

Northern Gannet fall 0.134 4.51 -0.332 1.628
Northern Gannet winter 0.231 6.80 -0.903 2.029

3.1 Hotspot/Coldspot Identification

Nearly all adjusted p-values were greater than 0.2 in both hotspot and coldspot tests of significance for all
model types and grid cell sizes (Tables 5–6): >98.14% (hotspot) and >99.38% (coldspot) for the
occurrence probability model, >99.80% (hotspot) and >99.67% (coldspot) for the non-zero count model,
and >99.93% (hotspot) and >99.37% (coldspot) for the combined model. By definition, unadjusted
p-values were always less than or equal to p-values adjusted for multiple testing. However, unadjusted
p-values showed similar patterns in that a very high percentage were greater than 0.2: >91.77% (hotspot)
and >93.11% (coldspot) for the occurrence probability model, >83.89% (hotspot) and >83.84%
(coldspot) for the non-zero count model, and >92.58% (hotspot) and >92.56% (coldspot) for the
combined model, with percentages varying depending on grid cell size.

A large percentage of grid cells showed little evidence of being either a hotspot or coldspot (i.e., both
hotspot and coldspot adjusted p-values > 0.2) for any species: 64.29–98.09%, depending on grid cell size,
for the occurrence probability model, 97.46–99.81% for the non-zero count model, and 89.86–99.60% for
the combined model (Table 7).

Geographic areas identified as potential hotspots or coldspots shifted as the spatial resolution changed.
This was due to the spatial location of transect segments relative to the grid cell size and the often extreme
variability in observations per transect segment, which led to large fluctuations in mean count for a given
grid cell as the grid cell size changed. As a result, it was possible for a grid cell to change from being a
potential hotspot/coldspot (low estimated p-value) to not being a potential hotspot/coldspot (and vice
versa) as the grid cell size changed. This underscores the importance of having an a priori method to
determine the proper spatial resolution for hotspot/coldspot identification.

3.2 Hotspot/Coldspot Persistence

Among grid cells that were surveyed in multiple years within the same season, the mean interannual
persistence, pooled across all species, seasons, and spatial resolutions, for a hotspot with adjusted
p-value ≤ 0.05 varied slightly depending on model type: 0.14 for the occurrence probability model, 0.20
for the non-zero count model, and 0.18 for the combined model. The mean interannual persistence of
coldspots surveyed in multiple years within the same season and with adjusted p-value ≤ 0.05 was much
lower and showed less variability: 0.06 for the occurrence probability model, 0.04 for the non-zero count
model, and 0.06 for the combined model.

Across all species, seasons, and spatial resolutions, 83% of all grid cells that were surveyed in multiple
years within the same season and were hotspots of occurrence in at least one year (i.e., adjusted
p-value ≤ 0.05 in at least one single-year significance test) were hotspots of occurrence when all years
were combined (adjusted p-value ≤ 0.05 in overall significance test). Of grid cells that were hotspots of
non-zero abundance in at least one year, 80% were hotspots of non-zero abundance when all years were
combined, while only 52% of grid cells that were hotspots of unconditional abundance in at least one year
were overall hotspots of unconditional abundance. Similarly, 92% of all grid cells that were surveyed in
multiple years within the same season and were coldspots of occurrence in at least one year were coldspots
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Table 5. Summary of hotspot p-values
Hotspot p-values are pooled across all species and seasons and are summarized for each combination of model type
(Model), adjusted/unadjusted p-value (Type), and grid cell size (Grid size). Columns 4–9 show the percentage of
p-values that fall within the specified range. Percentage values sum to 100 for each row.

Model Type Grid size [0, 0.001] (0.001, 0.01] (0.01, 0.05] (0.05, 0.1] (0.1, 0.2] (0.2, 1]

oc
cu

rr
en

ce
pr

ob
ab

ili
ty

un
ad

ju
st

ed 1×1 0.35 0.54 1.18 0.85 1.44 95.62
2×2 0.96 0.85 1.55 0.93 1.50 94.20
3×3 1.72 1.11 1.71 1.10 1.49 92.87
4×4 2.54 1.20 1.82 1.10 1.57 91.77

ad
ju

st
ed 1×1 0.08 0.02 0.02 0.01 0.02 99.85

2×2 0.24 0.07 0.08 0.05 0.06 99.49
3×3 0.53 0.19 0.18 0.10 0.11 98.90
4×4 0.94 0.27 0.26 0.19 0.20 98.14

no
n-

ze
ro

co
un

t

un
ad

ju
st

ed 1×1 0.24 1.02 3.53 3.86 7.46 83.89
2×2 0.25 1.14 3.42 3.64 6.71 84.86
3×3 0.27 1.23 3.30 3.46 6.26 85.48
4×4 0.28 1.38 3.33 3.56 5.75 85.70

ad
ju

st
ed 1×1 0.01 0.00 0.01 0.01 0.02 99.95

2×2 0.01 0.00 0.02 0.03 0.03 99.91
3×3 0.01 0.00 0.03 0.02 0.05 99.88
4×4 0.01 0.02 0.05 0.03 0.09 99.80

co
m

bi
ne

d

un
ad

ju
st

ed 1×1 0.13 0.67 1.59 1.25 1.49 94.87
2×2 0.19 0.81 1.84 1.36 1.83 93.98
3×3 0.27 0.99 2.04 1.50 1.97 93.24
4×4 0.35 1.20 2.23 1.54 2.11 92.58

ad
ju

st
ed 1×1 0.00 0.00 0.00 0.00 0.00 99.99

2×2 0.01 0.00 0.00 0.00 0.00 99.98
3×3 0.01 0.00 0.01 0.01 0.02 99.96
4×4 0.01 0.00 0.02 0.02 0.02 99.93

of occurrence when all years were combined. Of grid cells that were coldspots of non-zero abundance in at
least one year, only 27% were coldspots of non-zero abundance when all years were combined, while 85%
of grid cells that were coldspots of unconditional abundance in at least one year were overall coldspots of
unconditional abundance.

Boxplots of hotspot/coldspot p-values vs. interannual persistence for each model type are shown in
Appendix A. Regardless of spatial resolution, all grid cells with a hotspot of occurrence interannual
persistence ≥ 0.6 (calculated using adjusted p-values) had overall hotspot of occurrence adjusted
p-values ≤ 0.05, meaning there was sufficient evidence to suggest they are likely true hotspots of
occurrence for at least one species-season combination (Figure A1). Regardless of model type or spatial
resolution, all grid cells with a coldspot interannual persistence ≥ 0.3 showed evidence that they are likely
true coldspots for at least one species-season combination (adjusted p-values ≤ 0.05 in overall significance
tests; Figures A2, A4, and A6).

No formal analysis to compare hotspot/coldspot persistence to overall hotspot/coldspot identification was
completed; therefore, conclusions based on the comparisons above should not be generalized. However,
the results do yield some interesting hypotheses for future research. The results suggest that coldspots of
occurrence, non-zero abundance, and unconditional abundance may be less persistent through time than
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Table 6. Summary of coldspot p-values
Coldspot p-values are pooled across all species and seasons and are summarized for each combination of model type
(Model), adjusted/unadjusted p-value (Type), and grid cell size (Grid size). Columns 4–9 show the percentage of
p-values that fall within the specified range. Percentage values sum to 100 for each row.

Model Type Grid size [0, 0.001] (0.001, 0.01] (0.01, 0.05] (0.05, 0.1] (0.1, 0.2] (0.2, 1]

oc
cu

rr
en

ce
pr

ob
ab

ili
ty

un
ad

ju
st

ed 1×1 0.02 0.03 0.09 0.11 0.30 99.45
2×2 0.14 0.18 0.39 0.41 0.93 97.94
3×3 0.46 0.47 0.95 0.79 1.67 95.66
4×4 0.95 0.91 1.40 1.23 2.40 93.11

ad
ju

st
ed 1×1 0.00 0.00 0.00 0.00 0.00 99.99

2×2 0.03 0.01 0.01 0.00 0.01 99.93
3×3 0.11 0.04 0.05 0.03 0.04 99.74
4×4 0.26 0.11 0.11 0.05 0.08 99.38

no
n-

ze
ro

co
un

t

un
ad

ju
st

ed 1×1 0.04 0.12 0.58 1.03 3.63 94.60
2×2 0.13 0.37 1.34 1.99 5.84 90.33
3×3 0.28 0.63 2.25 2.88 7.43 86.53
4×4 0.43 1.01 3.06 3.61 8.04 83.84

ad
ju

st
ed 1×1 0.00 0.00 0.01 0.01 0.01 99.98

2×2 0.04 0.00 0.01 0.02 0.01 99.93
3×3 0.06 0.01 0.05 0.04 0.05 99.79
4×4 0.09 0.02 0.10 0.06 0.05 99.67

co
m

bi
ne

d

un
ad

ju
st

ed 1×1 0.02 0.04 0.10 0.12 0.33 99.39
2×2 0.15 0.19 0.44 0.44 1.01 97.77
3×3 0.48 0.49 1.01 0.86 1.84 95.33
4×4 1.00 0.93 1.50 1.37 2.64 92.56

ad
ju

st
ed 1×1 0.01 0.00 0.00 0.00 0.00 99.99

2×2 0.05 0.00 0.01 0.00 0.01 99.93
3×3 0.17 0.00 0.04 0.03 0.03 99.73
4×4 0.37 0.00 0.12 0.05 0.09 99.37

hotspots. The observation of a single-year hotspot of occurrence or non-zero abundance may be indicative
of an overall hotspot of occurrence or non-zero abundance. Likewise, the observation of a single-year
coldspot of occurrence or unconditional abundance may indicate an overall coldspot of occurrence or
unconditional abundance. However, the observation of a single-year non-hotspot or non-coldspot likely
gives no indication regarding the existence of a hotspot or coldspot. Yet, it may be more likely for a
single-year non-coldspot to actually be an overall coldspot than for a single-year non-hotspot to actually be
an overall hotspot.

3.3 Power Estimation

Power to detect hotspots of occurrence (i.e., based on the occurrence probability model) for effect sizes of
δ ≥ 10 was undefined for 11 species-season combinations: Long-tailed Duck (winter), Herring Gull
(spring, fall, winter), Common Loon (spring, winter), Great Shearwater (summer, fall), and Northern
Gannet (spring, fall, winter) because δ times the reference prevalence was greater than one. Eight
additional species-season combinations had undefined power to detect hotspots of occurrence for δ = 20:
Common Eider (winter), Surf Scoter (winter), Long-tailed Duck (spring), Razorbill (winter), Herring Gull
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Table 7. Percentage of grid cells classified as hotspot, coldspot, or neither for each model type at a
range of type I error rates
‘Hotspot’ and ‘Coldspot’ columns show the percentage of grid cells classified as a hotspot or coldspot (i.e., adjusted
p-value ≤ α) for at least one species, based on the given type I error rate (α). ‘Neither’ columns show the percentage
of grid cells not classified as a hotspot or coldspot (i.e., adjusted hotspot p-value > α and adjusted coldspot p-value >
α) for any species, based on the given type I error rate.

Occurrence probability model Non-zero count model Combined model

Grid size α Hotspot Coldspot Neither Hotspot Coldspot Neither Hotspot Coldspot Neither

1×1

0.01 0.98 0.08 99.02 0.03 0.02 99.96 0.11 0.17 99.72
0.05 1.36 0.14 98.64 0.06 0.03 99.91 0.11 0.17 99.72
0.10 1.62 0.17 98.37 0.08 0.05 99.87 0.13 0.17 99.70
0.20 1.90 0.20 98.09 0.14 0.06 99.81 0.20 0.20 99.60

2×2

0.01 5.86 0.59 93.87 0.06 0.14 99.80 0.24 0.64 99.12
0.05 7.56 0.71 92.12 0.14 0.15 99.71 0.35 0.73 98.94
0.10 8.87 0.81 90.78 0.25 0.20 99.55 0.48 0.77 98.77
0.20 10.36 0.90 89.27 0.38 0.21 99.41 0.64 0.90 98.49

3×3

0.01 14.27 2.03 85.09 0.11 0.27 99.63 0.24 2.32 97.49
0.05 17.98 2.62 81.16 0.29 0.48 99.23 0.53 2.91 96.66
0.10 19.98 2.97 79.13 0.43 0.61 98.96 0.88 3.29 96.10
0.20 22.31 3.55 76.60 0.69 0.69 98.61 1.47 3.55 95.40

4×4

0.01 23.03 4.94 75.50 0.21 0.52 99.27 0.39 5.37 94.37
0.05 27.07 6.36 71.25 0.56 0.95 98.54 1.12 6.36 92.91
0.10 30.08 7.05 68.07 0.69 1.20 98.15 1.80 7.00 91.83
0.20 33.30 8.25 64.29 1.25 1.33 97.46 2.62 8.34 89.86

(summer), Red-throated Loon (spring, winter), and Cory’s Shearwater (summer).

Power to detect coldspots of both non-zero and unconditional abundance (i.e., based on the non-zero count
and combined models, respectively) for effect size δ = 1⁄20 was undefined for all species except sea ducks
during certain seasons: Common Eider (all seasons), Surf Scoter (fall, winter), White-winged Scoter
(spring), and Long-tailed Duck (all modeled seasons). For effect size δ = 1⁄10, power to detect coldspots of
non-zero and unconditional abundance was defined for all sea ducks during all modeled seasons, Least
Tern (fall), and Great Shearwater (summer, fall), but undefined for all other species-season combinations2.
Regardless of effect size, power to detect coldspots of non-zero and unconditional abundance was
undefined for 26 species-season combinations: Razorbill (summer), Atlantic Puffin (all seasons), Laughing
Gull (spring, winter), Royal Tern (all modeled seasons), Red-throated Loon (spring), Common Loon (all
seasons), Black-capped Petrel (all seasons), Cory’s Shearwater (spring), Sooty Shearwater (fall), Great
Shearwater (winter), Audubon’s Shearwater (summer, fall, winter), and Northern Gannet (summer).

Power curves for each species-season combination based on the occurrence probability, non-zero count,
and combined models are presented in Appendices C–E, respectively. Increasing effect sizes3 always led
to greater power to detect a hotspot or coldspot, assuming δ times the reference prevalence was less than
or equal to one and δ times the reference mean was greater than one. Similarly, increasing the grid cell
size always led to either no change or an increase in sample size within a given grid cell, which in turn

2In all cases except Sooty Shearwater (summer), power to detect coldspots of non-zero and unconditional abundance was
undefined because δ times the reference mean was less than or equal to one. Power to detect coldspots for Sooty Shearwater during
summer based on the non-zero count and combined models with effect size δ = 1⁄10 was undefined because 1⁄10 times the reference
mean combined with the relatively large σi j estimate of 3.359 (Table 4) made it infeasible to simulate an adequate number of
random draws from the discrete lognormal distribution, even though δ times the reference mean was greater than one.

3A coldspot effect size of 1⁄20 is considered a larger effect size than 1⁄10 which is considered larger than 1⁄3, even though 1⁄20 is
numerically less than 1⁄10 which is less than 1⁄3.
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should lead to either no change or an increase in power. In general this was the case. However, power
curves for the occurrence probability and combined models, which are at least partly based on the
binomial distribution, exhibited a nonmonotonic “sawtooth” pattern characteristic of some discrete
statistical distributions (Chernick, Liu 2002). The overall trend of power curves for these model types
matched the expectation that an increase in sample size should lead to an increase in power to detect
hotspots or coldspots, although small increases in sample size often led to either a) small increases in
power followed by intermittent “drops” or large decreases in power to detect hotspots or b) small decreases
in power followed by intermittent “jumps” or large increases in power to detect coldspots. These patterns
were most evident in the power curves shown in Appendix C.

When estimating the sample size required to obtain a certain level of power to detect hotspots or coldspots
of occurrence or unconditional abundance (i.e., based on the occurrence probability or combined models),
we suggest users take a conservative approach. Using Common Eider during spring as an example, 80%
power to detect a hotspot of occurrence defined as three times the reference prevalence was first reached
with a sample size of 69 transect segments. Power then dropped to about 71% and did not remain above
80% until a sample size of 79 transect segments was used (Figure C1 in Appendix C). In this example,
the suggested interpretation is that at least 79 transect segments are needed to confidently obtain 80%
power to detect a hotspot of occurrence defined as three times the reference prevalence for Common Eider
during spring.

The estimated sample size required to achieve 80% power to detect a hotspot or coldspot is shown in
Appendix B for each species-season combination. Values varied drastically according to species, season,
effect size, and model type. A single transect segment was the only requirement in order to achieve 80%
power to detect a hotspot of occurrence defined as twenty times the reference prevalence for five
species-season combinations (Table B1). In contrast, a sample size of 1,063 transect segments (the largest
sample size considered) failed to reach 80% power to detect a hotspot of abundance of three times the
reference mean for seven species-season combinations (Table B3). As stated above, power to detect
coldspots of non-zero and unconditional abundance was undefined for many species-season combinations,
but an estimated 38 transect segments were the minimum requirement in order to achieve 80% power to
detect a coldspot of abundance for at least one species-season combination (Great Shearwater in fall at
effect size δ = 1⁄10; Table B3). Achieving 80% power to detect a coldspot of occurrence required between
11 and more than 1,063 transect segments, depending on species, season, and effect size (Table B1).

Interpreting the sample size requirements for 80% power based on the occurrence probability and
combined models is straightforward since sample size corresponds directly to the number of transect
segments surveyed within a single grid cell. For the non-zero count model, the interpretation is not as clear
because sample size corresponds to the number of transect segments with at least one sighting of the
specified species during the specified season. For a rough estimate of the number of transect segments with
and without sightings (i.e., survey effort) needed to achieve 80% power to detect hotspots or coldspots of
non-zero abundance, we suggest either a) simply using the sample size estimates from the combined
model shown in Table B3 or b) dividing the estimates from the non-zero count model found in Table B2
by the corresponding reference prevalence from Table 4.

Summarizing across all species-season combinations, detecting a hotspot of occurrence with 80% power
for effect size δ = 10 required on average three times as many transect segments within a single grid cell
than for effect size δ = 20 (Figure 2). Achieving 80% power for effect size δ = 3 required roughly nine
times as many transect segments than for effect size δ = 10. For the non-zero count model, detecting a
hotspot with 80% power required roughly twice as many transect segments with at least one sighting
within a single grid cell for effect size δ = 10 compared to δ = 20 and roughly six times as many transect
segments with sightings for effect size δ = 3 compared to δ = 10. Detecting a hotspot of unconditional
abundance (i.e., based on the combined model) with 80% power required roughly twice as many transect
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Figure 2. Boxplots showing the ratio of sample sizes needed for 80% power to detect hotspots of
the specified effect size combination for each model type (type I error rate = 0.05)
Species-season combinations that failed to reach 80% power within the range of sample sizes examined were
excluded.

Figure 3. Boxplots showing the ratio of sample sizes needed for 80% power to detect coldspots of
the specified effect size combination for each model type (type I error rate = 0.05)
Species-season combinations that failed to reach 80% power within the range of sample sizes examined were
excluded.
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segments for effect size δ = 10 compared to effect size δ = 20 and on average about five times as many
transect segments within a single grid cell for effect size δ = 3 compared to δ = 10.

Detecting a coldspot of occurrence with 80% power required roughly the same number of transect
segments for effect sizes δ = 1⁄10 and δ = 1⁄20, while effect size δ = 1⁄3 required on average about twice as
many transect segments within a single grid cell than effect size δ = 1⁄10 (Figure 3). For the non-zero count
model, detecting a coldspot with 80% power required roughly twice as many transect segments with at
least one sighting for effect size δ = 1⁄10 compared to effect size δ = 1⁄20 and roughly eight times as many
transect segments with sightings for effect size δ = 1⁄3 compared to δ = 1⁄10. Detecting a coldspot of
unconditional abundance with 80% power required roughly twice as many transect segments for effect size
δ = 1⁄10 compared to δ = 1⁄20 and on average about five times as many transect segments within a single grid
cell for effect size δ = 1⁄3 compared to effect size δ = 1⁄10.

These power analysis results should not be interpreted to mean that larger effect sizes and coarser spatial
resolutions are preferable simply because, in general, they yield greater power to detect hotspots and
coldspots. Smaller effect sizes use a less stringent definition of hotspots which may be preferable for
certain regulatory decisions, and finer spatial resolution allows for more precise identification of hotspots
and coldspots within a spatial domain. However, smaller effect sizes and finer spatial resolution both
require additional survey effort (i.e., larger sample size) to achieve the same level of statistical power,
compared to larger effect sizes and coarser spatial resolutions.

3.4 Stratification

For all four species-season combinations, stratifying transect segments according to the core/non-core area
calculation had the effect of increasing the estimated reference prevalence and reference mean values
within the core area and decreasing the estimates in the non-core area. Within the core area, this led to an
increase in hotspot p-values (decrease in statistical significance), a decrease in coldspot p-values (increase
in statistical significance), and a decrease in power for a fixed sample size. Results showed opposite
patterns within the non-core area: power estimates and coldspot p-values increased, while hotspot
p-values decreased.

4 Discussion

This study applied methodology developed by Kinlan et al. (2012) to twenty species of marine birds and
explored a number of refinements to the general framework. Useful recommendations to consider when
completing spatial power analyses are presented in Kinlan et al. (2012, Sections 4.0–4.7). Additional
recommendations based on this study are given below.

4.1 Model Type

In most cases, when both zero and non-zero counts are recorded during data collection (i.e., when data
collection includes a measure of space surveyed along with species-specific counts), the combined model
is most appropriate and preferable. In situations where only presence/absence is recorded or when
identification of hotspots/coldspots of occurrence is sufficient, the occurrence probability model is
suggested. In general, use of the non-zero count model as a basis for power analyses and hotspot/coldspot
identification is discouraged, especially for management applications. The non-zero count model only
considers transect segments in which the species of interest was sighted. Therefore, an area that shows
evidence of being a hotspot based on the non-zero count model really means that the area is a potential
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hotspot compared to all other areas the species has been sighted, as opposed to all areas sampled within the
study region. Likewise and less useful in drawing meaningful conclusions, an area that shows evidence of
being a coldspot based on the non-zero count model really means that the area is a potential coldspot
compared to all other areas the species has been sighted. In other words, the given species could be
expected to be present within the coldspot area, just in smaller numbers. In contrast, the occurrence
probability and combined models use the additional information present in areas that were sampled but
had no sightings of the given species. If the goal is to identify coldspots so as to avoid a given species, one
would certainly want to consider areas where sampling had occurred but the species was not sighted.
However, in rare situations where only positive counts are recorded, the non-zero count model may be the
only option.

4.2 Type I and Type II Error Rates

Type I and type II error rates play an essential role in statistical hypothesis tests and power analyses. In
hypothesis testing a type I error, or “false positive” result, happens when the null hypothesis is rejected in
favor of the alternative hypothesis when, in fact, the null hypothesis is true. A type II error, or “false
negative” result, happens when the null hypothesis is not rejected when the alternative hypothesis is
actually true. When the p-value from a hypothesis test is directly used to make a yes/no decision, such as
in the designation of a grid cell as a hotspot or non-hotspot, the p-value threshold at which the null
hypothesis is rejected will match the specified type I error rate (i.e., the null hypothesis is rejected in favor
of the alternative hypothesis when the p-value is less than or equal to the type I error rate). Power analyses
use the p-value from a hypothesis test to make a yes/no decision and therefore require specification of a
desired type I error rate. Furthermore, statistical power, which is defined as the probability that the null
hypothesis is correctly rejected, is mathematically equivalent to one minus the type II error rate. Therefore,
the outcome of any power analysis provides a direct identification of type II error rate for a specified
sample size, or conversely, provides the sample size required to achieve a specified type II error rate or
power level. Throughout the analyses we used a type I error rate of 0.05 and interpreted results assuming a
type II error rate of 0.2 (i.e., a desired power level of 80%).

While it is impossible to entirely eliminate the probability of committing a type I or type II error,
minimizing the rate of each is preferable, but this comes at a cost of increased sample size. In general, a
decrease in type I error rate requires a larger sample size in order to achieve the same power level.
Likewise, as discussed Section 3.3, an increase in power, which corresponds to a decrease in type II error
rate, generally requires a larger sample size for a fixed type I error rate. These costs and benefits must be
weighed when determining type I and type II error rates appropriate for the question at hand. A useful
example with management implications that further details the link between type I error rate, sample size,
and statistical power can be found in Taylor et al. (2007).

4.3 Adjusted vs. Unadjusted p-values

In Section 2.5, we suggested and applied a method for adjusting significance test p-values by controlling
for false positives. Adjusted p-values provide more certainty in identification of hotspots and coldspots
since, by design, they contain fewer false positives. Therefore, areas that show evidence of being hotspots
or coldspots (small adjusted p-value) are very likely true hotspots/coldspots of abundance or occurrence.
However, due to the potentially large number of independent hypothesis tests performed–one test for each
grid cell–adjusted p-values, especially those based on the occurrence probability or combined models, will
often show no evidence of hotspots or coldspots within the study region. For any species, true hotspots and
coldspots should exist, unless abundance (or occurrence probability) is uniform throughout the region,
which is unlikely. These hotspots/coldspots are most likely not being detected within this analysis
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framework because of insufficient survey effort.

In general, we suggest the use of adjusted p-values over unadjusted p-values. As discussed above, type I
error rates can be shifted to strike the necessary balance between sample size and power. However, in
certain situations where it is infeasible to obtain adequate survey data to meet even a minimal level of
statistical power, unadjusted p-values can be useful in identifying possible locations of hotspots and
coldspots, as long as users understand that the potential for false positives is possibly much higher than the
specified type I error rate.

The use of adjusted vs. unadjusted p-values may also be situationally dependent. In situations where
species protection is important, a liberal approach to identifying important areas (i.e., hotspots) for a
species of interest may be preferred. In these cases, it is likely more important to ensure a high level of
power (i.e., low type II error rate) than it is to have a low type I error rate. Using offshore wind energy as
an example, the safest option in order to minimize risk for a given species would be to avoid development
in all areas identified as possible hotspots (of a reasonable effect size) even if, in reality, some of these are
false positives. While it would still be preferable to use adjusted p-values and simply increase the
acceptable type I error rate to obtain adequate power, unadjusted p-values could be used to detect hotspots
in this case. As long as a high level of power was achieved in order to minimize the probability of failing
to identify a true hotspot, this use of unadjusted p-values could be warranted since the effect would be
more areas identified as potential hotspots at the cost of a possibly unquantifiable increase in the number of
false positives.

When the goal is species avoidance, a more cautious approach to detecting coldspots for a species may be
preferred. In these situations, it is likely more important to ensure a low type I error rate than a high power
level. Again using offshore wind energy as an example, the safest option in order to minimize risk for a
given species would be to only consider for development areas identified as coldspots (of a reasonable
effect size) with a high degree of certainty, even if some true coldspots failed to be identified. This could
be accomplished using adjusted p-values with a low specified type I error rate. Here, power levels could
safely be decreased in order to achieve reasonable sample sizes, since false negatives would be of minimal
concern. Areas identified as potential coldspots based on adjusted p-values with a low type I error rate
would very likely be true areas of low abundance (or occurrence) where development could be considered
and the potential for impacts on the species of interest would be minimized.

4.4 Effect Size and Spatial Resolution

Greater power to detect a hotspot/coldspot can always be obtained simply by increasing the
hotspot/coldspot proportional effect size. Less survey effort is required to detect a hotspot of twenty times
the reference mean than a hotspot of ten times the reference mean, and less survey effort is required to
detect a coldspot of 1⁄20 times the reference mean than a coldspot of 1⁄10 times the reference mean. However,
smaller effect sizes, especially in the hotspot case, may be preferable in the context of identifying
important areas for a species because they use a less stringent definition of hotspots. For example, a large
effect size may only identify hotspots of extremely high relative abundance, whereas a smaller effect size
may have the ability to identify areas with moderately high relative abundance as potential hotspots as well.

The opposite is possibly true for identifying coldspots: larger effect sizes may be preferable, assuming the
effect size times the reference mean is greater than one. With regard to human activities and potential
development in the offshore environment, a region of very low abundance would serve as a better
development site than an area with moderately low abundance, simply because it likely carries less
inherent risk of impact to the species. Assuming coldspots defined as 1⁄20 or 1⁄10 times the reference mean
exist in the study region, a sufficient goal may be to obtain adequate power to detect coldspots at one of
these larger effect sizes, since less survey effort would be required.
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Another important consideration for power analyses is the spatial resolution (i.e., grid cell size) at which
analyses are completed. Assuming complete survey coverage within the study area, larger grid cells will,
in general, result in greater power to detect hotspots or coldspots simply because they contain more survey
effort. However, smaller grid cells allow for more precise identification of hotspots and coldspots, as long
as there is adequate power to detect them.

When determining the appropriate spatial resolution for assessing hotspots/coldspots, one must balance
multiple considerations. Namely, the scale of spatial autocorrelation within the survey data, the scale at
which management or regulatory decisions will be made, and the amount of existing survey data within the
region of interest. Kinlan et al. (2012, Section 4.5) discussed the importance of matching the grid cell size
to the scale of spatial autocorrelation. Offshore development, specifically wind energy development
projects, will likely be larger in scale than the size of a single 4.8 × 4.8 km grid cell. Ideally, power
analyses conducted to inform such development projects will match the spatial resolution of the project.
However, sufficient survey data to obtain adequate power to detect hotspots/coldspots at the scale of spatial
autocorrelation and management decisions may not exist and may be cost prohibitive to gather. In these
cases, it may be necessary to explore larger effect sizes and/or decreased spatial resolution.

5 Case Study: Common Eider in Nantucket Sound during Winter

Nantucket Sound lies off the southeastern coast of Massachusetts and is bordered by Cape Cod to the
north, Nantucket to the south, and Martha’s Vineyard to the west. A section of Nantucket Sound was
previously considered for offshore wind power development and a comparatively large amount of marine
bird survey data exists within the region. As an example of how analyses from this study could be used to
inform spatial planning and management decisions, we present an interpretation of our results for
Common Eider during the winter season within Nantucket Sound. We assume a maximum allowable type
I error rate of 0.05 and type II error rate of 0.2 (i.e., a minimum acceptable power level of 80%) for both
hotspot and coldspot identification. Since we are analyzing a large dataset containing both zero and
non-zero species-specific counts of marine birds spanning many years (Section 2.1), analyses based on the
combined model are most appropriate.

5.1 Hotspots/Coldspots of Abundance

All 4.8 × 4.8 km grid cells within Nantucket Sound show no evidence of being either a hotspot or coldspot
of Common Eider abundance in winter (all adjusted p-values ≈ 1); however, some of these grid cells may
be false negatives. To understand the potential for false negatives, we need to investigate power to detect
hotspots/coldspots within the region. Achieving 80% power to detect a hotspot of Common Eider
abundance in winter, even at an effect size of twenty times the reference mean, requires at least 268
transect segments of about 4 km in length within a single grid cell (Table B3). Having 80% power to
detect a coldspot of Common Eider abundance in winter also requires a very substantial amount of survey
effort: at least 193 transect segments for an effect size of 1⁄20 times the reference mean. Based on currently
available data, most 4.8 × 4.8 km grid cells within the central part of Nantucket Sound have roughly
51–107 transect segments that have been surveyed. For each grid cell that failed to achieve 80% power
(i.e., all of them), there is a >20% chance that the grid cell was incorrectly identified as a non-hotspot and
a >20% chance that the grid cell was incorrectly identified as a non-coldspot. In other words, there is a
large potential for false negatives. In order to achieve 80% power to detect a hotspot or coldspot of
Common Eider abundance at a spatial resolution of 4.8 × 4.8 km throughout a significant portion of
Nantucket Sound, the amount of existing survey effort in the region would need to at least be tripled. This
is almost certainly cost-prohibitive and infeasible within the near future, especially considering that
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Nantucket Sound has been one of the most heavily surveyed regions throughout the entire study area.

At this point, there are two options that may allow us to achieve 80% power to detect hotspots and
coldspots of abundance within Nantucket Sound: use more stringent definitions of hotspots/coldspots (i.e.,
increase the effect sizes) or decrease the spatial resolution. Increasing the effect sizes beyond twenty or 1⁄20

times the reference mean is not an advisable solution as these effect sizes are already quite large.
Decreasing the spatial resolution to grid cells of 9.6 × 9.6 km or larger may allow us to achieve 80%
power to detect hotspots/coldspots of abundance throughout Nantucket Sound without the need for
additional survey effort and this is a reasonable solution. The drawback here is that the spatial scale at
which conclusions can be drawn may not be relevant (i.e., too coarse) for spatial planning in the region.

Even at the coarsest spatial resolution investigated, 19.2 × 19.2 km, all grid cells within Nantucket Sound
show no evidence of being either a hotspot or coldspot of Common Eider abundance in winter (all adjusted
p-values ≈ 1; Figure 4b). Adequate sample sizes exist to achieve 80% power to detect both a) hotspots of
ten times the reference mean in two grid cells (Figure 4c) and b) coldspots of 1⁄10 times the reference mean
in four grid cells (Figure 4d). We can now be fairly confident that at least two of the grid cells in
Nantucket Sound are likely not hotspots of ten times the reference mean or coldspots of 1⁄10 times the
reference mean. However, it is important to remember that even with 80% power, there is still a 20%
chance that a given grid cell was incorrectly identified as a non-hotspot or non-coldspot. This probability is
further compounded when multiple grid cells are considered at once, as the power estimates presented here
have not been adjusted for multiple testing. Furthermore, it is entirely possible that true hotspots/coldspots
of abundance exists within Nantucket Sound, but that they are hotspots/coldspots of a smaller magnitude
than are detectable at effect sizes of ten or 1⁄10 times the reference mean. The fact that multiple grid cells in
the region have unadjusted p-values that are less than 0.01 is perhaps evidence of this (Figure 4a).

If the spatial scale of these conclusions is too coarse for spatial planning in the region, a final option may
be to consider using the occurrence probability model, which has significantly smaller sample size
requirements for 80% power to detect hotspots/coldspots for Common Eider during winter (Table B1)
with the knowledge that we will then be identifying hotspots/coldspots of occurrence instead of
abundance. Before proceeding with the occurrence probability model, the zero/non-zero count data must
be transformed into absence/presence data (i.e., all non-zero counts must be reduced to 1’s).

5.2 Hotspots/Coldspots of Occurrence

At a spatial resolution of 4.8 × 4.8 km there is evidence that the majority of Nantucket Sound is likely a
hotspot of Common Eider occurrence in winter (adjusted p-values ≤ 0.05; Figure 5b). There is also a
high level of power (greater than 88%) to detect hotspots of three times the reference prevalence
(Figure 5c) and coldspots of 1⁄10 times the reference prevalence (Figure 5d). We can therefore be confident
in concluding that Nantucket Sound is almost certainly an occurrence hotspot (of at least three times the
reference prevalence) for Common Eider during the winter season.

5.3 Hotspots/Coldspots of Non-zero Abundance

For completeness, we present conclusions based on the non-zero count model. Identifying hotspots and
coldspots of non-zero abundance may be a reasonable solution for some applications as long as the
implications of the non-zero count model are understood (see Section 4.1). Note that because our data
includes both zero and non-zero counts, use of the non-zero count model excludes all transect segments
with zero counts of the specified species during the specified season (Common Eider during winter in this
case).
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There are at least five 4.8 × 4.8 km grid cells within Nantucket Sound that are likely true coldspots of
non-zero abundance for Common Eider during winter (adjusted p-values ≤ 0.1; Figure 6b); however, the
majority of grid cells show no evidence of being either a hotspot or coldspot. Moderate power levels are
obtained throughout much of the region with a majority of grid cells achieving 80% power to detect
hotspots of twenty times the reference mean (Figure 6c) and about half achieving 80% power to detect
coldspots of 1⁄10 times the reference mean (Figure 6d). Unadjusted p-values based on the non-zero count
model show an interesting mix of potential hotspots and coldspots within Nantucket Sound (Figure 6a),
but at least some of these are likely false positives.

5.4 Conclusions

Figures 4–6 show, rather conclusively, that the majority of Nantucket Sound is likely a true hotspot of
occurrence for Common Eider during winter within the Atlantic OCS. There is also evidence for the
existence of a few 4.8 × 4.8 km coldspots intermixed with possible 4.8 × 4.8 km hotspots of non-zero
abundance for Common Eider during winter in Nantucket Sound. In terms of overall relative abundance
for Common Eider during winter, evidence is limited for the existence of either hotspots or coldspots less
than or equal to 19.2 × 19.2 km in size. However, it is possible and rather likely that if taken as a whole
the entirety of Nantucket Sound would show evidence of being a hotspot of abundance for Common Eider
during the winter months when compared to the rest of the Atlantic OCS.
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(a) Unadjusted p-values (b) Adjusted p-values

(c) Power to detect a hotspot of ten times the
reference mean

(d) Power to detect a coldspot of 1⁄10 times the
reference mean

Figure 4. Maps of significance test p-values and power to detect hotspots/coldspots of abundance
for Common Eider Somateria mollissima during winter in Nantucket Sound (based on the
combined model with grid cell resolution of 19.2 × 19.2 km)
Top panel maps show combined hotspot (red) and coldspot (blue) p-values from simulation-based significance tests of
the mean count in each grid cell compared to the combined expectation from the reference prevalence and reference
mean (see Section 2.5 for details). Grid cells with p-value > 0.2 are shown in gray. Bottom panel maps show power to
detect hotspots/coldspots of abundance. The number of transect segments surveyed is shown within each grid cell.
Blank grid cells were not surveyed during the winter season.
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(a) Unadjusted p-values (b) Adjusted p-values

(c) Power to detect a hotspot of three times the
reference prevalence

(d) Power to detect a coldspot of 1⁄10 times the
reference prevalence

Figure 5. Maps of significance test p-values and power to detect hotspots/coldspots of occurrence
for Common Eider Somateria mollissima during winter in Nantucket Sound (based on the
occurrence probability model with grid cell resolution of 4.8 × 4.8 km)
Top panel maps show combined hotspot (red) and coldspot (blue) p-values from significance tests of the number of
transect segments with at least one sighting compared to the expectation from the reference prevalence, conditional
on the number of transect segments surveyed (see Section 2.5 for details). Grid cells with p-value > 0.2 are shown in
gray. Bottom panel maps show power to detect hotspots/coldspots of occurrence. Blank grid cells were not surveyed
during the winter season.
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(a) Unadjusted p-values (b) Adjusted p-values

(c) Power to detect a hotspot of twenty times the
reference mean

(d) Power to detect a coldspot of 1⁄10 times the
reference mean

Figure 6. Maps of significance test p-values and power to detect hotspots/coldspots of non-zero
abundance for Common Eider Somateria mollissima during winter in Nantucket Sound (based on
the non-zero count model with grid cell resolution of 4.8 × 4.8 km)
Top panel maps show combined hotspot (red) and coldspot (blue) p-values from simulation-based significance tests of
the mean non-zero count in each grid cell compared to the reference mean (see Section 2.5 for details). Grid cells
with p-value > 0.2 are shown in dark gray. Bottom panel maps show power to detect hotspots/coldspots of non-zero
abundance. Grid cells with survey effort, but no sightings of Common Eider are shown in light gray. Blank grid cells
were not surveyed during the winter season.
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Appendix A: Boxplots of Hotspot/Coldspot p-values vs. Interannual
Persistence

Figure A1. Boxplots of hotspot p-values vs. interannual persistence for the occurrence probability
model (pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with survey effort in which the single-year p-value was less than or equal to 0.05. Results are only shown for grid
cells that were surveyed in multiple years during the same season.
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Figure A2. Boxplots of coldspot p-values vs. interannual persistence for the occurrence probability
model (pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with survey effort in which the single-year p-value was less than or equal to 0.05. Results are only shown for grid
cells that were surveyed in multiple years during the same season.
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Figure A3. Boxplots of hotspot p-values vs. interannual persistence for the non-zero count model
(pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with sightings (of a given species during a given season) in which the single-year p-value was less than or equal
to 0.05. Results are only shown for grid cells with sightings in multiple years during the same season.
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Figure A4. Boxplots of coldspot p-values vs. interannual persistence for the non-zero count model
(pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with sightings (of a given species during a given season) in which the single-year p-value was less than or equal
to 0.05. Results are only shown for grid cells with sightings in multiple years during the same season.
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Figure A5. Boxplots of hotspot p-values vs. interannual persistence for the combined model
(pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with survey effort in which the single-year p-value was less than or equal to 0.05. Results are only shown for grid
cells that were surveyed in multiple years during the same season.
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Figure A6. Boxplots of coldspot p-values vs. interannual persistence for the combined model
(pooled across all grid cell resolutions).
Separate boxplots are drawn for each specified range of interannual persistence values. Boxplots of unadjusted
p-values are shown in the top panel while adjusted p-values are shown in the bottom panel. Unadjusted/adjusted
p-values are from overall significance tests (i.e., including all years of relevant data; see Section 2.5). The red dashed
line corresponds to an unadjusted/adjusted p-value of 0.05. Interannual persistence is defined as the proportion of
years with survey effort in which the single-year p-value was less than or equal to 0.05. Results are only shown for grid
cells that were surveyed in multiple years during the same season.
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Appendix B: Sample Size Requirements for 80% Power

Table B1. Sample size requirements for 80% power based on the occurrence probability model
(type I error rate = 0.05)
For the occurrence probability model, sample size corresponds to the number of transect segments surveyed.

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Common Eider spring 79 11 3 277 125 125
Common Eider summer 607 85 30 >638 >638 601
Common Eider fall 189 23 8 657 263 263
Common Eider winter 41 3 – 145 65 65
Surf Scoter spring 100 12 4 >200 139 139
Surf Scoter fall 154 19 6 536 214 214
Surf Scoter winter 49 4 – 171 77 77
White-winged Scoter spring 151 18 6 527 211 211
White-winged Scoter fall 196 24 8 684 273 273
White-winged Scoter winter 63 6 1 221 99 99
Long-tailed Duck spring 55 5 – 191 86 86
Long-tailed Duck fall 239 29 10 739 333 333
Long-tailed Duck winter 26 – – 91 41 41
Razorbill spring 74 7 3 >200 116 116
Razorbill summer >638 199 69 >638 >638 >638
Razorbill fall 690 86 30 >771 >771 606
Razorbill winter 51 5 – 180 81 81
Atlantic Puffin spring 418 52 18 >728 582 582
Atlantic Puffin summer 491 61 21 >638 >638 431
Atlantic Puffin fall >771 170 59 >771 >771 >771
Atlantic Puffin winter 368 46 16 >1,063 512 512
Laughing Gull spring 119 14 5 415 166 166
Laughing Gull summer 66 6 1 231 104 104
Laughing Gull fall 61 5 1 212 95 95
Laughing Gull winter 832 104 36 >1,063 >1,063 730
Herring Gull spring 9 – – 45 20 13
Herring Gull summer 35 3 – 125 56 56
Herring Gull fall 9 – – 47 21 13
Herring Gull winter 16 – – 65 29 18
Least Tern summer >638 121 42 >638 >638 >638
Least Tern fall >771 163 57 >771 >771 >771
Roseate Tern spring >728 179 62 >728 >728 >728
Roseate Tern summer >200 75 26 >200 >200 >200
Roseate Tern fall >771 195 68 >771 >771 >771
Common Tern spring 141 17 6 490 196 196
Common Tern summer 65 6 1 227 102 102
Common Tern fall 169 21 7 589 235 235
Royal Tern spring 313 39 13 >728 436 436

continued on next page
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Table B1 continued

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Royal Tern summer 475 59 20 >638 >638 >638
Royal Tern fall 332 41 14 >771 462 462
Red-throated Loon spring 42 4 – 146 66 66
Red-throated Loon fall 304 38 13 >771 423 423
Red-throated Loon winter 36 3 – 126 57 57
Common Loon spring 26 – – 91 41 41
Common Loon summer 631 79 27 >638 >638 554
Common Loon fall 77 7 3 >200 121 121
Common Loon winter 21 – – 86 39 39
Black-capped Petrel spring 713 89 31 >728 >728 626
Black-capped Petrel summer 394 49 17 >638 549 549
Black-capped Petrel fall >771 205 72 >771 >771 >771
Black-capped Petrel winter >1,063 168 58 >1,063 >1,063 >1,063
Cory’s Shearwater spring >728 104 36 >728 >728 >728
Cory’s Shearwater summer 38 3 – 133 60 60
Cory’s Shearwater fall 66 6 1 229 103 103
Sooty Shearwater spring 113 14 4 393 157 157
Sooty Shearwater summer 72 10 3 251 113 113
Sooty Shearwater fall >771 148 51 >771 >771 >771
Great Shearwater spring 148 18 6 516 206 206
Great Shearwater summer 15 – – 63 28 17
Great Shearwater fall 14 – – 58 26 16
Great Shearwater winter 934 117 41 >1,063 >1,063 820
Audubon’s Shearwater spring >728 91 32 >728 >728 643
Audubon’s Shearwater summer 157 19 6 545 218 218
Audubon’s Shearwater fall 487 61 21 >771 678 678
Audubon’s Shearwater winter 721 90 31 >1,063 1,003 1,003
Northern Gannet spring 8 – – 40 18 11
Northern Gannet summer 103 9 4 360 144 144
Northern Gannet fall 19 – – 76 34 21
Northern Gannet winter 9 – – 43 19 12

Minimum – 8 3 1 40 18 11
Maximum – >1,063 205 72 >1,063 >1,063 >1,063
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Table B2. Sample size requirements for 80% power based on the non-zero count model (type I error
rate = 0.05)
For the non-zero count model, sample size corresponds to the number of transect segments with sightings.

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Common Eider spring 684 47 17 261 23 10
Common Eider summer >638 68 22 410 32 14
Common Eider fall 141 15 7 75 9 5
Common Eider winter 710 48 17 263 23 10
Surf Scoter spring 26 4 2 19 3 –
Surf Scoter fall 45 6 3 30 5 3
Surf Scoter winter 30 5 2 22 4 2
White-winged Scoter spring 698 50 19 205 17 7
White-winged Scoter fall 62 8 4 36 5 –
White-winged Scoter winter 60 8 4 34 5 –
Long-tailed Duck spring 71 9 4 44 6 3
Long-tailed Duck fall 80 10 5 46 6 3
Long-tailed Duck winter 45 6 3 31 5 2
Razorbill spring 12 2 1 9 – –
Razorbill summer 5 1 1 – – –
Razorbill fall 32 5 3 16 – –
Razorbill winter 27 4 2 16 – –
Atlantic Puffin spring 6 2 1 – – –
Atlantic Puffin summer 8 2 1 – – –
Atlantic Puffin fall 4 1 1 – – –
Atlantic Puffin winter 5 1 1 – – –
Laughing Gull spring 9 2 1 – – –
Laughing Gull summer 20 4 2 7 – –
Laughing Gull fall 36 6 3 16 – –
Laughing Gull winter 13 3 2 – – –
Herring Gull spring 60 8 4 24 – –
Herring Gull summer 28 5 3 7 – –
Herring Gull fall 45 7 3 19 – –
Herring Gull winter 62 9 5 19 – –
Least Tern summer 38 6 3 11 – –
Least Tern fall 52 7 4 29 4 –
Roseate Tern spring 11 2 1 5 – –
Roseate Tern summer 17 3 2 7 – –
Roseate Tern fall 122 15 7 39 – –
Common Tern spring 11 2 1 7 – –
Common Tern summer 24 4 2 11 – –
Common Tern fall 54 7 4 26 – –
Royal Tern spring 13 3 2 – – –
Royal Tern summer 10 2 1 – – –
Royal Tern fall 6 1 1 – – –

continued on next page
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Table B2 continued

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Red-throated Loon spring 17 3 2 – – –
Red-throated Loon fall 56 8 4 18 – –
Red-throated Loon winter 24 4 2 7 – –
Common Loon spring 9 2 1 – – –
Common Loon summer 4 1 1 – – –
Common Loon fall 7 2 1 – – –
Common Loon winter 14 3 2 – – –
Black-capped Petrel spring 13 3 2 – – –
Black-capped Petrel summer 38 7 4 – – –
Black-capped Petrel fall 8 2 1 – – –
Black-capped Petrel winter 7 2 1 – – –
Cory’s Shearwater spring 9 2 1 – – –
Cory’s Shearwater summer 54 8 4 14 – –
Cory’s Shearwater fall 40 6 3 15 – –
Sooty Shearwater spring 327 34 14 65 – –
Sooty Shearwater summer >638 82 33 152 – –
Sooty Shearwater fall 158 29 16 – – –
Great Shearwater spring 38 6 3 20 – –
Great Shearwater summer 80 10 5 36 4 –
Great Shearwater fall 35 5 3 22 3 –
Great Shearwater winter 15 3 2 – – –
Audubon’s Shearwater spring 184 24 12 25 – –
Audubon’s Shearwater summer 25 5 3 – – –
Audubon’s Shearwater fall 15 3 2 – – –
Audubon’s Shearwater winter 8 2 1 – – –
Northern Gannet spring 45 7 4 16 – –
Northern Gannet summer 16 3 2 – – –
Northern Gannet fall 29 5 3 12 – –
Northern Gannet winter 72 10 5 27 – –

Minimum – 4 1 1 5 3 2
Maximum – >710 82 33 410 32 14
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Table B3. Sample size requirements for 80% power based on the combined model (type I error
rate = 0.05)
For the combined model, sample size corresponds to the number of transect segments surveyed.

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Common Eider spring >728 >728 488 >728 726 370
Common Eider summer >638 >638 >638 >638 >638 >638
Common Eider fall >771 >771 429 >771 765 443
Common Eider winter >1,063 705 268 >1,063 395 193
Surf Scoter spring >200 168 99 >200 199 –
Surf Scoter fall >771 348 192 >771 388 253
Surf Scoter winter 594 100 58 516 119 81
White-winged Scoter spring >728 >728 >728 >728 >728 523
White-winged Scoter fall >771 567 297 >771 526 –
White-winged Scoter winter >1,063 209 110 964 186 –
Long-tailed Duck spring >728 191 98 >728 184 114
Long-tailed Duck fall >771 >771 414 >771 732 457
Long-tailed Duck winter 448 69 38 351 73 47
Razorbill spring >200 93 61 >200 – –
Razorbill summer >638 >638 >638 – – –
Razorbill fall >771 >771 >771 >771 – –
Razorbill winter 555 102 58 443 – –
Atlantic Puffin spring >728 348 243 – – –
Atlantic Puffin summer >638 480 327 – – –
Atlantic Puffin fall >771 >771 721 – – –
Atlantic Puffin winter >1,063 297 215 – – –
Laughing Gull spring 483 118 79 – – –
Laughing Gull summer 556 115 72 389 – –
Laughing Gull fall >771 146 84 526 – –
Laughing Gull winter >1,063 995 637 – – –
Herring Gull spring 292 45 24 150 – –
Herring Gull summer 407 80 47 227 – –
Herring Gull fall 235 38 21 134 – –
Herring Gull winter 433 69 37 187 – –
Least Tern summer >638 >638 >638 >638 – –
Least Tern fall >771 >771 >771 >771 >771 –
Roseate Tern spring >728 >728 >728 >728 – –
Roseate Tern summer >200 >200 >200 >200 – –
Roseate Tern fall >771 >771 >771 >771 – –
Common Tern spring 665 149 98 682 – –
Common Tern summer 638 122 73 475 – –
Common Tern fall >771 467 245 >771 – –
Royal Tern spring >728 402 260 – – –
Royal Tern summer >638 497 329 – – –
Royal Tern fall >771 274 191 – – –

continued on next page
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Table B3 continued

Hotspot effect size Coldspot effect size

Species Season 3 10 20 1⁄3 1⁄10 1⁄20

Red-throated Loon spring 308 66 42 – – –
Red-throated Loon fall >771 >771 491 >771 – –
Red-throated Loon winter 354 72 43 221 – –
Common Loon spring 118 28 20 – – –
Common Loon summer >638 438 321 – – –
Common Loon fall >200 79 55 – – –
Common Loon winter 162 37 23 – – –
Black-capped Petrel spring >728 >728 618 – – –
Black-capped Petrel summer >638 >638 594 – – –
Black-capped Petrel fall >771 >771 >771 – – –
Black-capped Petrel winter >1,063 >1,063 812 – – –
Cory’s Shearwater spring >728 >728 571 – – –
Cory’s Shearwater summer >638 130 72 348 – –
Cory’s Shearwater fall >771 178 101 571 – –
Sooty Shearwater spring >728 >728 540 >728 – –
Sooty Shearwater summer >638 >638 >638 >638 – –
Sooty Shearwater fall >771 >771 >771 – – –
Great Shearwater spring >728 318 180 >728 – –
Great Shearwater summer 519 72 36 288 51 –
Great Shearwater fall 226 37 21 174 38 –
Great Shearwater winter >1,063 >1,063 787 – – –
Audubon’s Shearwater spring >728 >728 >728 >728 – –
Audubon’s Shearwater summer >638 299 180 – – –
Audubon’s Shearwater fall >771 652 408 – – –
Audubon’s Shearwater winter >1,063 723 490 – – –
Northern Gannet spring 197 33 18 107 – –
Northern Gannet summer >638 147 93 – – –
Northern Gannet fall 247 47 27 160 – –
Northern Gannet winter >200 49 25 154 – –

Minimum – 118 28 18 107 38 47
Maximum – >1,063 >1,063 >812 >1,063 >771 >638
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