PLATFORM GINA

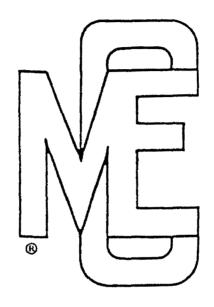
DEVELOPMENT AND PRODUCTION PLAN REVISION

APPENDIX VOLUME 1

MMS
POCSR

APPENDIX VOLUME 1 ITEM A

Gas Analysis


APPENDIX VOLUME 1 ITEM A

Gas Analysis

<u>Page</u>	Description
A-1 thru A-8	MCE Analysis of H-14 Gas (11/21 to 12/3/88)
A-6 thru A-28	Southern California Gas Sales Contract
A-29 thru A32	MCE Analysis of OCS P-0203 #6 Drill Stem Test 2A (1/15 to 1/16/85)
A-33 thru A-34	Atmospheric Hydrogen Sulfide Standards

MCE TEST REPORT

COMPANY:	UNOCAL
LOCATION:	PLATFORM GINA
and the second	
WELL NO.:	H-14
DATE:	NOVEMBER 21, 1988 - December 3, 1988

MEASUREMENT AND CONTROL ENGINEERING

P. O. Box 987 Ventura, C

Ventura, California 93002

Phone (805) 650-9100

Woodland, Calif. (916) 662-2226

Bakersfield, Calif. (805) 327-2394

WELL TEST DATA RECORD

Continuation Form

С	ONTR	OL E	VGIN	EERING														·					Page _	4 of4
TIME	CHOKE SIZE 64ths	PRES: TBG		Press Trap Temp.	Meter Rdg.	Cummul. Total Barrels	Gross BPO Net	% BS&W	% Wtr. Cumm. Wtr.	Oil Cumm.	TAN TANK GAUGE	TOTAL BBLS	INCA. BBLS	Cnlorides ResTit PPMGPG.	API Grav. 60/60	Oril. Siza	Coelf. 24 Hr.	Static Diff.	Temp. *F. Sp. Gr.	Gas MCFO	Cumm, Gas M C.F.	GOR	GLR	REMARKS
1500	51	210			1847.1	1847.1	0 0		1678.2									-/-	/-		2873			
1530	20	700		150 6	5 1867.1	1867.1	960 0	100	100 1698.2	0 168.9				19,000				/-	/-		2873			
1600	20			169 6	5 1887.0	1887.0	955 38	96	96 1717.3	4 169.7		:		19,000		1.500	64743	3.5 2.0	70 .968	453	2882	11.9	0.5	
1615	51	150		169 6	5 1897.7	1897.7	1027 62	94	94 1727.4	6 170.5				19,000		1.500	64743	3.5 1.55	70 .968	351	2886	5.7	0.3	
1700	·64	185		103 6	5 1910.0	1910.0	1181 59	95	95 1739.1	5 170.9				19,000		1.250	54929	2.8 2.2	75 .586	338	2893	5.7	0.3	
1730	64	220		120 65	5 1948.0	1948.0	1824 0	100	100 17/7.1	0.70.9				19,000		1.000	35219	3.0 3.0	72 .574	317	2900	0	0.2	
1800	64	324		120 65	1994.4	1994.4	2227 0	100	100 1623.5	0 170.9	C02 H2S	300 0	PPM PPM	19,000		1.000	35148	3.0 3.2	74 .574	337	2907	0	0.2	<u></u>
1830	64	280		120 65	2034.4	2034.4	1920 154	92	92 1860.3	8 174.1				19,000		1.000	32587	3.0 5.8	75 .670	567	2919	3.7	0.3	
1980	64	300		120 68	2077.5	2077.5	2068 248	88	88 1598.2	12 179.3	C02 H2S	300 0	PPM PPM	19,000		1.000	32587	3.0 6.9	75 .670	675	2933	2.7	0.3	
2000	64	280		125 78	2166.6	2166.6	2138 86	96	96 1983.7	4 182.9	C02 H2S	300 0	PPM PPM	19,000		1.250	54815	3.05 4.8	78 .587	802	2966	9.3	0.4	
2100	64	420		129 74	2270.2	2270.2	2485 149	94	94 2881.1	6 189.1	C02 H2S	300 0	PPM PPM	18,000		1.250	55341	3.1 5.7	78 -576	978	3007	6.6	0.4	
2155	64			149 74	2357.5	2357.5	2286 137	94	94 2163.2	6 194.3						1.250	55418	3.3 6.4	78 .576	1170	3052	8.5	0.5	
																,								
														-										
												·												
																·								
																						-		

MEASUREMENT AND CONTROL ENGINEERING

Date: 11/21/88 -	12/3/	'88 '
------------------	-------	--------------

Company: BNQCAL :

Location: PLATFORM GINA

Well No.: H-14

Test No.: ___

MCE Technician: BC & JF

WELL TEST DATA RECORD

Page 1 of 4

C	ONIH	OL ENGIN	IEERING			nnician:	<u> </u>											;)				Page.	of
TIME	CHOKE SIZE 64ths	PRESSURE TBG CSG	Trap Press. Trap Temp.	Meter Rdg.	Cummul, Total Barrels	BPO Gross BPO Net	BSEW	Wir. Cumm. Wtr.	Oil Cymm.		TOTAL BELS	REMENT INCR BBLS	Chlorides ResTit_ PPMGPG	API Grav. 60/60	Orif. Size	Coeff. 24 Hr.	Static Din.	Temp.	Gas MCFD	Cumm, Gas G.F.	GOR	GLR	REMARKS
11/21 0930	10	700			·							·										·	SEE OPERATIONS LOG
1000	18	320	180 50	0.6	0.6	29 25.	12	12 0.1	88 0.5						1.500	82489	3.6 1.0	55 -572	297	6.2	10.2	11.7	
1030	21	300	185 55	1.7	1.7	53 51.	3	3 0.1	97 1.6						1.500	83826	3.65 1.0	55 .572	306	12.6	6.0	5.8	
1100	25	280	185 55	4.7	4-7	144 141	2	2 0.2	98 4.5						1.500	83549	3.65 1.5	55 .572	457	22.1	3.2	3.2	
1130	25	300	180 55	8.4	8.4	178 175	2		98 8.1						1.500	83826	3.6 1.6	55 .572	490	32.3	2.8	2.8	
1200	30	300	180 55	14.6	14.6	298 295	1	1 0.4	99 14.2	CO2 H2S	500 0	PPM PPM			1.500	83616	3.6 1.7	57 .572	512	43.0	1.7	1.7	
1230	30	320	191 57	24.0	24.0	451 446	1		99 23.5	<u> </u>				15.7	1.000	36016	3.7 1.5	57 .572	200	47.2	0.4	0.4	
1300	40	350	193 60	36.2	36.2	586 580	1	1 0.6	99 35.6	C02 H2S	600 0	PPM PPM			1.000	35908	3.72 1.5	60 .572	200	51.4	0.3	0.3	
1330	40	380	202 60	49.9	49.9	658 651	i		99 49.2						1.000	35743	3.8 2.5	65 .572	340	58.5	0.5	0.5	
1400	40	350	196 60	56.3	56.3	307 182	40	40 3.3	60 53.0	CO2 H2S	50 0 0	PPM PPM			1.000	35692	3.75 3.0	66 .572	402	66.9	2.2	1.3	
1430	40	385	196 65	68.5	68.5	586 59	90	90 14.3	10 54.2						1.000	35692	3.75 3.5	66 .572	468	76.7	7-9	0.8	
1500	45	410	196 70	92.9	92.9	1171 12	99	99 38.5	1 54.4	C02 H2S	50:0 0	PPH PPH			1.000	35433	3.75 3.5	73 .572	465	86.4	38.8	0.4	
1530	45	510	202 70	122.5	122.5	1421 0	100	100 68.1	TRACE 54.4				20,000		1.000	35266	3.8 3.9	74 .577	523	97.3		0.4	
1600	45	550	202 70	156.0	156.0	1608 0	100	100 101.6	TRACE 54.5	C02 H2S	50-0 0	PPM PPM	20,000		1.000	35266	3.8 4.9	74 .577	657	111.0		0.4	
1630	45	570	202 70	190.0	190.0	1632 0	100	100 135.6	TRACE 54.4				20,000		1.000	35266	3.8 5.8	74 .577	777	127.2		0.5	
1700	45	620	196 70	224.6	224.6	1661 0	100	100 170.2	TRACE 54.4	C02 H2S	5(10 -0	PPM PPM	20,000		1.000	35251	3.75 6.8	74 .577	, 8 99	145.9		0.5	
1730	55	580	196 70	260.5	260.5	1723 0	100	100 206.1	TRACE 54.4				20,000		1.000	35251	3.75 7.8	74 .577	1031	167.4		0.6	
1800	60	600	196 74	299.2	299.2	1858 0	100	100 244.8	TRACE 54.4	C02	51 10	PPH PPH	20,000		1.000	35181	3.75 8.8	76 .577	1161	191.6		0.6	
1830	60	620	196 73	337.7	337.7	1848 0	100	100 263.3	TRACE 54.4			;	20,000		1.250	55599	3.75 6.4	77 .577	1334	219.4		0.7	
1900	60	620	196 74	374.8	374.8	1780 0	100	100 320.4	TRACE 59.4	C02 H2S	5 0	PPM i	20,000		1.250	55784	3.75 7.0	77 .573	1464	249.9	_	0.8	
1930	60	640	202 76	411.9	411.9	1780 0	100	100 557.5	TRACE 54.4				20,000		1.250	55806	3.8 7.4	77 .573	1569	282.6		0.9	
2000	60	670	202 76	449.6	449.6	1810 0	100	100 395.2	TRACE 54.4	C02 H2S	5 00	PPM PPM	20,000		1.500	81961	3.8 5.3	77 -573	1651	317.0	-	0.9	•

WELL TEST-DATA RECORD

Continuation Form

С	ONTE	ROLEN	VGIN	EERING													·		·				Page.	2 of <u>4</u>
TIME	CHOKE SIZE 64ths	PRESS TBG		Trap Press. Trap Temp.	Meter Rdg.	Cummul. Total Barrels	Gross BPD Net	8S&W	% Wtr. Cumm. Wtr.	Oil Cumm.	TAN TANK GAUGE	K MEASUI	INCR. BBLS	Chlorides Res. Tit. PPMGPG	AP! Grav. 60/60	Orit. Size	Coeff. 24 Hr.	Static Diff.	Temp. *F. Sp. Gr.	Gas HCFD	Cumm. Gas M C.F.	GOR	GLR	REMARKS
11/21 2030	60	680		202 7	6 486.0	486.0	1742 0	100	100 431.6	TRACE 54.4				20,000		1.500	81961	3.8 5.6	77 .573	1744	353.3		1.0	
2100	60	680		202 7	6 522.0	522.0	1728 0	100	100 467.6	TRACE 54.4	C02		PPM PPM	20,000		1.500	81961	3.8 5.7	77 .573	1775	390.3		1.0	
2130	60	690		202 7	6 556.9	556.9	1675 0	100	100 502.5	TRACE 54.4				20,000		1.750	114967	3.8 4.4	77 .573	1922	430.3		1.1	
2200	64	700		202 7	6 591.5	591-5	1661 0	100	100 537.1	TRACE 54.4	C02 H2S	500 0	PPH PPM	20,000		1.750	114967	3.8 4.8	77 .573	2097	473.9		1.3	
2300	64	710		202 7	6 657.7	657.7	1589 0	100	100 603.3	TRACE 54.4	C02 H2S		PPM PPM	20,000		1.750	114967	3.8 5.0	77 .573	2184	564.9		1.4	
2400	64	700		208 7	6 720.4	720.4	1505 0	100	100 656.0	TRACE 54.4	C02 H2S		PPM PPM	22,000		1.750	115054	3.85 5.2	72 .573	2303	660.9		1.5	
11/22 0100	64	700		208 7	6 780.8	780.8	1450 0	100	100 726.4	TRACE 54.4	C02 H2S		PPM PPM	22,000		1.750	114939	3.85 5.4	77 .573	2390	760.5		1.6	
0200	64	710		208 7	6 840.0	840.0	1421 0	100	100 785.6	TRACE 54.4	C02 H2S		PPM PPM	22,000		1.750	114747	3.85 5.6	78 -575	2474	863.6		1.7	
0300	64	710		208 7	6 898.9	898.9	1414 141	90	90 838.6	10 60.3	CO2 H2S	300 0	PPM PPM	22,000		1.750	114747	3.85 5.8	78 .575	2562	970.4		1.8	
0400	64	720		208 75	956.9	956.9	1392 139	90	90 890.8	10 66.1	C02 H2S		PPM PPM	21,000		1.750	114747	3.85 5.9	78 .575	2606	1079		1.9	
0500	64	720		208 75	1014.0	1014.0	1370 27	98	98 946.8	2 67.2	C02 H2S	300 0	PPM PPM	21,000		1.750	114631	3.85 6.0	79 .575	2648	1189		1.9	·
0600	64	750		208 75	1076.0	1076.0	1488 0	100	100 1008.8	TRACE 67.2	C02 H2S		PPM PPM	21,000		1.750	114631	3.85 6.3	79 .575	2780	1305		1.9	
0700	64	780		208 75	1137.3	1137.3	1471 0	100	100 1070.1	TRACE 67.2	C02 H2S	300 0	PPM PPM	21,000		1.750	114516	3.85 6.6	80 .575	2910	1426		2.0	
0800	64	775		208 75	1199.3	1199.3	1488 0	100		TRACE 67.2	1 452		PPM PPM	21,000		1.750	114477	3.85 6.6	80 .575	2509	1547		2.0	
0900	64	780		231 75	1260.8	1260.8	1476 0	100	100 1193.6	TRACE 67.2	C02 H2S	0		21,000		1.750	114664	4.05 6.6	80 .575	3065	1675		2.1	
1000	64	775		231 75	1320.4	1320.4	1430 0	100	100 1253.2	TRACE 67.2	H2S		PPM PPM	21,000		1.750	114664	4.05 6.6	80 .575	3065	1803		2.1	
1100	64	775		231 75	1378.2	1378.2	1387 0	100	100 1511.0	TRACE 67.2	C02 H2S	500 0	PPM PPM	20,000		1.750	114664	4.05 6.6	80 .575	3065	1931		2.2	
1200	64	780		231 75	1434.7	1434.7	1356 0	100	100 1367.5	TRACE 67.2	C02 H2S	500 0	PPM PPM	21,000		1.750	114664	4.05 6.5	80 .575	3019	2057		2.2	
1300	64	780		231 75	1491.7	1491.7	1368 0	100	100 1424.5	TRACE 67.2	C02 H2S	500 0	PPM PPM	21,000		1.750	114664	4.05 6.85	80 .575	3131	2190		2.3	
11/23 J230	24	900		250 50	1494.0	1494.0	74 64	13	13 4924.8	87 69.2				21,000		1.750	121513	4.2 6.2	30 .574	3164	2289	49.4	43.7	·
0300	24	1190		263 53	1510.7	1510.7	802 425	47	47 1932.6	53 /8.1				21,000		1.750	117160	4.3 2.4	63 .574	1209	2314	2.8	1.5	·
0400	42	910		256 65	1561.4	1561.4	1217 122	90	90 1478.2	10 63.2			-	21,000		1.750	115493	4.25 3.8	76 .574	1855	2392	15.2	1.5	

MEASUREMENT AND CONTROL ENGINEERING

WELL TEST DATA RECORD

Continuation Form
Page ______3 of _____

U		OL ENGIN	ILLAING	_11																	1	Page.	of
TIME	CHOKE SIZE 64ths	PRESSURE TBG CSG	Trap Press. Trap Temp.	Meter Rag.	Cummul, Total Barrels	Gross BPO Net	85&W	% Wir. Cumm. Wir.	0il Cumm.	TAN TANK GAUGE	TOTAL BBLS	INCR. BBLS	Chlorides Res. Tit. PPM _GPG	API Grav. 60/60	Onf. Size	Coeff, 24 Hr,	Static Diff.	Temp. *F. Sp. Gr.	Gas MCFD	Cumm. Gas C.F.	GOR	GLA	REMARKS
0500	48	840	244 71	1620.9	1620.9	1428 143	90	90 1531.8	10 89.1	1			19,000		1.750	114904	4.15 4.2	80 .574	2003	2475	14.0	1.4	
0553	48		250 71	1688.8	1688.8	1630 163	90	90 1592.9	10 95.9				19,000		1.750	114954	4.2 5.1	80 .574	2462	2566	15.7	1.6	
11/24 0130	16	1840	225 43	1688.8	1688.8	0 0		1592.9	- 95.9						1.750	121931	4.0 3.4	25 .574	1658	2581			
0200	16	1780	219 35	1688.8	1688.8	0 0		1592.9	95.9					·	1.750	122874	3.95 3.5	18 .575	1699	2616			
0300	16	1100	219 45	1694.0	1694.0	125 103	18	18 1593.8	82 100.2				18,000		1.750	118063	3.95 2.7	52 .575	1259	2668	12.2	10.1	
0400	25	840	225 54	1718.6	1718.6	590 460	22	22 1599.2	78 119.4				18,000		1.750	116349	4.0 2.1	66 .575	977	2708	2.1	1.7	
0500	28	820	202 66	1759.3	1759.3	977 147	85	85 1633.8	15 125.5				19,000		1.750	115417	3.8 3.4	72 .575	1491	2770	10.1	1.5	
0600	28	880	191 67	1799.1	1799.1	955 96	90	90 1669.6	10 129.5				19,000		1.750	115193	3.7 3.2	73 .575	1364	2827	14.2	1.4	·
0609	28		202 67	1805.9	1805.9	1088 109	90	90 1675.7	10 130.2				19,000		1.750	115289	3.8 3.35	73 .575	1468	2836	13.5	1.3	
12/2 2100	51	280	213 57	1808.3	1808.3	58 58	0	0 1675.7	100 132.6						1.750	117611	3.9 1.2	55 .575	550	2859	9.5	9-5	
2200	51	230	191 57	1812.0	1812.0	89 85	5	5 1675.9	95 136.1				19,000	15.4	.625	13912	3.7 0.9	55 -575	46	2861	0.5	0.5	
2300	- 51	250	196 57	1815.2	1815.2	77 77	0	0 1675.9	100 139.3				19,000		.625	13919	3.75 0.8	55 .575	42	2863	0.5	0.5	
2400	51	220	196 57	1818.1	1818.1	70 67	5	. 5 1676.0	95 192.1			-	19,000		.625	13919	3.75 0.9	55 .575	47	2865	0.7	0.7	
12/3 0100	51	170	103 58 1	1825.3	1825.3	173 171	1	1 1676.1	99 149.2	C02 H2S	100 0	PPM PPM			.625	13737	2.8 1.2	57 .579	46	2867	0.3	0.3	
0200	51	165	95 58 1	1831.0	1831.0	137 137	0	0 1576.1	100 154.9	C02	100 0	PPM PPM			-625	13728	2.7 1.0	57 .579	37	2869	0.3	0.3	
0300	51	165	95 58 1	1837.2	1837.2	149 149	0	0 1575.1	100 151.1	C02 H2S	100 0	PPM PPM			.625	13728	2.7 0.9	57 .579	33	2870	0.2	0.2	
0400	51	155	87 57 1	1841.2	1841.2	96 96	0	0 1676.1	100 165.1	C02 H2S	100 0	PPM PPM	·		.625	13746	2.6 0.6	55 .579	21	2871	0.2	0.2	
0500	51	120	79 57 1	842.5	1842.5	31 31	0	0 1676.1	100 166.4	C02 H2S	100 0	PPM PPM			.625	13737	2.5 0.5	55 .579	17	2872	0.5	0.5	
0600	51	125	87 57 1	845.8	1845.8	79 43	45	45 2677.6	55 168.2				18,000		.625	13746	2.6 0.8	55 .579	29	2873	0.7	0.4	
550	51	120	87 57 1	847.1	1847.1	47 20	45	45 1678.2	55 168.9				18,000		.625	13746	2.6 0.8	55 .579	29	2873	1.5	0.8	
1315	20		79 58 5	847.6 TARTIN	1847.6 G METER	RELETING		1678.2	168.9											2873			
1330	51		79 58 1	847.6	1847.6	0.0 0.0	0	1678.2	168.9								-/-			2873			i

This expresses the agreement entered into and effective this thirty-first day of August, 1981, by and between UNION OIL COMPANY OF CALIFORNIA (hereinafter referred to as "Seller"), and PACIFIC LIGHTING GAS SUPPLY COMPANY (hereinafter referred to as "Buyer").

WITNESSETH:

WHEREAS, Seller presently owns an interest in certain oil and natural gas to be produced from Federal Leases #OCS-P-0216, #OCS-P-0202 and #OCS-P-0203 located on federal submerged lands offshore the State of California, such leases hereinafter called "Said Leases"; and

WHEREAS, Seller will gather natural gas produced from Said
Leases to an oil and gas treating facility located onshore Ventura
County, California; and

WHEREAS, Seller desires to sell to Buyer such natural gas that is surplus to Seller's own needs from time to time and Buyer desires to purchase same from Seller, subject to the terms, conditions and limitations set forth herein; and

WHEREAS, it will be necessary for Buyer to install or cause to be installed certain pipeline and related facilities to receive gas hereunder for redelivery into the facilities of its affiliate, the Southern California Gas Company ("SoCal") and SoCal intends to install certain facilities to provide additional gas service to the Southern California Edison Company ("Edison") at its Mandalay power generating plant:

NOW THEREFORE, the parties hereto agree as follows:

I .-

TERM

- 1.1 This agreement shall be effective from the date hereof and shall continue and remain in effect for fifteen (15) years, at which time it shall terminate.
- 1.2 This agreement is conditioned upon Seller receiving from the Federal Energy Regulatory Commission a producer's certificate which is, in the sole discretion of Seller, acceptable and the receipt of all permits necessary for the aforementioned facilities to be installed by Buyer and SoCal on terms acceptable to Buyer.

II

DEFINITIONS

Except where the context indicates another or different meaning or intent, the following terms as used herein shall be construed to have the following meanings:

- 2.1 "day" shall mean the period beginning at 7:00 a.m. local time and ending at 7:00 a.m. local time the following day. Such period shall be twenty-four (24) consecutive hours except on the days when changing to or from Daylight Savings Time.
- 2.2 "month" shall mean a period beginning at 7:00 a.m. on the first day of a calendar month and ending at 7:00 a.m. on the first day of the next succeeding calendar month.

- 2.3 "cubic foot" shall mean the volume of gas which occupies one cubic foot of space measured at fourteen and seventy-three one hundredths pounds per square inch absolute (14.73 psia) at a temperature of sixty degrees (60°) Fahrenheit.
 - 2.4 "Mcf" shall mean one thousand (1000) cubic feet of gas.
- 2.5 "Btu" shall mean one (1) British thermal unit, and is defined as the amount of heat required to raise the temperature of one (1) pound of water from fifty-eight and one-half degrees (58.5°) Fahrenheit to fifty-nine and one-half degrees (59.5°) Fahrenheit at a standard pressure of fourteen and seventy-three one hundredths pounds per square inch absolute (14.73 psia).
 - 2.6 "decatherm" shall mean one million (1,000,000) Btu's.
- 2.7 "heating value" shall mean the gross heating value of waterfree gas determined as the quantity of heat in Btu's liberated by the complete combustion, at constant pressure, of one (1) cubic foot of gas with air at a temperature of sixty degrees (60°) Fahrenheit, and at an absolute pressure equivalent to thirty (30) inches of mercury at thirty-two degrees (32°) Fahrenheit and shall include the heat of condensation of the water formed by combustion.
- 2.8 "FO Indicator" shall mean that value calculated from the number six (6) fuel oil cost as reported by Southern California Edison Company and San Diego Gas and Electric Company on the Federal Energy Regulatory Commission's Form No. 423 (Monthly Report of Cost and Quality of Fuels for Electric Plants) as converted using the Btu content of such oil to obtain cents per decatherm. The cents per

decatherm for each applicable cost listed in Column eleven (11) of Form No. 423 will be weighted by the oil volume associated with that cost, shown in Column seven (7) of Form No. 423, in order to calculate the FO Indicator as the weighted average cost on a monthly basis in cents per decatherm.

III

DELIVERY CONDITIONS

- 3.1 Effective with the completion and testing of all pipelines and facilities required hereunder, Seller shall commence delivery of and sell and Buyer agrees to take delivery of and purchase on a daily basis all gas available from Seller in excess of Seller's current requirements up to a maximum of fifteen thousand (15,000) Mcf per day or such greater volumes as Euyer is able to take into its facilities, subject to the following:
- (a) In order to effectuate the earliest possible delivery and receipt of gas hereunder Buyer intends to install, or cause to be installed, the necessary facilities to take such gas in two phases:

 The first phase to consist of a pipeline between the point of delivery hereunder and a point within or in close proximity to Edison's Mandalay plant where SoCal will provide Edison with gas service; the second phase to consist of a pipeline and related facilities, including compression necessary to connect with existing facilities of SoCal.

- (b) Buyer will use its best efforts to complete the first phase so that delivery may be commenced hereunder by November 1, 1981 and to complete the second phase by January 1, 1982. Until completion of the second phase, Buyer's obligation to take and purchase gas hereunder shall be limited to those volumes Edison is willing and able to purchase from SoCal at its Mandalay plant.
- 3.2 It is recognized that Seller's delivery rate will vary or may change from time to time and Seller will inform Buyer within a reasonable time prior to any significant change in delivery rate that Seller has planned or has knowledge of.
- 3.3 For gas sold by Seller to Buyer hereunder the delivery * point shall be a mutually agreed point at Seller's onshore treating facility.
- 3.4 Seller shall deliver gas to Buyer at the delivery point at the pressure existing in Buyer's pipeline up to a maximum of seventy-five (75) pounds per square inch; provided, however, if Edison is unable to accept such gas or if SoCal has a special need in their higher pressure distribution system, Seller will deliver the gas at sufficient pressure, up to a maximum of two hundred (200) pounds per square inch, so that Buyer using a compression ratio of three to one (3:1) can deliver such gas at the pressure required by SoCal. Buyer will inform Seller within a reasonable time prior to any significant changes in delivery pressure that Buyer has knowledge of.

3.5 Title to and ownership of gas shall pass to and absolutely vest in Buyer at the point of delivery and the risk of loss shall follow title.

IV

PRICE

- 4.1 (a) Subject to the other provisions hereof, Buyer shall pay Seller monthly for each decatherm delivered hereunder, a price, rounded to the nearest one tenth (0.1) of a cent, equal to the highest of the following prices:
 - (i) Eighty-five percent (85%) of the FO Indicator for that month.
 - (ii) The average of the two highest prices being paid in a first sale for gas (except under Buyer's so-called "Long Term Border Price" agreements or the ARCO Oil and Gas Company sale to Edison at its Mandalay power generating plant) by any company, except Seller or its majority owned subsidiaries but including Buyer and its affiliates, purchasing gas in the "Santa Barbara Channel Area", as shown within the dashed line on Exhibit A, attached hereto and made a part hereof. Such price shall be appropriately adjusted to reflect delivery conditions and Seller's point of delivery to Buyer's onshore pipeline system or the pipeline system of Buyer's affiliate. If Buyer and Seller are unable to agree upon the amount of such

price adjustment, then either party may request arbitration and said adjustment shall be determined by arbitration in accordance with the provisions of Article XII hereof.

- (iii) Where neither (i) nor (ii) above is applicable or allowable, five dollars (\$5.00) per decatherm.

 Commencing on July 1, 1981, and on the first day of each succeeding calendar quarter during the term or any extensions thereof, of this agreement, the price under this subparagraph (iii) shall be increased by an amount equal to one and one-half percent (1 1/25) above the price then in effect.
- (b) The FO Indicator for each month shall be calculated using the data recorded for that month. It is recognized there may be a delay in obtaining the data for the computation of the current month's FO Indicator. Therefore, until the data has been obtained and the FO Indicator has been determined for the current month, Buyer shall pay Seller at a price equal to eighty-five percent (85%) of the most recently determined FO Indicator. When the FO Indicator for such month is determined, as herein provided, Seller will adjust the current month's invoice to effect a retroactive price adjustment equal to the difference, if any, in the price previously paid for gas for such month and the price payable based upon the then determined FO Indicator for such month. Seller shall assemble the data, make the determination, and advise Buyer of each month's FO Indicator

not later than (ifteen (15) days following the receipt by Seller of the data required for such determination. All data used in making such determination shall be available to Buyer, upon Buyer's request. If in any month there is no number six (6) fuel oil used by either of the companies listed in the definition of FO Indicator under Section 2.8 the price for the latest month where number six (6) fuel oil was used shall be the price for such month, as adjusted for the delay in data as provided in this Subsection 4.1(b).

If required data for the determination of the FO Indicator ceases to be published, Buyer and Seller shall choose by mutual agreement a new index or new indices which most nearly approximates the prior index in terms of content and operation. In the event the parties are unable to so agree, then either party may request that a new index or indices be determined by arbitration and said new index shall be determined by arbitration in accordance with the provisions of Article XII hereof.

(c) The price of all or a part of the gas sold hereunder may be subject to a maximum lawful price under the Natural Gas Policy Act of 1978 or under amendatory or superceding laws (the "Act"). In such event, and for so long as the Act so controls the price of all or a portion of the gas sold hereunder, the price paid for such controlled portion shall be the maximum lawful price, plus all escalations and allowances permitted under the Act.

In the event any gas sold hereunder qualifies for incentive or adjusted price treatment under Section 107 of the Act, Buyer agrees

to purchase such gas at the maximum prices allowed under the incentive pricing system established by the Federal Energy Regulatory Commission or other governmental entity under the authority granted by said Section 107 of the Act.

- (d) If at any time when maximum lawful prices are being paid under Subsection 4.1(c) above, the Federal Energy Regulatory Commission, or any successor governmental authority, including the U.S. Congress, or any other governmental authority having jurisdiction over the sales price hereunder shall permit, authorize or prescribe, or allow to be collected, even though subject to refund, a higher applicable price for the purchase of gas to be delivered hereunder; or applicable to other similar gas in the same area, then the price to be paid by Buyer to Seller for gas sold under the provisions of this Agreement shall be increased, as of the date such higher price if effective, to equal such higher price, including all subsequent price adjustments authorized, prescribed or allowed by such authority.
- (e) The production-related amounts, allocations, costs, or add-ons assigned or designated to be collected by Seller by the Federal Energy Regulatory Commission or any other government, regulatory, administrative, legislative, executive agency or body, authorize to so establish relevant costs, allowances and add-ons shall be in addition to the maximum lawful price provided under Subsections 4.1(c) or (d) herein. These allowances, allocations and add-ons for production related costs shall include but not be limited to costs incurred for compression and gathering, established pursuant to Section 110 of the Act or any subsequent or additional enabling law, regulation,

order or similar authority, as well as all price adjustments deemed just and reasonable, established pursuant to the Act or any subsequent or additional enabling law, regulation, order or similar authority. All applicable allowances and adjustments as stipulated above shall be payable as of the effective date of the law, regulation or order establishing the allowance.

- (f) Anything in Subsections 4.1(c), (d) and (e) notwithstanding, Buyer and Seller each reserve the right, at its option,
 to intervene in any area, national or other rate proceeding held
 to give consideration to any rate, price or allowance that may be
 applicable to the gas sold hereunder, to fully participate in any
 such proceeding and to seek relief therefrom in any regulatory
 agency or court having jurisdiction.
- is not subject to regulation and a maximum lawful price, Buyer determines in good faith using prudent business judgment that the price payable for gas under Subsection 4.1(a) hereunder renders such gas unmarketable in the market area of Buyer or SoCal, then Buyer may notify Seller in writing of such determination and stipulate the maximum price payable by Buyer hereunder, called the "Alternate Price", which would allow such gas to be marketed by Buyer or SoCal. Such Alternate Price shall apply to the continued sale and purchase of such gas by Buyer hereunder for one year commencing on the date Buyer's notice of such alternate price was received by Seller. Buyer will provide to Seller, prior to the time such notice is given, any data,

information and analysis used by Buyer to determine such Alternate Price.

If the Alternate Price stipulated in Buyer's notice is not acceptable to Seller, Seller shall have the right at any time, within a period of one hundred eighty (180) days following receipt of Buyer's notice, to terminate this Agreement by giving Buyer thirty (30) days prior written notice and deliveries of gas hereunder shall cease upon such termination date. In the event the Agreement is so terminated by Seller, Buyer shall make payment to Seller for all gas delivered during the period from receipt of Buyer's notification until the effective termination date at the Alternate Price. Buyer shall apply for and support any authorization or abandonment procedures that may be necessary for the release of gas sales under this agreement.

In the event Seller does not terminate this Agreement as provided herein within said one hundred eighty (180) day period, this Agreement shall continue and remain in full force and effect with all the terms hereof except that the price payable hereunder shall be the Alternate Price during the one year alternate price period, whereupon the price will again be as provided under this Article IV.

V

TAXES

5.1 In the event any taxes are lawfully imposed on and paid by Seller with respect to the gas sold to Buyer, Buyer shall reimburse Seller a sum sufficient to cover one hundred percent (100%) of any such taxes paid by Seller irrespective of the mode of imposition. As used herein the term "taxes" shall mean (1) any production-related tax (other than income, sales, real property, capital stock, or franchise taxes) or (2) similar charges now and hereafter levied, assessed or made by any governmental authority on the gas itself or on the act, right or privilege of production, severance, gathering, transportation or delivery of gas which is measured by the volume, value, or sales price to Buyer of the gas in question; provided, however, that Buyer's obligation to reimburse Seller for such taxes is subject to the ability of Buyer or its affiliates to recover tax reimbursement costs in their rates in any contract entered into by Buyer or its affiliates after January 1, 1981.

VI

QUALITY

6.1 All gas delivered hereunder shall be free of sand, water, and liquid hydrocarbons, shall have a minimum heating value of eight hundred fifty (850) Btu's per cubic foot, shall not contain more than three tenths (0.3) grains per one hundred (100) cubic feet of hydrogen sulfide and shall not have a water dew-point of more than forty-five degrees (45°) Fahrenheit at the delivery pressure provided herein; provided, however, if Edison is unable to accept redelivery of the gas hereunder by SoCal the following specifications shall apply for gas delivered to Buyer for SoCal's higher pressure distribution system:

- (a) Have a total heating value of not less than one thousand (1000) Btu's per cubic foot nor more than twelve hundred fifty (1250) Btu's per cubic foot.
- (b) Not contain more than three-tenths (0.3) grain of hydrogen sulfide per one hundred (100) cubic feet.
- (c) Not contain more than three-tenths (0.3) grain per one hundred (100) cubic feet of organic sulfur.
- (d) Not contain more than one (1.0) grain per one hundred (100) cubic feet total of all sulfur compounds.
- (e) Not contain more than three precent (3%) by volume of carbon dioxide, and not more than four percent (4%) by volume total nitrogen and carbon dioxide; provided, however, if the heating value of the gas is one thousand fifty (1050) Btu's or over the volume of carbon dioxide my be four percent (4%) and the total volume of nitrogen and carbon dioxide may be six percent (6%).
- (f) Be as free of exygen as Seller can keep it through the exercise of all reasonable precautions, and shall not in any event contain more than two-tenths of one percent (0.2%) by volume of exygen.
- (g) Not exceed one hundred degrees (100°) Fahrenheit nor be less than forty degrees (40°) Fahrenheit in temperature at the point of delivery.
- (h) Not have a water dew-point of more than forty-five degrees (45°) Fahrenheit at the delivery pressure provided herein.
- (i) Not contain solid matter, sand, dust, gums, liquid hydrocarbons or other liquid or solid impurities which might be injurious to Buyer's pipeline.

(j) Buyer shall not be obligated to accept delivery of any gas under Subsections 6.1(a) through (i) hereunder which does not meet the specifications set out above, but may do so without prejudice to its rights hereunder.

VII

RESERVATIONS OF SELLER

- 7.1 Seller reserves the following prior rights and sufficient gas to satisfy such rights:
- (a) To operate its property free from any control by Buyer in such a manner as Seller, in its sole discretion, may deem advisable.
- (b) To use gas produced from Said Leases, for repressuring, pressure maintenance or cycling operations.
- (c) To process or cause to be processed all or any portion of the gas, before delivery to Buyer hereunder, for the extraction of liquid hydrocarbons and any other constituents of the raw gas stream.
- (d) To use gas produced from Said Leases which Seller shall from time to time require and take for its own use, inclusive of but not limited to, use by Seller's subsidiaries and affiliates and in joint operations in which Seller has an interest with others.
- (c) To unitize its leases with other properties of Seller and of others in the same field.
- (f) To deliver to Seller's lessor such quantities of Seller's gas as the lessor may be entitled and requests to take in kind pursuant to the provisions of Seller's leases.

VIII

MEASUREMENT

- 8.1 Buyer shall install and maintain at its own cost and expense a suitable meter for the purpose of measuring the volume of all gas delivered by Seller to Buyer hereunder.
- 8.2 All measurements of gas shall be corrected from the observed pressures and temperatures to a pressure of fourteen and seventy-three one-hundredths pounds per square inch absolute ~(14.73 psia), and a temperature of sixty degrees (60°) Fahrenheit, and shall be computed in accordance with the Pacific Energy Association's Bulletin's No. TS-461, No. TS-561 and TS-661-77 as revised from time to time.
- 8.3 Buyer shall calibrate such meter each month and Seller may have its representative present at such calibration. In the event a calibration of the meter does not register within one percent (13) accuracy, the amount of gas measured by such meter shall be properly corrected, but no correction shall be made for any period preceding the current calendar month. Seller shall have the right to request calibration of such meter at any reasonable time; however, if any such requested calibration shows that the meter was registering within one percent (1%) accuracy, then the cost of such requested calibration shall be borne by Seller.
- 8.4 Buyer shall take spot samples and determine the heating value of all gas delivered in accordance with generally accepted practices in the industry. Seller shall have the right to request

Buyer to take additional samples for redetermination of such heating value at any reasonable time. However, if any such requested redetermination shows that the heating value so determined is within one percent (1%) of the heating value then being reported by Buyer, then the cost of such requested sampling and redetermination of heating heating value shall be borne by Seller.

XI

PAYMENT

9.1 On or before the fifth (5th) working day of each month Buyer will furnish Seller a statement for the preceding monthshowing the volume of gas, heating value and decatherms delivered hereunder. On or before the tenth (10th) day of the month, Seller shall render an invoice to Buyer showing the amount due therefore. Payment by Buyer to Seller for the invoiced amount shall be made by deposit in the United States Post Office to arrive at Seller's office by the twentieth (20th) day of such month, or as to invoices rendered after the tenth (10th) day of such month, within ten (10) days.

X

EXCESS ROYALTIES

10.1 Buyer agrees to reimburse Seller for all "excess royalty payments" which Seller shall be lawfully required to pay under the terms of Said Leases with repsect to gas sold and deliv-

ered to Buyer hereunder. The term "excess royalty payments" as used herein is defined as the amount by which actual payments by Seller to the United States government or other government authority as Lessor of the respective oil and gas leases subject to this Agreement, exceed the amount such payment would have been if the royalty value thereunder had been calculated upon the price received by Seller as provided for in Article IV of this Agreement.

XI

NON-UTILITY STATUS

- 11.1 Seller's agreement to sell gas upon the terms and conditions herein contained shall be its sole undertaking and it is mutually understood that Seller is not a public utility and that no lands or properties in which it may have an interest of any nature, is or are sold or offered for sale by Seller to the public or dedicated to public uses or purposes. Neither this Agreement nor service by Seller shall be deemed to create, by implication or otherwise, any obligation or duty to continue or to reinstate gas service upon the expiration of this Agreement.
- 11.2 If any court or regulatory body enters a final and legally binding order that Seller as a result of the sale of gas hereunder, is a public utility or subject to regulation as such,

or that such regulatory body may prevent Buyer from complying with this Agreement in any respect then by thirty (30) days written notice to Buyer from Seller this Agreement may be terminated by Seller.

XII

ARBITRATION

Any controversy arising under those terms providing for arbitration in Section 4.1 of this Agreement which is not resolved by mutual agreement of the parties shall be determined by a board of arbitration upon notice of submission given either by Buyer or Seller, which request shall also name one (1) arbitrator. The party receiving such notice, shall, within thirty (30) days thereafter, by notice to the other, name the second arbitrator, or failing to do so, the party giving notice of submission shall name the second. The two (2) arbitrators so appointed shall name the third, or failing to do so within thirty (30) days, the third arbitrator shall be appointed by the person who is at the time the Senior (in service) Judge of the Federal District Court having jurisdiction over the area in which the property covered by this Agreement is situated.

The arbitrators selected to act hereunder shall be qualified by education, experience and training to pass upon the issue in question.

The arbitrators so appointed shall promptly hear and determine (after giving the parties due notice of hearing and a reasonable opportunity to be heard) the question submitted and shall render

their decision within sixty (60) days after appointment of the third arbitrator. If within said period a decision is not rendered by a majority of the board, Buyer and Seller shall name new arbitrators who shall act hereunder in like manner as if none had been previously named.

The decision of a majority of the arbitrators, made in writing, shall be final and binding upon the parties hereto as to the questions submitted, and the parties will abide by and comply with such decision. Each party shall bear the expenses of its arbitrator, and the expenses of the third arbitrator shall be borne equally by Buyer and Seller, except that each party shall bear the compensation and expense of its counsel, witnesses and employees.

XIII

INDEMNIFICATION

13.1 Each of the parties hereto indemnifies and saves harmless the other party from any and all liability and expense on
account of all damages, claims or actions, including damages to
deaths of persons, arising from any act or accident, including an
omission to act, in connection with the installation, maintenance
and operation of the property, equipment, and facilities of the
indemnifying party.

XIV

EXCUSABLE NON-PERFORMANCE

14.1 Except for the payment hereunder of money due, the non-performance of any of the obligations of the parties hereto shall be deemed excused if and to the extent that such nonperformance is caused by any act of God, unavoidable accident, labor disturbances, interference by governmental authority or any other cause whether or not similar to the foregoing, beyond the reasonable control of the party so unable to perform.

XV

<u>ASSIGNMENT</u>

15.1 All of the provisions, covenants, agreements and stipulations contained herein by which either of the parties hereto is bound shall in like manner be binding upon the successors and assigns of the parties so bound, and those which are for the benefit of either of the parties hereto shall in like manner inure to the benefit of the successors and assigns of the parties so benefited; provided, however, that neither party hereto shall assign this agreement nor any interest herein without first obtaining the written consent of the other party hereto, which consent shall not be unreasonably withheld.

XVI

CONFORMITY WITH LAWS

Both parties shall observe and comply with all applicable laws, rules, orders, ordinances, codes and regulations of governmental agencies, including federal, state, municipal and local government and judicial bodies, having jurisdiction over this Agreement.

XVII

NOTICES

17.1 Any notice to be given hereunder by either Buyer or Seller to the other shall be deemed received by the other on the second business day following the date of deposit thereof in a United States Post Office enclosed in a sealed envelope, with requisite postage thereon respectively addressed as follows:

If to Buyer:

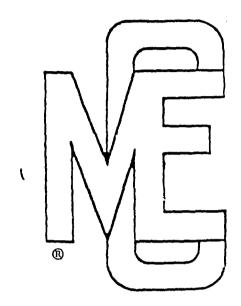
Pacific Lighting Gas Supply Company Attn: Contract Administrator 720 W. Eight Street Los Angeles, California 90017

If to Seller:

Union Oil Company of California Attn: Regional Gas Manager Western Region P. O. Box 7600 Los Angeles, California 90051

unless and until either party shall change the place of notice by written communication sent to the other by mail.

IN WITNESS WHEREOF, the parties hereto have executed this agreement as of the date first hereinabove written.


UNION OIL COMPANY OF CALIFORNIA

Charles M. Schwartz, Vice President

PACIFIC LIGHTING GAS SUPPLY COMPANY

William H. Owens, Vice President

MCE TEST REPORT

COMPANY:	Union Gil
LOCATION:	Giant Beaver Prospect
WELL NO:	OCS-P-0203 #6 OST 2A
DATE:	January 15 thru January 16, 1985

MEASUREMENT AND CONTROL ENGINEERING

P. O. Box 987 Ventura, California 93002 Phone: (805) 653-7282 Bakersfield, Calif. (805) 327-2394

MEASUREMENT AND CONTROL ENGINEERING

Company: Union 011

Location: Giant Beaver Prospect

Well No.: 0CS-P-0203 #6

Test No.: DST 2A

MCE Technician: R. Hilgerman, R. Walker.

WELL TEST DATA RECORD

age 1 of 3

C	ATMC	OL E	NGIN	EERING	N	ACE Tec	hnician: <u>R.</u> B.	<u>Hilgerr</u> Newnhar	man. R. Walke m. & S. Romo	Pr				 			•				Page_	of3
TIME	CHOKE SIZE 641hs	PRES	CSG	Trap Press. Trap Temp.	Meler Rdg.	Cummul, Total Barreis	Gross BPD Net	# BS&W	Wtr. Cumm. Wtr.	Oil Cumm.	TANK GAUGE	TOTAL BBLS	REMENT Chior	Orif, Size	Coeff. 24 Hr.	Static Diff.	Temp.	Gas MCFD	Cumm. Gas C.F.	GOR	GLR	REMARKS
1-15-85 0900		1517	1497	61		·					1'3"		Start on boarr STBD	1.250	21234	3.9 5.3	82 ,547	439				0853 Gas to surface TBG @ 1515 CSG @ 1527
	12	1517	1427	61									1	1.250	20497	3.9 5.4	100	432				
0927_																						0927 Shut in at surface 0934 Opened on 16/64" chok
0945	16	1472	1417	171										1.750	42792	6.1	107	2010				50 ppm H.S
N 949	15	1457												,								Close BHTT Shut in at sur
1152		1453																				Opened at surface 16/64 [#]
1158	16	1196								-												Open BHTT
215	16	1423		203		·								1.750	42132	5.6	122	1557	51343			Increase choke to 24/64" 180 ppm H _s S
1230		1340	3.570	210											68449	5.7	90 654	3623	89083		-	Increase choke to 32/64" 700 pom H·S
,		1150		257									li	2.250		7.5	50 .654		145343	·		60,000 ppm CO: 300 ppm H:S
1245		1150		305										 2.250		8.0 9.2	37 .654		211353			200 com H.5
1300		1159		322										2.250		8.2	37 .654		277666			38,000 ppm CO: 250 ppm H:S
1315				322										2.250		8.2	38 .654		342437			300 ppm H2S
1330		1131		322										2.250		8.2	40 .654		407083			70,000 ppm CO+ 450 ppm H.S
1345		1132		322											86004	8.2	40 .654					750 ppm H ₂ S
1400				322										2.250		8.2	40 .654		534177			825 ppm H.S
1415		1141		313											21721	8.1	75 .654		545212			Decrease choke to 12/64 [®] 8 1419 800 pcm H ₂ 5
		1529		313											21317	8.1	90 654		551150			700 ppm H±S
1500		1528		297										1.250		7.9 3.0	110 .654		551442	1		1000 ppm H+5
`5 <u>30</u>	12	1517		297								:				7.9	130		579530			1555 start injection of methanol 950 ppm H.S
1600	12	1502		297										1,250		7.9 6.4	135		606776			54,000 ppm CO: 900 ppm H:S
1630	12	1488	1612	297								+		1.375	25779	7.9	130	1.00		1		

MEASUREMENT AND

Date:	January	15	thru	January	16,	1985
-------	---------	----	------	---------	-----	------

Company: Union Dil

Location: Giant Beaver Prospect

Well No.: 0CS-P-0203 16

Test No.: DST ZA

WELL TEST DATA RECORD

С	ONTE																į			Page.	2 of <u>3</u>			
TIME	CHOKE SIZE 64ths	PRES	CSG	Trap Press. Trap Temp.	Meter Rdg.	Cummul. Total Barreis	BPO Gross BPO Net	% BS&W	Wir. Cumm.	Oil Cumm.		NK MEASUR TOTAL BBLS		Chlorides Res. Til PPMGPG	API Grav. 60:50	Orif. Size	Coell, 24 Hr.	Static Din.	Temp. Sp. Gr.	Gas MCFD	Cumm. Gas C.F.	GOR	GLR	REMARKS
1730	12	1471	1461	297		·						-				1.375	24977	7.9	130	1243	658776			1050 ppm H°S
1800	12	1461	1489	293												1.375	24977	7.85	130	1225	684297			1100 ppn H ₂ S
1830	12	1451	1647	293												1.375	24936	7.85	132	1214	709589			900 ppm H ₂ 5
1900	12	1440	1423	296		·										1.375	24977	7.88	.654	1201	734610			Increase choke to 16/64" 800 ppm H:S
1930	16	1397	1557	301												1.750	42787	7.95	115	2024	775777			1200 ppm H25
2000	16_	1 391	1734	297												1.750	43397	7.9 5.9	.654	2623	818923			Increase to 24/64 th choke 1200 ppm H·S
•	24	1213		297												2.125	69605	7.9 6.2	90 ,654	3409	854433			First sign of fluid # Separa 2015 increase to 32/64 choi-
30_	32	1133		290												2.250	84588	7.8	50 .654	5938	910662			1000 ppn H-S
2100	32	1132		282												2.250	85850	7.7	.654	5015	1035995			1300 ppm H=5
2130	32	1130		282												2.250	86018	7.7	35 .654	6027	1161556	3		1250 pon H-S
2200	32	1134		282												2.250	86194	7.7	.654	5973	1285998			Decrease choke to 16/54" 60,000 ppm CO: 1200 ppm H:5
2230	16	1494		297		·									,	1.750	45695	7.9	55 . 654	1552	1316329			1000 ppm H ₂ S
	16	1485		305					-							1.750	44958	8.0	70 ,654	1475	1349058			1200 ppg H2S
2300	16	1476		305												1.750		8.0	75 .654	1609	1382579	3		1200 ppm H2S
2400	16	1468		305													44705	8.0	75 .654	1609	1415100			
1-15-89		1458		297												1.750		7.9	80	,	1449725	1		1500 H ₃ S
0030	16	1445		305		•										1.750		8.0	85	1	1484350			Increase to 24/64 [#] choke
0100	16			293												2.125		7.85	70	. ,	1568162			1600 ppm H*5
	24	1325		293												2.125		7.85	50	Ŀ	1652765			1300 pon H25
0200	24	1322		293												2.125		7.85	50	1	1737954			1200 ppm H ₂ 5
30	24	1317		293												2.125	<u> </u>	7.85	48	1	1821683			1300 ppm H+S
0300	24	1319	1478	291		-											12133		48	1	1	1		

MEASUREMENT AND CONTROL ENGINEERING

Date:	January	/ 15 and	l Januar	y 18.	1985

Company: Union Dil

Location: __Giant Beaver Prospect

Well No.: 0CS-P-0203 16

Test No.: DST 2A

MCE Technician: R. Hilperman, R. Walker,

WELL TEST DATA RECORD

Page ______ of _____

C	ONIF	ROL E	NGIN	EERING		MCE Te	chnician:	8. Newnh	rman, H. Walk am. & S. Romo	cer.				1						1			Page_	3 01 3
TIME	CHOKE SIZE 64ths	PRES TBG	CSG	Trap Press. Trap Temp.	Meter Rdg.	CummuL' Total Barreis		1.		Oil Cummi	TANK TANK GAUGE	MEASUF TOTAL BELS	REMENT INCR BBLS	Chlondes Res. Til PPMGPG	API Grav. 60/60	Orit, Size	Coelf, 24 Hr,	Static Diff.	Temp. •F. Sp. Gr.	Gas MCFD	Cumm. Gas G.F.	GOR	GLR	REMARKS
0400	24	1229	1432	293		÷										2.250	73133	7.85 6.9	48 .654	3551	1986724			Increased to 32/64" choke 1600 ppm H.S
0430	32	1129	1529			;					-					2.250		7.8	.554	5459	2100662			1600 ppm H-5
0500	32	1130	1428	267								,				2.250		7.5		5914	2223870			1600 ppm H.S
0 530	32	1132	1381	286												2.250	85673	7.75	-654	5909	2346974			1600 ppm H.S
0660	32	1140	1484	286					100	0						2.250	8575 7	8.95 7.75	39 .654	5948 :	2470891	<u> </u>		1700 ppm H·S
0 630	32	1135	1534		3.4	3.4	24	100	3.4	0						2.250		8.95	•	5948	2594808			1600 ppm H+S
0700		1136		282		3.9	29		3.9	0			·	82, <u>0</u> 00		2.250	8 <u>5757</u> _	7.7 8.95	39.	Γ, Τ	Γ΄ –			1700 ppm H2S 70000 ppm CO3
730		1133	1397	282	4.9	,	19 0		100	0				70,000		2.250		8.95 7.7 8.95	39		2841058			2000 ppm H*S
0800 0830	32 32	1139		282	5.6		34	100	4.9					79,000		2,250		7.7 .654	39					1600 ppm H ₂ S
C900	32	1143		282		6.6	4.8	100	100 6.6	0 0				86,000		2.250		7.7	38					1400 ppm H.S
0930	32	1146_	1365	282	7.6	7.6	48	200	100 7.5	0						2.250		7.7	.654	5850	331621	0	121875	
1000	32	1143	1458	282	8.3	8.3	34 0	100	8.3	0				٠	,	2.250		7.7	.654	5F50	3453496	0	172055	1600 pom H.S
																				:				● 1002 close BHTT
														•	•		_			;				
																	-							•
																				ŧ				. •
												:												
												:								1				
.]										1	- 1	t	1	ļ			i '		L	, ,	

UNOCAL

G. LEYENDECKER

MAR - 9 1989

March 3, 1989

TO:

Greq Leyendecker

FROM:

Jill E. Ryer-Powder YCP

SUBJECT:

Hydrogen Sulfide

This memo is written in response to a request for information regarding hydrogen sulfide.

The following information concerns the most current standards for air levels in the workplace.

ACGIH

•TLV-TWA = 10ppm •TLV-STEL = 15ppm

OSHA PEL

•Acceptable ceiling concentration = 20ppm

 Acceptable maximum peak above the acceptable ceiling concentration for an 8 hour shift = 50ppm for 10 minutes once only if no other measureable exposure occurs.

NIOSH

·10ppm 10 minute ceiling

The IDLH (Immediately Dangerous to Life and Health) (This level represents the maximum concentration from which one can escape within 30 minutes any escape imparing symptoms or any irreversible health effects) is equal to 300ppm.