Field Studies of Whales, Dolphins, and Sea Turtles for Offshore Alternative Energy Planning in Massachusetts

Scott D. Kraus, Ph.D., Sarah Leiter, and Kelsey Stone New England Aquarium Boston, MA 02110

Charles Mayo, PhD. and Pat Hughes Provincetown Center for Coastal Studies Provincetown, Ma 02657

Robert D. Kenney, Ph.D. University of Rhode Island Graduate School of Oceanography Narragansett, RI 02882-1197

Christopher W. Clark, Ph.D. and Aaron N. Rice, Ph.D. Bioacoustics Research Program Cornell Lab of Ornithology Cornell University Ithaca, NY, 14850, USA

Cessna Skymaster O-2 Observer and Camera Viewfields

465 ft obscured

Probability of detection of animals or groups declines with their distance from the transect. In line-transect (or distance) sampling theory, f(0) is the probability density function of right-angle sighting distances (for that species and platform) evaluated at a distance of 0. The reciprocal of f(0) is the "effective strip width," a statistical estimate of the area effectively searched on either side of the transect.

Aerial Survey Effort in km by month and year in the MAWEA (blue) and RIMA (orange)

Sightings per Unit Effort of endangered large whales (fin whale, humpback whale, sei whale, sperm whale, and North Atlantic right whale) shown seasonally and annually all years combined (October 2011 – June 2015).

Sightings per Unit Effort of all small cetacean species (includes all dolphin species, harbor porpoise, pilot whales, and sightings of delphinoids not identified down to species) shown seasonally and annually all years combined (October 2011 – June 2015).

Sightings per Unit Effort (SPUE) of all turtle species (LETU, LOTU, RITU) and unidentified turtles (UNTU) sighted in the study area across the entire study period (October 2011 – June 2015), partitioned seasonally and annually

Age class by sex of photo-identified North Atlantic right whales at time of sighting within the Survey Area. Individuals that were observed on multiple dates

were not tallied multiple times within this table. Age classes include: A= adult, J=juvenile, C=calf, U=unknown Age.

Sov	Age Class				
Stx	A	J	С	U	
Female (non cow)	4	10	0	1	
Female (cow)	12	0	0	0	
Male	28	14	0	1	
Unknown	2	1	0	4	
Total	46	25	0	6	

Density and abundance of North Atlantic right whales

(Eubalaena glacialis) by season-year.

Density and variance are the means of the transect estimates, weighted by transect lengths. T = number of transects flown; G,I = number of groups and individuals sighted; D = density in animals/km²; V = variance of the density; N = estimated abundance in the study area; CI95=95% confidence interval, with the lower limit changed to zero if it was negative.

Season-Year	Т	G, I	D	V	Ν	CI95
Fall-2011	32	0,0	0		0	
Winter-2012	30	0,0	0	-	0	
Spring-2012	56	8,13	0.0035	0.0027	24	0–118
Summer-2012	48	0,0	0	1	0	
Fall-2012	24	0,0	0		0	
Winter-2013	16	3,5	0.0045	0.004	35	0–296
Spring-2013	39	1,1	0.0005	0.0003	4	0-43
Summer-2013	46	0,0	0		0	
Fall-2013	36	0,0	0		0	-
Winter-2014	26	1,3	0.0008	0.0006	7	0-83
Spring-2014	41	4, 11	0.0019	0.0016	15	0–109
Summer-2014	60	0,0	0	1	0	1
Fall-2014	39	0,0	0	-	0	-
Winter-2015	28	4, 15	0.0027	0.002	21	0–155
Spring-2015	65	10, 44	0.0029	0.0021	23	0–111

Large whale sightings in the study area by season across all years (UNLW=any large whales not identified down to species)

Hot spot analysis of leatherback turtle distribution in the study area (annual distribution , 2012-2015, NEAq survey data only). Hot Spot analysis of North Atlantic right whale sightings detected by NEAq showing spring, winter and annual distribution (2012-2015, NEAq Survey data only).

Map of the MA array of MARUs within the Mass Wind area (red circles) and the RIMA array of MARUs within the RIMA WEA (yellow circles). Light blue areas represent lease areas.

Summary of recording effort throughout the study period by MARU (Site # on left). The light grey lines indicate time periods when a MARU was not recording at a given site. The dark grey lines indicate time periods when a MARU was recording at a given site.

Frequency (Hz)

Right whale sighting totals by month, combined across all survey years (October 2011 – June 2015).

Right whale mean monthly acoustic presence ± standard error for all years combined.

NEAq/MA CEC Study – Data, Analyses, and Limitations

Data Source	Analyses	What they tell us	What they dont tell us
Aerial Survey		Provide relative comparable measures of numbers of observed animals per km, per transect, per survey, per	
signungs/	Sightings Potos	observed animals per km, per transect, per survey, per	Absoluto abundanco
transects	Signtings Rates	month, as needed.	Absolute abundance
		Distuite stiges wetter an envised for service blocks and for the	Absolute abundance in
		Distribution patterns normalized for variable survey effort	
	Line transect		
	abundance	Point estimates of absolute abundance, with	Abundance within small
	estimates	95%confidence intervals	subsets of the study area
	Species Richness	How many species were observed within a block	
		Shows areas within the context of the entire study are that	
		are used more consistently than the rest of the area -	
	Hot spot	analyses can be done on absolute numbers, or on species	
	analyses	richness	
Belly Camera		Sea turtle, shark and small animal counts in the area not	Whale distribution and
Photographs	Counts	seen by observers	abundance
Photographic		Individual identifications are used to determine age, sex,	Photo-id only feasible for
Identifications	Demographics	of known right whales	right whales from aircraft
	Movements	Photo-id can link whales to other areas and movements	Residence times
		Minimum counts provide lower bounds on line-transect	
	Minimum Counts	estimates	Not for non-right whales
			How many whales are
Acoustic Data	Presence of	Species specific records of occurrence with the detection	present, how many silent
(MARUs)	calling whales	range of each MARU	whales are in the area.
	Ambient Noise	Background noise in the area	
	Presence by	Occurrence in some MARU sites and not in others provide	How many whales are
	MARU site	crude distribution info	calling
Acoustic and	Comparative	Shows the strengths and weaknesses of both data	
Survey data	analyses	collection methods	

Currently Underway:

- March 2017-Feb 2018
- Aerial surveys N-S lines as shown. Two full area surveys/mo. (green) and 2-3 NARW focused surveys (pink and turquoise) per month (Feb-May).
- Simultaneous shipboard oceanographic sampling (red dots)to determine why right whales are present in the winter and spring.

Partners: NEAq, WHOI, and PCCS

Supported by MA CEC and BOEM

Acknowledgements

Funding was provided by the Massachusetts Clean Energy Center, and the Bureau of Ocean Energy Management. We appreciate the support and good counsel of Tyler Studds, Nils Bolgen, and Brian Hooker through the process. Observers and photo-analysts during these surveys included Laura Ganley, Jessica Taylor, Tracy Montgomery, Sarah Mussoline, Marianna Hagbloom, Leah Crowe, Orla O'Brien, and Jessica Thompson. Thanks to our aircraft vendor Assist Aviation Solutions LLC, including Rick Bartle (Operations Manager), Aidan Wilps (Aircraft Maintenance Manager), project pilots Dan Fields, Don Turner, Keith Lapierre, Raymond Sevard, Richard Euler, and Scott Patten. Additionally, we thank New England Aquarium right whale data analyst Monica Zani for her assistance with processing North Atlantic right whale photographs and data. The NLPSC also thanks Captain Mark Leach of the F/V Sea Holly of Harwichport, MA, for overseeing the MARU deployment and retrieval cruises.