Surficial Sediment Distribution Maps

CPRA

Coastal Protection and
Restoration Authority of Louisiana

Syed Khalil, Beth Forrest, Ed Haywood, & Richard Raynie

BOEM 's

GoM Offshore Sand Management Working Group

New Orléans
November 29, 2018

Khalil, S. M., Forrest, B., Haywood, E., and Raynie, R. (2018). *Surficial Sediment Distribution Maps for Sustainability and Ecosystem Restoration of Coastal Louisiana*: Shore & Beach, Vol. 86, No. 3 Summer 2018, 21-28 pp.

LASMP

{LA Sed. Mgmt.

Plan}

LASARD

{LA Sand Resources Database}

SSD Map - Surficial Sediment Distribution Map

- 1. Important tools for resource planning
- 2. Critical role in the regional sediment management (LASMP)
- 3. Gap analyses Indicators of presence or absence of geoscientific data
- 4. Base map for enforcement of regulations decisions of decommissioned pipelines
- Living document

Presentation Today ...

- Land Loss
- Sediment Need
- Regional Sediment Management (LASMP & LASARD)
- Surficial Sediment Distribution Maps
- Sediment Volume /Sediment Accessibility/Pipelines
- Final Thoughts ...

Mississippi River Delta Plain

Fragility & Vulnerability of the System

Sediment Starved System

Reasons for Sediment Starvation Dams and Levees

Mississippi River Alluvial Valley

Fisk (1947) Map of the river's historic course

River Flood
Capacity
Diagram
(1958)

*Graf , 1999

Sediment Loss

Sediment Starvation & Sediment Loss = Land Loss

1922 2014

- > ~16,000 km² of the Mississippi River Delta Plain (MRDP) was formed in ~7000 yrs
- In 1920's 30's MRDP was about 25% bigger than now.
- In less than 100 years about 1900 mi² / ~5000 km² has been lost.
- Next 50 years about 2250 mi²/~5800 km² additional land at risk

Presentation Today ...

- Land Loss
- Sediment Need
- Regional Sediment Management (LASMP & LASARD)
- Surficial Sediment Distribution Maps
- Sediment Volume /Sediment Accessibility/Pipelines
- Final Thoughts ...

Land Loss Predictions and Accommodation Space

	Land Loss (km²)		Accommodation (km³)		Sediment Needed (BT)**		Time Frame		
Historical									
Morton et al. (2010)	1956-2004		1956-2004		1956-2004		1956-		
	4,877		4.8		10		2004		
Predicted									
2012 Master Plan (Future without Action)	Moderate	Less Optimistic	Moderate*	Less Optimistic*	Moderate	Less Optimistic	2012-		
	1,994	4,532	2.0	4.4	5	12	2062		
2017 Master Plan (Future without Action)	Medium	High	Medium*	High*	Medium	High	2017		
	5,838	10,679	5.7	10.5	16	28	2017- 2067		
Blum and Roberts (2009)	Low	High	Low	High	Low	High	By 2100		
	10,000	13,500	12	16	32	43	By 2100		

^{**}Assumed density of 1.5 g/cm^3 for mixed sand and mud with a 45% porosity (based on Blum & Roberts, 2009), and a cut to fill ratio of 1.8

^{*}After on Morton et al., 2010

Mitigative Actions

Soft Option - Sedimentological Restoration Sediment & Sediment Management plays a vital role

Sustainable Ecosystem Restoration

Coastal Master Plan 2017

Decision Drivers For Project Selection

Funding by Project Type

Presentation Today ...

- Land Loss
- Sediment Need
- Regional Sediment Management (LASMP & LASARD)
- Surficial Sediment Distribution Maps
- Sediment Volume /Sediment Accessibility/Pipelines
- Final Thoughts ...

Available Sediment Sources

- Fluvial/Riverine sand/sediment sources
 - Sediment diversions (bed load & suspended sediment)
 - Dedicated dredging and transportation by P/L
 - Maintenance Dredging & CDFs
- Offshore & Nearshore sand/sediment sources
 - Buried Paleo-channels
 - Ebb/Flood Deltas
 - Sand Shoals

iviaintenance Dreuging Sediment

SEDIMENT MANAGEMENT

Offshore Sediment Sources <2.5 BCY/~28.5 BCY

Bays & Nearshor Sediment Sources

Sediment Borrow Area

Borrow Area Management

- Optimal Utilization
- Location vs. project
- Location vs. pipeline
- Delineation of potential sand sources in OCS

Borrow Area Monitoring

- Infilling rate
- Slope Stability Issues
- Hypoxia

Programmatic Monitoring/ Adaptive Management

- SWAMP
 - Barrier Island Comprehensive Monitoring Program (BICM)
 - Met-Oceanic Data WAVCIS
 - Eustatic Sea Level Rise
 - Subsidence

SEDIMENT

OCS Waters, State Waters, Coastal Zone Lower
Mississippi & Atchafalaya River

Regional Sediment Management

- Fluvial Sediment Sources/Diversions
- Offshore & Nearshore Sediment Resources
 - Sediment Deposits
 - Sediment Maintenance Dredging
 - Contained Disposal Facilities (CDFs)

Sediment Evaluation

- Evaluation of potential areas
 - Delineation of sediment source/Borrow Area
 - Offshore/Nearshore (State/Federal Waters)
 - Rivers: Lower Miss River/Atchafalaya River

Sediment Management Tools

- Protocol for exploration
 - Guidelines for sediment searches (DSSM)
- LA Sand Resources Database (LASARD)
 - SOP for data acquisition
- Surficial Sediment Distribution Maps
- LA Sed Allocation Allotment Plan (LASAAP)
- Operational Sediment Budget (OSB)

Policy/ Regulation

- Federal Standard
- Pipeline/O&G
- Cultural Resources
- Environment Issues
- Sea Level Rise Policy

Coordination with Stakeholders
State, Federal, NGO

- LCA Miss River Delta Mgmt Study
- Atchafalaya Basin Sed Mgmt Plan
- Others

*Khalil et al 2018 a, b

*Khalil et al 2010, Khalil & Freeman 2014

Louisiana Sand Resource Database (LASARD)

Presentation Today ...

- Land Loss
- Sediment Need
- Regional Sediment Management (LASMP & LASARD)
- Surficial Sediment Distribution Maps
- Sediment Volume /Sediment Accessibility/Pipelines
- Final Thoughts ...

Louisiana Sand Resource Database (LASARD)

~2,000 datasets have been formatted to meet LASARD standards >15,000 core borings/sediment samples incorporated into the maps

Delineation of Potential Sediment Resources

Delineation of Potential / Sediment Resources

> 1 mile spacing

<1 mile spacing

POTENTIAL Surficial Fines

Surficial Sand

Delineation of Sediment Resources

Offshore Sediment Volume Estimates

1st order sediment volume estimates calculations:

- Thickness of mixed sediment and surficial fines assumed to be 10 ft
- Areas of surficial sand reviewed separately
 - Core borings reviewed to determine average thickness of each deposit

Presentation Today ...

- Land Loss
- Sediment Need
- Regional Sediment Management (LASMP & LASARD)
- Surficial Sediment Distribution Maps
- Sediment Volume /Sediment Accessibility/Pipelines
- Final Thoughts ...

1st Order Surficial Sediment Distribution Maps

Accessible Offshore Sediment Resources

The requirement of a buffer of 1000 feet on both side of any P/L much reduces the quantities of sediment accessible for dredging

SHIP SHOAL COMPLEX

Western SS Blocks 84, 85, 98 & 99

Central Ship Shoal Blocks 88 & 89 Whiskey Island Restoration

Eastern Ship Shoal SP Blocks 12 & 13

Caminada Headland Restoration

Carving out Borrow Area (South Pelto Blocks 12 &13)

Expansion of Borrow area

~6 MCY of "Restoration Quality Sand" would be dredgeable by removal of decommissioned P/L

Sediment Volume Estimates*

Location	Sediment Type	Total Available Volume of Sediment	Total Dredgeable Volume of Sediment	Reduction in Volume (%)
Offshore	Surficial Sand	3,146	1,848	41
	Potential Surficial Sand	3,643	2,500	31
	Surficial Mixed Sediment	4,431	2,353	47
	Potential Surficial Mixed Sediment	5,031	3,607	28
	Surficial Fines	4,074	2,636	35
	Potential Surficial Fines	10,727	8,020	25

(*Million Cubic Meters)

1 Km Long Decommissioned Pipeline *vs.* Sediment Volume

Volume & Value of sediment resources rendered unavailable by a 1 km abandoned pipeline

- ► It will occupy 1,000 X 600 m = 600,000 m² of significant sediment resources area
- It will prevent access to about 600,000 m² x 3 m (thick) = $1,800,000 \text{ m}^3 = 1.8 \text{ MCM}/2.4 \text{ MCY}$
- ➤ Average Emplacement Cost of 1 m³ of sand = ~\$21
- Economic value of 1.8 MCM = ~\$37.8 million

Final Thoughts...

- SSD maps support restoration sediment management, planning, design, sediment volume estimates, and state & federal regulatory efforts
- Sedimentological restoration on system scale is the solution to restore the degrading ecosystem – ~5-28 BT of sediment is needed
- ~41% of Louisiana's offshore sand resources are inaccessible due to oil and gas infrastructure
- In 2007-2008, MMS (BOEM/BSEE), in coordination with the State, identified several offshore blocks for protection of sediment resources for restoration
- Decommissioned pipelines form a fraction of active pipelines and represent our only option to help remove obstructions to sediment resources
- Notion that the pipelines could be removed as and when sediment resources are needed is untenable
- Oil and gas industry are our partners in this effort and it is critical that we work together towards a solution to this challenge

References

- 1. Blum, M.D., and H.H. Roberts, 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise: Nature Geoscience, 2, 488-491 pp.
- 2. Coastal Protection and Restoration Authority of Louisiana (CPRA) 2012. Louisiana's Comprehensive Master Plan for a Sustainable Coast. CPRA, Baton Rouge, LA: 189pp. http://lacoast.gov.
- 3. Coastal Protection and Restoration Authority of Louisiana (CPRA) 2017. Louisiana's Comprehensive Master Plan for a Sustainable Coast. CPRA, Baton Rouge, LA: 171pp. http://lacoast.gov.
- 4. Graf, W. L., 1999. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research, Vol. 35, No. 4, 1305–1311pp.
- 5. Khalil, S. M., Forrest, B., Haywood, E., & Raynie, R. (2018b). Surficial Sediment Distribution Maps for Sustainability and Ecosystem Restoration of Coastal Louisiana: Shore & Beach, Vol. 86, No. 3, 21-28 pp.
- 6. Khalil, S.M., Freeman, A. M., Raynie, R.C., (2018a). Sediment Management for Sustainable Ecosystem Restoration of Coastal Louisiana: Shore & Beach, Vol. 86, No. 1 Winter 2018, 17-27 pp.
- 7. Killebrew, C.J., and Khalil, S. M. (2018). An Overview of History of Coastal Restoration Plans and Programs in Louisiana: Shore & Beach, Vol. 86, No. 1, Winter 2018, 28-37 pp.
- 8. Khalil, S. M., Haywood, E. & Forrest, B., 2016. Standard Operating Procedures for Geo-scientific Data Management, Louisiana Sand Resources Database (LASARD), Coastal Protection and Restoration Authority of Louisiana (CPRA), 30pp.
- 9. Khalil, S.M., Freeman, A. M., 2014. Challenges of ecosystem restoration in Louisiana availability of sediment and its management. Proceedings Sediment Dynamics from the Summit to the Sea, IAHS Publ. 367, pp. 455 462.
- 10. Khalil, S.M., C.W. Finkl, H.H Roberts, and R.R. Raynie, 2010. New approaches to sediment management on the inner continental shelf offshore coastal Louisiana, *Journal of Coastal Research*, 26 (4), 591-604.
- 11. Khalil, S.M., Finkl, C.W., Andrews, J., and Knotts, C. P., 2007. Restoration-Quality Sand from Ship Shoal, Louisiana: Geotechnical Investigation of Sand Resources on a Drowned Barrier Island, Proceedings Coastal Sediments' 07 ASCE, New Orleans, pp-685-698.
- 12. Morton, R.A., J.C. Bernier, K.W. Kelso, and J.A. Barras, 2010. Quantifying large-scale historical formation of accommodation in the Mississippi Delta: Earth Surface Process and Landforms, 35 (14), 1625-1641pp.

THANKS

Syed Khalil
150 Terrace Avenue
150 Terrace Avenue
Rouge, LA 70802
Baton Rouge, LA 70802
(225) 342-1641
(225) 342-1641
Syed.Khalil@LA.GOV

Beth Forrest, PhD, PG

Boca Raton, FL 33431

Beth.Forrest@APTIM.com

