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1.0 INTRODUCTION

W.F. Baird & Associates Ltd. (Baird) was retained by the Minerals Management Service (MMS)
for execution of the project “Investigation of Dredging Guidelines to Maintain and Protect the

Geomorphic Integrity of Offshore Ridge and Shoal Regimes/Detailed Morphologic Evaluation of
Offshore Shoals”.

Motivation for this study developed over a period of ten years beginning with the design of
several shoreline protection projects for the Assateague Island National Seashore, south of Ocean
City, Maryland in the late 1990s (USACE, 1998). MMS partnered with the U.S. Army Corps of
Engineers Baltimore District to design and test the viability of strategic dredging on Great Gull
Bank the borrow area selected for the project. During dredging, the crest of the shoal was
avoided, and a maximum dredge depth on the shoal flanks was maintained (Amato, 2002).
Concerns over the importance of the mid-Atlantic shoal fields to fish migration and feeding by
Federal and state agencies led to heightened awareness of their preservation (Vasslides and Able,
2008; Slacum et al., in press) and more careful planning of their use in beach construction
projects including the Atlantic Coast of Maryland Shoreline Protection Project (USACE, 2008).

Similar dredging strategies to that employed at Great Gull Bank have been proposed for other
projects, including limiting the dredge volume to a relative percentage of the original shoal
volume. In support of this approach, some have suggested there may be a critical depth of
dredging below which shoals should not be dredged provided wave-induced sediment transport
is paramount to shoal crest elevation and geometry (Hayes and Nairn, 2004). Others have added
that there may be a relative water depth and/or shoal height and size for which recovery may be
constrained. Recognizing that a better understanding of the processes that maintain these features
is necessary, the MMS designed and funded this study.

The purpose of the present study was thus to formulate and recommend offshore dredging
guidelines to protect and maintain the morphologic integrity of the ridge and shoal features found
on the Outer Continental Shelf (OCS) which are being targeted as sand borrow sites for beach
nourishment and coastal restoration efforts. The guidelines are supported by an improved
understanding of the morphologic evolution of ridge and shoal features through morphometric
analysis, field measurements, and numerical modeling. The objective of the guidelines will be to
allow dredging of ridge and shoal features, at the same time as protecting their integrity and the
habitat for benthos and fish provided by these features.

The focus of the study was on Delmarva Atlantic Coast area, i.e. the area offshore Delaware,
Maryland and Virginia between Delaware Bay and Chesapeake Bay. Shoals in this area are
technically regarded as sand ridges (see Section 2.1). However, we will also use the more
general term of “shoal” to refer to sand ridges throughout this report.

To assess the impacts of dredging on Offshore Ridge and Shoal features, it is essential that a
better understanding of the processes that maintain these features be developed. There have been
numerous previous studies considering effect of waves and currents on shaping shoals or
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shoreface-attached ridges (e.g. Duane et al. 1972, Swift et al. 1972, Field 1980, Figueiredo et al.
1981, Swift and Field 1981, Pattiaratchi and Collins 1987, Trowbridge 1995, Dyer and Huntley
1999, Snedden and Dalrymple 1999, Restrepo, Calvete et al. 2001, Maa et al. 2004, Sanay et al.
2007). A new conceptual model presented in Hayes and Nairn (2004) demonstrates how waves
shoaling and refracting up either side of a ridge off the coast of Maryland and Delaware result in
convergence of sand transport over the crest of the ridge, thus maintaining the ridge even after it
is detached from shore face processes. The possibility that these ridges might deflate or
disappear as a consequence of dredging, resulting in dramatic changes in wave conditions along
the shore, is a major concern.

It is the purpose of this project to investigate shoal self-sustainability mechanisms through a
combination of field surveys and numerical modeling, and to determine its universality for other
ridge and shoal features. With this understanding established and verified, the next step is to
determine to what extent dredging and removal of some of the shoal volume may influence the
maintenance processes. The findings will provide the basis for developing guidelines to protect
the integrity of these features. Ideally the guidelines should to be universal and related to non-
dimensional characteristics of the shoals, such as ratio of crest height to depth height, or volume
removed to initial volume.

A series of scientific questions may be formulated to provide a framework for addressing the
objectives of this project as follows:

1. At what rate are ridge and shoal features created, potentially replacing features that are
diminished through dredging? The rate and direction of migration of these features may
provide a clue to answering this question.

2. What are the relative roles of waves and currents in maintaining the geomorphic integrity
of existing ridge and shoal features? Hayes and Nairn (2004) suggested a hypothesis that
waves are the primary controlling mechanism in OCS waters; this hypothesis must be
rigorously tested.

3. Is there a critical threshold for dredging that once crossed, ridge and shoal features may
deflate, losing their morphologic integrity?

4. Ridges and shoals come in many shapes and sizes in different wave/tidal settings. Is it
possible to develop universal criteria for protecting the morphologic integrity of these
features, possibly related to dimensionless characteristics such as ratios of crest depth to
shoal height, length to width, volume removed to initial volume and storm wave height to
crest height? If universal criteria can be established, they would provide the basis for
developing guidelines to protect the morphologic integrity of these features. If universal
criteria cannot be established, it may be necessary to specify site-specific analysis
following a recommended set of procedures to evaluate each case individually.
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2.0 LITERATURE REVIEW

In this section a brief review of previous studies and a list of available information are presented.

2.1 Previous Studies

This section provides a brief selected summary of a rich and complex literature on sand ridges.
In addition to several key references mentioned in Section 1.0, Van Rijn (1998) provided a
comprehensive review of sand waves, ridges and banks in the context of Coastal
Geomorphology. He classified these features according to their orientation to the dominant
current direction, to the orientation of the coastline and to the presence of particular coastal
features (spit, headland, inlet, etc.), as follows:

e Current-transverse sand waves and ridges,
e Current-oblique sand ridges and banks,

e Current-parallel sand ridges and banks,

e Shoreface-connected sand ridges,

e Headland-attached banks and shoals,

e Spit-attached banks and shoals,

e Estuary mouth banks and shoals.

According to van Rijn (1998), the ridge and shoal features found on the Outer Continental Shelf
east of the United States are classified as Current-oblique sand banks and ridges. Linear sand
bodies oblique to the main current direction are found in a variety of geomorphological settings
such as on open shelf seas, adjacent to convergent or divergent coastlines (straits), and off
coastal headlands. Linear sand bodies in open shelf seas are often divided into tidal sand banks
found in tide-dominated settings and smaller-scale sand ridges found in storm-generated ridges
(Mid Atlantic Shelf), but they are also found in a setting where tidal currents and storms both
may be important. Generally, the landward end of the ridge is situated ahead (in the direction of
the dominant current) of the seaward end of the ridge. The downcurrent (seaward) slopes tend to
be steeper and finer grained. The ridges tend to migrate slowly (1 to 3 m per year) in the
dominant current direction. Swift and Field (1981) determined that large shoals of the region
may migrate at rates ranging from 2 to 12 m (6 to 40 ft) per year, generally to the southeast.
Maryland Geological Survey monitoring of Borrow Areas 2 and 3 presented in USACE (2008)
determined that those two features are migrating to the south at a rate of 4.5 to 9 m (15 to 30 ft)
per year.
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Van Rijn (1998) found significant morphological differences between active tide-dominated sand
banks and storm-dominated sand ridges. The orientation of the tidal sand banks is related
primarily to the dominant peak tidal current direction, while the orientation of the storm sand
ridges seems to be imposed by the direction of the storm-driven near-bed currents with respect to
the coastline. Tidal sand banks are generally higher than storm sand ridges: the former have
heights up to 40 meters, while the latter are up to 10 meters. Tidal sand banks may be steeper (6°
or less) than storm sand ridges (2° or less) and they generally have sharper crests. Tidal sand
banks have larger spacings than storm ridges and they are generally longer. Typical spacings
range between 2 to 30 km for tidal sand banks and 0.5 to 5 km for storm sand ridges. Tidal sand
banks are up to 70 km long, storm sand ridges up to 20 km.

Van Rijn (1998) explains that an important feature of many sand bank systems is the lateral
coherence of the individual sand bodies. Shoreface sand bodies almost always occur in fields,
often with a very constant spacing between the ridges. Generally, sand banks consist of medium
to coarse sand (0.4 to 0.8 mm) and are considered as sources of sediment. Sand banks are quite
stable features. Mega-ripples and sand waves may migrate over the banks in regions, where the
velocities are large enough to initiate particle motion. Closely related to the strength and
direction of the currents, sediments are circulating round and over the bank. The crest axis of the
bank deviates typically 20° (anticlockwise rotation on the Northern hemisphere) from the
direction of the dominant peak tidal current, which may be caused by Coriolis effects.

According to Van Rijn (1998), sand ridges with heights up to 10 m extend for tens of kilometers
in the Atlantic Bight off the east coast of the USA. They have spacings of 2 to 5 km and they are
attached to the shoreface (depths of about 5 m) at their southwest end at angles of 20° to 40°.
The ridges are abundant on the Delmarva (Delaware-Maryland-Virginia) peninsula between
Delaware and Chesapeake Bays. Tidal currents (micro-tidal range) are relatively weak in the
Middle Atlantic shelf. The axes of the ridges are aligned with the direction of approach of storm
winds/waves generated by ‘northeasters’ producing strong southwesterly currents. Common
features are

e Ridges are formed and maintained by tide- and wind-driven currents along relatively flat
sandy coasts formed during the Holocene Epoch on a marine transgressive surface;

e Ridges make an angle between 20° and 50° with the shoreline;

e The landward ends of the ridges are situated ahead of the seaward ends (in the direction
of the dominant current);

e The ridges migrate in the dominant current direction;
e The downflank slopes are steeper and finer grained than the upflank slopes.

Lankneus et al. (1994) studied the morphological behaviour on one (Middlekerke bank) of the
Flemish sand banks in front of the southern North Sea coast of Belgium. The bank has a slight
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oblique orientation with respect to the local coastline. Each of the Flemish banks is about 20 to
30 km long, 10 to 20 m high and 1 to 2 km wide. The water depths at the crest vary between 20
and 4 m below the low water level at spring tide (tidal range of about 4 m). Coarser (0.4 mm)
sediments occur in the higher parts, whereas finer sediments (0.2 mm) are located in the deeper
parts between the banks. The crest zone of the bank is covered with asymmetric sand dunes
(lengths up to 150 m and heights up to 5Sm) and mega-ripples (lengths up to 20 m) on the flanks.
Analysis of regular bathymetric survey results shows the presence of considerable volumetric
changes (£25 %) along several transects. The volume seems to decrease in periods of stormy
weather (dispersion by wave action) after which the sand is carried back to the bank (volume
increase). On the long term there is a dynamic equilibrium. Analysis of pre-storm and post-storm
survey results at two selected areas shows that the mega—ripples may disappear under storm
conditions and that the sand dune heights may become smaller (by about 1 m). There was
hardly any change in volume at both locations over the time interval of the surveys.

Huthnance (1982) studied ridge formation and orientation for situations far away from the
shoreline. He analyzed the linearized depth-averaged hydrodynamic equations in combination
with a sand transport function and the bed evolution equation, and showed that the oblique
orientation of the ridge (infinitely long ridge in water far away from shorelines) is essential for
ridge growth. Maximum growth occurs at a spacing of about 250h (h= depth) and at an angle of
about +£30° (with a variation of about 10° depending on various parameters) between the current
vector and the longest ridge axis. The basic mechanism is that the current velocities on the
upstream flank are slightly larger than those on the downstream flank in case of oblique
orientation resulting in net tide-averaged sand flux towards the crest on both flanks
(convergence). The net current and sand transport on the flanks is directed towards the crest of
the ridge, both for the flood and ebb phase of the tide. The actual orientation (clockwise or anti-
clockwise) of the ridge axis with respect to the dominant current direction will depend on the
orientation of the initially present bed perturbation, the latter being dependent on factors like
topographical configuration and orientation of the coastline. If the flood- and ebb—tidal currents
are unequal in magnitude and/or direction, then the sand ridge will be asymmetric with the steep
flank facing the direction of the net transport vector. The Coriolis term was found to enhance the
growth of the ridges and to turn the ridge axis in a more anti—clockwise direction (on the
northern hemisphere) with respect to the direction of the tidal wave propagation.

Based on Huthnance’s work, De Vriend (1990) has developed a mathematical model, with which
the effect of a number of phenomena on the growth rate of the ridges can be evaluated. The
growth of a sand bank orientated obliquely to the flow is predicted to occur for any combination
of tidal velocity amplitude, mean water depth, bottom roughness and sediment transport.
Assuming the model to be correct, this means that the presence of such banks in a tidal setting
like the North Sea, rather than the absence would be the normal situation.

The ridge formation theory of Huthnance (1982) requires a sufficient sand source, currents to
move the sand, and an irregularity on the sea floor around which the ridges are initiated.
McBride and Moslow (1991) postulated that one of the initial irregularities is a segment of an
ebb-tidal delta abandoned by inlet migration. These theories of origin provide little information
on how these features maintain their form once they are detached from the shore, yet remain in a
zone of active wave attack (i.e. in depths less than 20 m). Snedden and Dalrymple (1999)
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indicate that shoals in water depths less than approximately 20 m are migrating shoreward
through the influence of Stokes Drift under fair-weather waves based on the work of McHone
(1973). However, this model does not explain the maintenance of the form of linear shoal and
ridge features.

Recent work for MMS by Condrey (personal communications) on Ship Shoal offshore
Louisiana, and Slacum et al. (2010) on shoals offshore Maryland/Delaware, and Vasslides and
Able (2008) have found that ridge and shoal features may have important ecological functions in
terms of fish and benthos habitat at certain times of the year and day (evening). In addition, in
some cases these ridge and shoal features provide protection from wave attack to adjacent
shorelines.

Hayes and Nairn (2004) in an investigation for MMS, completed a literature review of
understanding of the distribution, genesis, maintenance and characteristics of linear ridge and
shoal features. Ridge and swale topography is exceptionally well developed on the continental
shelves of the Mid-Atlantic Bight (see Figure 2.1) and the northeastern Gulf of Mexico (see
Figure 2.2). In both cases, these linear ridges are oriented parallel to the predominant wave
approach direction, suggesting a common process for their evolution and maintenance. Most
researchers have concluded that ridges were derived from shore faces of barrier islands as they
retreated across the shelf in response to rising sea level and tides or storm-driven currents
maintain them. Hayes and Nairn (2004) demonstrated how waves shoaling and refracting up
either side of the Fenwick ridge (Figure 2.3) off the coast of Maryland and Delaware result in
convergence of sand transport over the crest of the ridge (Figure 2.4), thus maintaining the ridge
even after it is detached from shore face processes. They concluded that predominant storm
waves originating from the northeast (nor’easters) cause shoals on the Mid-Atlantic Bight to
align and migrate along a northeast/southwest axis while preserving their overall shape/integrity.



Baird & Associates

Fenwick'Shoal

Weaver Shoal

Isle of Wight Shoal

Mexico

Figure 2.2 Continental shelf in the north-eastern Gulf of Mexico showing detailed

bathymetry at 5 m contour intervals. Thicker contours are at 25 m intervals.
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Figure 2.3 A snapshot of wave action predicted with a Boussinesq numerical model over the Fenwick and
Weaver Shoals shown in Figure 2.1.
The results are for a 3 m significant wave height, 16-second period and ENE direction. Waves wrap around and up
the slopes on either side of the shoal, converging at the crest (from Hayes and Nairn, 2004).
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Figure 2.4 Schematics of the wave and sand transport processes that may serve
to maintain the shape of Fenwick shoal. The shoal is migrating in the direction of the “steep
slope” on its southeast side.

2.2 Available Data

As discussed in Section 1.0, the focus of the present study was on Delmarva Atlantic Coast area,
1.e. the area offshore Delaware, Maryland and Virginia between Delaware Bay and Chesapeake
Bay. The study area is part of the ridge and swale topography of the Mid-Atlantic Bight formed
by wave/storm dominated sand ridges. This section provides a summary of various available
data for the study area.

221 Bathymetric Data

The following bathymetry data were considered for use in the present study. Refer to Figure 2.1
for the mentioned locations.

10
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1880 Charts at GGB, I0W, Weaver, Fenwick, Shoal A, Borrow Area 2 including 2 charts
obtained from NOAA Office of Coast Survey’s Historical Map & Chart Project Image Catalog
(http://historicalcharts.noaa.gov/). Chart 1 is entitled ‘From Cape Henlopen to Fenwick’s Island’
and Chart 2 entitled ‘From Isle of Wight to Green Run Inlet’. Both charts are at 1:80,000 scale,
with soundings in fathoms at Mean Low Water (MLW). The charts contain both soundings and
contours. Soundings are coarse; distance between soundings varies from 500 m to 1000 m. Due
to concerns over accuracy, it was decided not rely on these charts in the present analysis.

1929 Field Sheet covering IOW, Weaver and Fenwick (US Coast and Geodetic Survey Register
No. 4951) obtained from NOAA Office of Coast Survey’s Historical Map & Chart Project Image
Catalog (http://historicalcharts.noaa.gov/). Soundings were surveyed between Sept 4 and Oct 31,
1929, at 1:20,000 scale. Soundings are in feet referenced to Mean Low Water (MLW). The
reference level is assumed to be at Ocean City.

1975 Hydrographic Survey (Survey ID = H09579) obtained from the NOAA National Ocean
Service (NOS) — Geodas. The data provides full coverage of IOW, but partial coverage of
Weaver & Shoal A. Soundings are in feet at 1:20,000 scale and referenced to Mean Low Water
(MLW). The reference level is assumed to be at Ocean City.

1978 Hydrographic Surveys (Survey ID = H09764 and H09759) obtained from the NOAA
National Ocean Service (NOS) — Geodas. The survey provides full coverage of GGB, Fenwick,
Borrow Area 2, and partial coverage of Weaver and Shoal A. Soundings are in feet referenced to
Mean Low Water (MLW) at scale 1:20,000 scale. The reference level is assumed to be at Ocean
City.

1999 Survey at Great Gull Bank (GGB) was surveyed for USACE, Baltimore District, by Ocean
Surveys Inc. in 1999. Survey lines are at about 500 ft (150 m) intervals; distance between
soundings varies from 5-10 ft (1.5 to 3 m, on average). Depths are reported in feet and
referenced to Mean Lower Low Water (MLLW) at Ocean City, Maryland. The data is available
in digital XYZ format.

2002 Surveys at Weaver, Isle of Wight (IOW) and Shoal A completed by USACE, Baltimore
District. Survey lines are at about 500 ft (150 m) intervals; distance between soundings varies
from 20-30 ft (6 to 9 m, on average). Vertical datum is Mean Lower Low Water (1960-1978
tidal epoch) US Survey Feet at Ocean City. The data is available in digital XYZ format.

2002 Survey at Great Gull Bank (GGB) was surveyed for USACE, Baltimore District, by Weeks
Marine Inc. on December 31, 2002. The survey provides a partial coverage of shoal with survey
lines at 500 ft (150 m) intervals. Depths are in feet and referenced to Mean Lower Low Water
(MLLW) at Ocean City, Maryland, fishing pier. Digital XYZ data was not available.

2003 Survey at Great Gull Bank (GGB) surveyed for USACE, Baltimore District, by Weeks
Marine Inc. in 2003. Survey lines at 500 ft (150 m) intervals. Depths are in feet and referenced

11
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to Mean Lower Low Water (MLLW) at Ocean City, Maryland, fishing pier. Digital XYZ data
was not available.

National Ocean Service (NOS) hydrographic survey data of the entire Mid Atlantic Bight
(http://map.ngdc.noaa.gov/website/mgg/nos hydro/viewer.htm)

2.2.2 Waves

The National Data Buoy Center (NDBC) owns and maintains a number of wave buoys in the
Atlantic. The closest wave buoy to the present study site is NDBC Buoy 44009 (Lat 38.464 N,
Long 74.702 W, see Figure 2.5). Currently, this is a 3 m discus buoy deployed at 28 m water
depth off Ocean City, recording wind and wave conditions
(http://www.ndbc.noaa.gov/station_page.php?station=44009). The data from the 44009 buoy is
available since 1984; however, directional wave data is only available for the 1996 to 1998
period. The buoy does not currently record wave direction. Figure 2.6 shows the wave rose and
Figure 2.7 shows the wave point rose measured by 44009 in 1996-1998 period.

Analysis of the data indicates that between 1996 and 1998, about 27% of the time waves were
from the NE quadrant and about 50% of the time from the SE quadrant. Significant wave height
was larger than 3 m for 2.7% of the time, 2/3 of which arrived from the NE quadrant. There

were 41 events (i.e. 0.16% of the time) with wave heights larger than 6 m, of which 35 were
from NE and only 6 from SE quadrants.
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Figure 2.5 Wave and water level data locations.
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Figure 2.7 44009 wave point rose (1996-1998).
Other available wave data is by the Coastal and Hydraulics Laboratory of USACE who
maintains a bottom mounted directional wave gage (MD002) at 9 m water depth off Ocean City,
MD (Lat 38.34 N, Long 75.07 W) since 1988. Wave data is collected for 17 minutes at 1 Hz
starting at the top of the hour. Data are transmitted to the Engineer Research and Development
Center (ERDC) and are posted to the Internet
(http://sandbar.wes.army.mil/public_html/pmab2web/htdocs/md002.html).

2.2.3 Water Levels

Water level data in exposed ocean environment are available from NOAA’s National Ocean
Service (NOS) gages at Atlantic City (Station ID: 8534720 since 1911) and Ocean City (Station
ID: 8570283 since 1978). See Figure 2.5 for the locations. Tidal range at Atlantic City is around
1.4 m (4.6 ft). Itis about 0.75 m (2.5 ft) at Ocean City. A comparison of data from the two
stations with water level measurements of the present study is provided later in this report. The
mean sea level trend in the area is 3.99 mm/year rise with a 95% confidence interval of +/- 0.18
mm/yr based on monthly mean sea level data from 1911 to 2006 at Atlantic City. This is
equivalent to a change of about 40 cm (1.31 feet) in 100 years.

2.2.4 Currents

The study area experiences severe tropical and extratropical storms during the summer and early
autumn. These seasonal storms often track along a corridor running parallel to the coast between
the shelf break and several tens of kilometers inland. In late autumn and winter months severe
northeasters are formed through rapid cyclogenesis associated with the Gulf Stream off Cape
Hatteras. These storms are believed to play a disproportionately large role in the transport of
particulate material on the continental shelf (Glenn et al. 2008, Lentz 2008). Sediment transport
processes on continental shelves are often characterized in terms of the turbulent interactions
between combined waves and large-scale current systems. High bottom shear stress associated
with the thin oscillatory wave boundary layer acts to mobilize and transport the sediment in wave
direction, and at the same time, makes the sediment available for transport by the mean currents.
The combination is an enhanced sediment transport mechanism, since the turbulence associated
with the thicker pure current boundary layer may not be sufficient to initiate sediment motion.

Available data options for defining a "long-term climate" for the large-scale oceanic currents are
scarce. The MMS Environmental Studies Program sponsored Princeton University and Old
Dominion University to implement the Princeton Ocean Model (~5 km cell, 3 hr step) and
hindcast meteorological and oceanographic conditions between 1993 and 2010 for the Mid
Atlantic Bight. The data was not available for use in defining a long-term climate for the present
study. Our search indicated that the Mid-Atlantic Regional Coastal Ocean Observing System
(MARCOOS) is presently the only dataset available to us providing such data. MARCOOS uses
an extensive array of HF radar stations to measure surface currents over the Mid Atlantic Bight
(MAB) continental shelf. The HF Radar network is capable of providing surface current maps
across the shelf from Cape Cod, MA to Cape Hatteras, NC during high sea state conditions
associated with coastal storms. Nested within this shelf coverage are high resolution systems in
the five sub-regions (Chesapeake Bay, Delaware Bay, NY Harbor, Long Island Sound and

14
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Southern New England Bays and Sounds). The network is currently made up of 29 sites. The
system initially started in 2001 and continued to expand since then. The large data footprint over
MAB is available since early 2007. The reader is encouraged to visit http://www.marcoos.us/ for
further information.

Maritime Safety was the main purpose for development of MARCOOS system. Measured
surface current maps by the Mid-Atlantic HF Radar network are used (1) by the Coast Guard to
improve their Search And Rescue (SAR) activities and (2) by NOAA HazMat to improve
emergency response to hazardous spills. HF Radar information fill the gap between the inshore
NOAA PORTS and offshore NDBC buoy stations and allow SAR operations to be optimized.
Hourly time series of MARCOQOS surface currents for the period between January 2007 and July
31, 2008, was provided to Baird by Dr. Scott Glenn and Dr. Josh Kohut of Coastal Ocean
Observation Laboratory of Rutgers University, NJ. Figure 2.8 shows the overall MARCOOS
grid locations in MAB. Figure 2.9 presents an example snapshot of MARCOOS surface current
data. Figure 2.10 shows MARCOOS grid points close to the present study site.
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Figure 2.8 MARCOOS surface current measurement grid over MAB.
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Figure 2.9 Example snapshots of MARCOOS surface current data.
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Figure 2.10 MARCOOS grid points in the vicinity of the present study site.
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2.25 Seabed Classification

A Seabed Classification System to classify seabed conditions in the Isle of Wight shoal area
from acoustic reflection properties has been used by Maryland Geological Survey (MGS) to
classify seabed in Isle of Wight area. The material presented in this section has been provided by
Mr. Bob Conkwright of MGS. Seabed classification at Isle of Wight has been completed based
on QTC VIEW 4 acoustic data, VIMS seafloor imagery and sampling, as well as MGS
vibracores and grab samples. The full VIMS data set is available on DVD through OCS Study
MMS 2000-055.

Seabed classes represent distinct bottom types based on acoustic reflectivity characteristics. In
the Isle of Wight study, seabed classes were divided into four groups:

Shoal crest: The crests of shoals Fenwick, Weaver, and Isle of Wight typically contain large-
scale bedforms such as sand waves and large ripples. The surface is medium sand and displays a
low concentration of biogenic surface structures. Scattered shell fragments are the dominant
biogenic feature. Because shoal crests are relatively shallow (< 10 m deep) the surface is
constantly reworked and bedforms are mostly transient. Figure 2.11 shows a pair of in-situ core
and surface photos taken in this environment.

Shoal flank: The shoal flank bottom type is similar to the shoal crest, but typically contains
coarser sediment and somewhat greater biogenic productivity. Echinoderms and bivalves are
observed on the flanks more often than the crests. Smaller scale bedforms are commonly
observed. Figure 2.12 shows the coarser surface sediments encountered on the shoal flanks.

Intershoal: The areas between shoals are predominantly covered by medium to fine sand.
Small-scale bedforms are common in the intershoal areas. Biogenic productivity is generally
higher than on the shoals (Figure 2.13).

Patch-mat: This bottom type is characterized by fine sediments and relatively high biogenic
productivity. Mats and patches of tube worm colonies are common. This bottom type generally
occurs in the deeper troughs between shoals where thin deposits of fine to muddy sand overlay
muds (Figure 2.14).

A more complete description of these bottom types can be found in Diaz et al (2003).
Furthermore, QTC acoustic bottom mapping data were processed by MGS in ESRI ArcGIS to
produce a map of bottom types. Figure 2.15 displays the resulting bottom class map for the Isle
of Wight Shoal area.
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Cross-section

Overhead

Figure 2.11 VIMS imagery of shoal crest bottom type (Maryland Geological Survey).
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Cross-section

No surface images available

Figure 2.12 VIMS bottom imagery from shoal flank (Maryland Geological Survey).

Cross-section

Overhead

Figure 2.13 Typical intershoal bottom, from VIMS imagery (Maryland Geological Survey).
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Cross-section

Overhead

Figure 2.14 Patch-mat bottom type from VIMS imagery (Maryland Geological Survey).
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Figure 2.15 Isle of Wight Shoal bottom types (by Maryland Geological Survey).
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3.0 METHODOLOGY

The following methodology was employed:
e Literature survey and review of available data
e Selection of a representative shoal for detail study
e Field Measurements
e Evaluation of the effect of the contributing factors (waves, tides, currents)
e Morphometric analysis of shoal parameters
e Conceptual shoal evolution model
e Numerical modeling of shoal morphology change
e Numerical modeling and evaluation of various dredging scenarios
e Development of dredging guidelines

Literature review and available data were discussed in the previous section. Regarding the
selection of a representative shoal for detail studies, the U.S. Army Corps of Engineers,
Baltimore District has released a Final Supplemental Environmental Impact Statement (USACE,
August 2008) for the “Atlantic Coast of Maryland Shoreline Protection Project” to evaluate the
impacts of dredging several new offshore shoals to provide sand for the project for the years
2010-2044. 1t is estimated that between 6,800,000 and 15,000,000 cubic yards of sand would be
needed through 2044, depending on future storminess. Offshore borrow sources to obtain up to
15,000,000 cubic yards of sand were thus identified. Three offshore shoals located in Federal
waters were recommended: Weaver Shoal, Isle of Wight Shoal, and Shoal "A" (see Figure 2.1).
Sub-areas on each shoal were delineated based on suitability of sand for beach nourishment
purposes. Sand at Shoal "B," also known as Bass Grounds or First Lump, was also found
suitable, however that shoal is currently an important fishing ground. The U.S. Fish and Wildlife
Service and National Marine Fisheries Service recommended that Shoal "B" not be utilized at
this time.

For selection of detail study site/shoal, several shoals recommended in USACE 2008 were
considered. The idea was to select a shoal which has morphodynamics that are representative of
the wave-dominated settings of the area. For this purpose, the shoal needed to be shallow
enough to be morphologically dynamic and have an overall NE-SW orientation to promote wave
focusing under predominant storm events of the site. Other criteria were dredging priority and
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historic bathymetry data availability. Table 3.1 provides the final summary of criteria used to
arrive at the shoal best suited for instrumentation and numerical modeling for the present study
(note: GGB is Great Gull Bank). Migration rates provided in this table were determined through
comparison of the location of the shoal footprint (-30 ft m contour) in NOAA Raster
Navigational Charts with the same contour from most recent surveys. The Isle of Wight shoal
was selected for this study as it had the most favorable rating and was preferred to Weaver Shoal
owing to its shallower crest depth.

Table 3.1 — Criteria for Shoal Selection for Detailed Investigation.

Migration Crossing | Dredging Bathy Data Crest Height | Dredged
Rate Waves | Priorit Availabilit (m) Before
m/year Y Y
Fenwick | 3 ~4 m/yr O X 1978 33 X

Isle of

Wight 4 ~ 5 m/yr O O 1929, 1978, 2002 6.5 X
Weaver | 4 ~5 m/yr O O 1929, 1978, 2002 8.5 X

1880, 1978,

GGB | S~6myr | O X 1999, 2003, 2002 6.0 O
Shoal A | 4 ~5m/yr A O 1978, 2002 11 X
Borrow 7.5~9 1978, 1986, 9.5
Area 2 m/yr X ? 1988, 1991, 2004 O
O Ppositive A Possible X Negative

Following selection of Isle of Wight shoal as detail study site, a field measurement program was
prepared and executed to investigate contributions from various hydrodynamic forces to
evolution of this shoal. A morphometric analysis of shoal parameters was also completed to
determine most important shoal parameters contributing to shoal geomorphic integrity. A
morphology change model was then setup and calibrated using data collected for Isle of Wight.
The model was applied to investigate various dredging scenarios and develop dredging
guidelines. These tasks are explained in detail in the following sections.
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40 FIELD MEASUREMENTS

The purpose of field measurements was to arrive at a better understanding of hydrodynamic
forces (waves and currents) in the study area and evaluate their relative contribution to
morphodynamics of the shoals. The objective is to define the required input driving forces to the
numerical model of shoal morphology evolution. A field measurement program was thus
prepared by Baird and executed by Alpine Ocean including two hydrographic surveys, surface
sediment sampling and analysis, and deployment and retrieval of three ADCPs (Acoustic
Doppler Current Profilers) to measure waves and currents.

4.1 ADCP Measurements

Storm season in the NW Atlantic is generally between January and May. Three ADCPs were
deployed from the last week of February to around the end of May 2007, providing almost 3
months of recorded data. Figure 4.1 shows deployment locations. One ADCP was deployed in
25 m depth about 12 km northeast of the Isle of Wight shoal to capture offshore incident waves.
This is referred to as Deepwater ADCP hereafter. Two other ADCPs were deployed at 10 m
depth on southeast (SE) and northwest (NW) side slopes of the shoal to measure refracting
waves focusing towards the shoal crest. They will be referred to as SE and NW ADCP,
respectively, hereafter. Figures 4.2 to 4.4 show combined time series of parts of the recorded
data by the Deepwater ADCP for the months of March, April and May. The data presented in
these figures in order from top to the bottom include water temperature and wave period, wave
height and wave direction, water levels and air pressure, wind speed vectors, and measured
current velocity vectors by the ADCPs at three levels (near the surface, mid-depth and near the
bottom). Air pressure and wind speed data are from NDBC Buoy 44009.

Severe storms were recorded on March 2, March 17, April 16, May 7 and May 18 during the
three-month deployment. The storms on March 17, May 7 and May 18 were nor’easters.
Measured current velocities indicate the presence of both tidal and storm-driven currents.
Different storm events illustrate a temporal variability in system response. For example, the
event on April 16 (Figure 4.3) involves a changing wind direction, compared to the events on
March 17 (Figure 4.2) and May 18 (Figure 4.4) where winds blew mostly from northeast.
Examination of wave directions indicates that the latter two events are nor’easters while the
former event (April 16) is a southeasterly storm. Combined time series plots for NW and SE
ADCPs are presented in Appendix A. Detailed analysis of the measured data is presented in
sections 5.1 and 5.2.
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Figure 4.3 Waves and currents measured by the Deepwater ADCP during April 2007.
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Figure 4.4 Waves and currents measured by the Deepwater ADCP during May 2007.
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4.2  Hydrographic Surveys

Two hydrographic surveys of the migrating edge of Isle of Wight were considered and scheduled
around the beginning and after completion of the present field work. The idea was to provide a
detailed description of morphologic evolution of the shoal feature in response to waves and
currents that would be measured between the two surveys. Survey schedule was subjective to
wave conditions at the site which proved to be persistently higher than the threshold for boat
operation during the winter of 2007.

The first hydrographic survey was completed in three missions in April 2007 based on available
weather windows. For this survey, water levels were measured by the ADCPs. Upon reviewing
the results, Baird recommended Alpine Ocean to complete the second hydrographic survey in
one mission under continuous tidal and water level conditions. This required a 3 successive day
window of calm wave conditions for survey operations and resulted in a considerable delay in
completion of this task. Alpine Ocean was finally able to conduct the second hydrographic
survey during the second week of January 2008, again in three missions (January 8, 10 and 12,
2008, based on available weather windows). A tide gage was simultaneously deployed to record
water levels during the survey, however the gage was found to have malfunctioned on retrieval.
Water level information from Atlantic City and Ocean City gages was used to process the second
survey data (see Section 5). A single beam echosounder was used and survey line spacing was
50 m for both surveys. Figures 4.5 and 4.6 show survey lines of the first and second surveys,
respectively.
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Figure 4.5 First hydrographic survey data (April 2007).
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Figure 4.6 Second hydrographic survey data (January 2008).

The vertical resolution of the echosounder was 1 cm. In other words the reading from the
echosounder was in 1 cm increments. The Horizontal resolution is a factor of the angle of
transmission of the transducer. The deeper the water depth, the more the beam spreads and the
less detail can be resolved. In the present case a transducer which transmits a 9° beam was used.
Thus the range of resolution in the survey area was from about 45 cm in 3 of water to 3 m in 21
m of water.

4.3 Sediment Sampling and Grain Size Analysis

A total of 25 surface sediment samples were taken from the Isle of Wight shoal during the period
of instrument deployments. Sieve analysis of the surficial sediment samples was subsequently
completed. Figure 4.7 shows median grain size (Dsp) and percentage sand content of each
sample. The area is covered with sand. The grain size is coarser on the NW side of the shoal
and finer on the SE side ofit.

Figure 4.8 provides the MGS seabed classification (Section 2.2.5) overlaid on the present results.
Median grain size in the shoal crest area (as defined by MGS) ranges from 0.4 mm to 1. 2 mm
(medium to very coarse sand). This is to some extent different from QTC data which indicates
medium sand for the shoal crest area. Over the shoal flank, the present data mostly shows a
median grain size of 0.3 mm except on the west flank where Ds, ranges from 0.7 mm to 1.5 mm
(coarse to very coarse sand). Again this is somewhat different from QTC data that finds coarser
sand over shoal flanks than over the shoal crest. It is our opinion that grain size distribution on a
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morphodynamically active shoal is subject to temporal variability and depends on the type and
intensity of hydrodynamic forcing that prevailed prior to sediment sampling. Generally, the
movement of graded sands involves various processes (or modes of transport) such as static
armoring (where fine sand is winnowed away by waves and/or currents leaving behind a lag of
coarse material), dynamic armoring (where coarser grains become mobile as a layer on top of the
smooth surface formed by the underlying fine sediment), and sediment sorting (resulting from
different behavior of fine and coarse sand under same hydrodynamic conditions). The prevailing
mode of transport is a function of intensity and type of driving forces as well as percentage and
grain size of fine and coarse sediments in the mixture. Under extreme storm events, however, it

is expected that both fine and coarse sediments are mobilized and move together (Dibajnia and
Watanabe, 2000).
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Figure 4.7 Sediment sample locations and sieve analysis results.
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Figure 4.8 Sieve analysis results (Dsg) of the present study on MGS seabed classification.
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5.0 DATA ANALYSIS

This section provides an analysis of various measured data described in Section 4.0.

51 Waves

Measured wave rose by the Deepwater ADCP is presented in Figure 5.1 and Figure 5.2 provides
the corresponding wave height point rose. Analysis of the data indicates that between Feb 28
and May 31, 2007, about 29% of the time waves were from the NE quadrant and about 59% of
the time from the SE quadrant. Significant wave height was larger than 2 m for 7% of the time,
arriving equally from SE and NE quadrants. There were 16 events with wave heights larger than
3 m (i.e. 0.73% of the time), of which 11 were from NE and 5 from SE quadrants. Maximum
recorded significant wave height was 3.6 m.
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Figure 5.1 Deepwater ADCP wave rose (Feb 28 to May 31, 2007).
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Figure 5.2 Deepwater ADCP wave point rose (Feb 28 to May 31, 2007).

It is noted that compared to NDBC Buoy 44009 data discussed in Section 2.2.2, the present
measured wave climate does not include extreme storm events (including nor’easters) with wave
heights larger than 4 m. Figure 5.3 shows annual distribution of nor’easter events with
significant wave height larger than 3 m since 1991 recorded by NDBC Buoy 44014. This is a
directional wave buoy deployed at 48 m depth approximately 200 km south of the present study
site. The figure shows number of hours in each year in the 18-year hourly record where the
wave height was larger than 3 m and wave direction was from the 0 to 75 degree window.
Annual average number of nor’easter hours, as defined in the above, was found to be about 196
hours or 8.2 days per year with a standard deviation of 93 hours (3.9 days). The year 1993 with
360 hours and 1998 with 74 hours had the most and least nor’easter activity, respectively. The
year 2007 with 116 hours was one of the years with less than average nor’easter activity.

31



Baird & Associates

400

/O — — |~ —

30— - - @ - —-————- W — — - - — - =

250+ — = W— — — — — — — - — - = - — -

200 - — - - — - — - = - — -

150 — - = - = - = = - =

Hours with Nor'Easters >3 m

100 — — — — —

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

Figure 5.3 Annual distribution of percentage of nor’easters since 1991.

Measured wave rose by SE ADCP is presented in Figure 5.4. Compared to the Deepwater
ADCP wave rose (Figure 5.1), waves arrive from a narrower directional window at this location.
The SE flank of IOW is nearly in NE-SW direction. Waves from NE quadrant undergo
considerable refraction before arriving at this location. Figure 5.5 shows comparison of wave
heights measured at the SE and the Deepwater locations. Larger waves, typically characterized
by longer periods, are subject to transformation (refraction/shoaling) evidenced by increasing
scatter with larger wave height. Wave height at SE location is generally about 0.94 times the
wave height at the Deepwater location.

32



Baird & Associates

Wave Height Rose
SE ADCP
350 N 10
M0 - 20
330 30
320 40
310 - 50
100 60 Wave Height (m)
290 o R 350+
7 3.25-3.50
280 \ S so WM 30032
R \ | e
220 50 60 __30—=00 . | %0 225-250
¥ B 200-225
260 el N Ay (hl 100 1.75-2.00
et ¥ B 150-175
. &y
250 |} ‘ /// 110 125-1.50
. B 100-125
240 ", Q’/ 120 0.75-1.00
- J os0-075
230 e 130 0.25-0.50
-~ 0 0.00- 0.25
210 150 @
200 160
190 180 | 170 Scale Increment:

1 1 1 J
30 6.0 9.0 120% 3.000%

Time Scale Legend:
Below or equal 90 % [ | Between 90 and 100% [ | 100 %
Minimum Scale Rate: 10 days

| 1 |
[ 7007 |

Figure 5.4 SE ADCP wave rose (Feb 28 to May 24, 2007).
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Figure 5.5 SE ADCP wave height vs. Deepwater ADCP wave height.
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Similarly, measured wave rose by NW ADCP is presented in Figure 5.6. Compared to the
Deepwater ADCP wave rose (Figure 5.1), waves arrive from a wider directional window at this
location. The NW flank of IOW has a nearly 53°orientation measured clockwise from the North.
Waves from N to NE direction refract towards NW direction, while waves from the SE quadrant
undergo a complicated refraction pattern before arriving at this location. Figure 5.7 shows
comparison of wave heights measured at the NW and the Deepwater locations. Wave height at
NW location is generally as large as the wave height at the Deepwater location.
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Figure 5.6 NW ADCP wave rose (Feb 28 to May 24, 2007).
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NW ADCP - Significant Wave Height (m)

Deepwater ADCP - Significant Wave Height (m)

Figure 5.7 NW ADCP wave height vs. Deepwater ADCP wave height.

52 Currents

As discussed in Section 4.1, measured current velocities indicate the presence of both tidal and
storm-driven currents. The March 17, 2007 event is further investigated as an example here.
Figure 4.2 indicates that this was a nor’easter (wave directions from NE) with wave heights
exceeding 3 m. Winds were from NE and then NW during the passage of this storm.
Atmospheric pressure dropped to 1000 hPa and the storm was accompanied by strong southward
currents superseding the background tidal currents.

Time series analysis of the measured north-south component of near-bottom current velocity by
the ADCPs was completed in frequency domain for the entire measurement period. First, the
tidal analysis module of MIKE ZERO was used to separate the tidal signal from the measured
record. Figure 5.8 shows the resulting tidal and residual components together with the original
input time series for the period between Mar 13 and Mar 21, 2007 at the SE ADCP as an
example. The residual component contains frequencies both higher and lower than the tidal
frequencies. Subsequently, FFT analysis with a low-pass filter (cutoff frequency of 1/30 hr'")
was used to separate storm-driven subtidal components from the residual. Figure 5.9 shows the
residual and resulting subtidal components corresponding to the above period. It shows the
existence of a southward current reaching a maximum velocity of about 22 cm/s on March 17,
2007. The subtidal velocity magnitude is comparable to that of the tidal component. Similar
results were obtained at other ADCP locations.
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Figure 5.8 Example of tidal and residual components of the measured near-bottom velocity.
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Figure 5.9 Example of subtidal component extracted from the residual near-bottom velocity.
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A similar time series analysis was conducted on water surface elevation data. Figure 5.10 shows
the extracted subtidal component of water surface elevation at the Deepwater ADCP through the
month of March 2007. The corresponding near-bottom tidal and subtidal northward velocity
components are also plotted in this figure. It shows that the near-bottom southward current
reached a maximum velocity of about 40 cm/s on March 17, 2007 at the location of this sensor.
Figure 5.6 indicates that each subtidal current event is associated with a corresponding subtidal
rise or drop in water levels. The observed southward current on March 17 corresponds to a
subtidal rise of about 40 cm in water surface elevation. This is also confirmed by comparison of
predicted and measured tides at NOAA’s Ocean City Inlet tide gage as shown in Figure 5.11.

400 T T T T T T T T T T T T T T T T

i A L
300 _ Deepwater ADCP _
200 -
100 |, /\ ;

0 s L M Wi
100
200 |- _

-300
i Tidal Velocity

400 [ Subtidal Velocity

— Subtidal Water Level

_500 L. 1 | | | | | | | | | L 1 1 1 1 | I T T T N T TR .
0 5 10 15 20 25 30

Time (Days from March 1, 2007)

V (North) component of velocity (mm/s), Water Level (mm)

Figure 5.10 Relation between subtidal components of velocity and water level.
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Figure 5.11 Comparison between measured and predicted tides by NOAA at Ocean City in March 2007.

Synoptic scale gradients in atmospheric pressure are known to cause circulations over the
continental-shelf in the Middle Atlantic Bight. Synoptic scale motions are generally
characterized by periods in excess of 2 days and horizontal-length scales in excess of 500 km.
The synoptic scale weather disturbances are generally caused by baroclinic instability. Figure
5.12 shows locations of several NDBC buoys in Northwest Atlantic including the Buoy 44009
which is located close to the present study site. Values of pressure difference between this buoy
and the other buoys were compared with the observed sub-tidal fluctuations in the water level.
Strong correlation was observed with pressure differences between 44009 and 44005 as well as
44027 as shown in Figure 5.13. Note that as a general rule there is a 10 mm increase in sea level
for every mbar (hPa) drop in atmospheric pressure. It is therefore concluded that synoptic scale
pressure gradients and their associated wind storms in general, and nor’easters in particular,
result in large scale circulations (Figure 2.9) and generation of important subtidal current
components in the study area.

The focus in the above discussion was on southerly flow associated with the barotropic pressure
gradient of sea surface and winds. It should be noted that there may be a comparable northerly
response under the presence of persistent winds and/or different barotropic conditions (note
March 20 event in Figure 5.9 for example). However, the significance of southerly flows during
nor’easters is because these flows are accompanied with large waves and it is the combined
effect of large waves and strong currents that has a significant impact on sediment transport (see
Section 6.1 for more discussion).
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Figure 5.13 Relation between subtidal water level fluctuations and pressure gradients in NW Atlantic.
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5.3  Hydrographic Surveys

Water level info Water level information is required for processing depth sounding data collected
from a boat. The first hydrographic survey was completed during ADCP deployment period, i.e.
between March and May 2007. Water level information recorded by ADCPs was therefore used
to process survey data. The second hydrographic survey, however, was completed in January
2008. A tide gage was simultaneously deployed but was found to have malfunctioned on
retrieval. The nearest tide stations to the site are Ocean City Inlet, MD (Station ID: 8570283)
and Atlantic City, NJ (Station ID: 8534720). Baird examined tide records at these stations
against measured tidal levels at the site by the ADCPs.

Figures 5.14 and 5.15 show correlation between Ocean City Inlet (OC Inlet) and Atlantic City
(AC) tide levels and the ADCP measured data, respectively. In Figure 1, OC Inlet tides show a
regression coefficient of 0.8291 with the ADCP data; they should be divided by 0.6618 to
represent the tides at the project site (i.e. OC Inlet tides are about 2/3 of the project site tides).
In Figure 2, AC tides show a regression coefficient of 0.9181 with the ADCP data, i.e. a much
better correlation than OC tides. AC tides should be divided by 1.1501 to represent the tides at
the project site (i.e. AC tides are slightly larger than the project site tides). It was found that a
weighted average of 85% AC plus 15% OC Inlet tide would give the highest correlation (0.919)
with ADCP data as shown in Figure 5.16. The weighted average values were divided by 1.0768
to represent the tides at the project site and the resulting time series was used to process the
second hydrographic survey data.

Ocean City Water Level (m)

ADCP Water Level (m)

Figure 5.14 Relation between water levels measured at Ocean City Inlet and by the ADCP.
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ADCP Water Level (m)

Figure 5.15 Relation between water levels measured at Atlantic City and by the ADCP.
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Figure 5.16 Relation between water levels measured at Atlantic City and by the ADCP.
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5.4 Comparison with Historic Charts and Surveys in GIS

The bathymetric data explained in Section 2.2.1 and the present hydrographic surveys were used
to study the change in bottom elevations around the Isle of Wight since 1929. Figure 5.17 shows
the comparison (depth change) between the 2007 and 2008 surveys collected in the present
study. Depth change values range from -0.75 m to +1.25 m. The comparison does not provide a
meaningful trend of bottom evolution. It was found that errors commonly involved in a
hydrographic survey are comparable in magnitude to the annual rate of change of bottom
morphology in the study area, affecting short-term bathymetry comparisons. Byrnes et al. (2002)
provide estimates of acoustic depth measurement accuracy for various project conditions. The
estimated RMS (95 percent) error for the present project conditions is + 1.0 ft (+ 0.3 m). The
combined error from both surveys would thus be + 0.6 m, comparable to the values of depth
change shown in Figure 5.17. It was, therefore, decided to focus on long-term morphological
evolution of the shoals such that survey errors become negligible against actual changes in
bottom elevations.

2008 - 2007 Bathymetry Comparison
Isle of Wight Shoal

Surveys used in comparnson were referenced to MLLW at Atiantic City.

Legend

2002 Contours
Change in Depth (m)
@ o.74- 05 (Erosion)
@ o.49-025
h O 024-01
w ‘t’f Z}' B () -0.09-0.1 (Negligible Change)
s C Doai-0zs
0 200 400 600 M LO0O O 026-05
b o @ o0s1-1

0 W0 400 600 800 1000 - 1.01-1.25 (Accretion)

Figure 5.17 Comparison between 2007 and 2008 surveys of the present study around IOW.
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The USACE 2002 Surveys of Weaver and Isle of Wight, the 1929 Field Sheet, and the 1975
survey as described in Section 2.2.1 were selected to look at long-term bathymetry comparisons
around Isle of Wight. The selected surveys cover the entire [OW shoal. They were referenced to
MLLW at Ocean City, and the effect of sea level rise was taken into account (~ 4 mm/year).

Figure 5.18 provides a plot of bottom elevation change at IOW between 1929 and 2002.
Comparison area is limited by the extent of the 1929 survey. Erosion and accretion are shown
with blue and brown colors, respectively. The -7 m and -10 m contours from both surveys are
also shown. While the -10 m contour shows an overall southward movement, the -7 m contour
seems to have moved in the SW direction. It is expected that shoal crest will be more dynamic
than deeper parts of the shoal; therefore the crest shows a more random behavior than the main
body of the shoal. Also note that the NW flank of IOW has a milder slope of its SE flank.
Therefore, survey inaccuracies are more amplified on the NW flank.

2002 - 1929 Bathymetry Comparison
Isle of Wight Shoal

Surveys used in comparison were referenced to MLLW at Ocean City.
Vertical datum was adjusted to reflect the effect of sea level rise.
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Figure 5.18 Comparison between 1929 and 2002 surveys around IOW.
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Calculation of erosion and accretion volumes indicates a total accretion of about 2.8 million m’
and total erosion of 1.9 million m® over the comparison area in the 73-year comparison period.
The difference is attributed to the comparison area being limited, thus not covering all relevant
accretion and erosion features, and to possible survey and datum inaccuracies.

Figure 5.19 provides a plot of bottom elevation change at IOW between 1975 and 2002.
Comparison area is limited by the extent of the 2002 survey and covers a much larger area than
the previous comparison (the north end quarter of the area is not shown in the figure). The -7 m
and -10 m contours from both surveys are also shown. Both the -10 m and the -7 m contours
show movement in SW direction. A corresponding accumulation area is observed on the west
side of the shoal. The reasons behind the differences observed between 1929-2002 and 1975-
2002 comparisons are not clear. One possibility could be long-term (decadal or longer)
shifts/variations in the wave and current climate of the area due to the variability in the North
Atlantic Oscillation (NAO). It is generally believed that the leading edge (i.e. the edge on the
migration side) of a shoal has a much steeper slope than its trailing edge resulting in the
asymmetric shape of the shoals. Looking at depth contours in Figure 5.19, it appears that IOW
has two steep sides on its south and west edges. This may be an indication that IOW has two
westerly and southerly migration components corresponding to the above observations.
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Figure 5.19 Comparison between 1975 and 2002 surveys around IOW.

Calculation of erosion and accretion volumes (Figure 5.19) indicates a total accretion of about
4.4 million m’ and total erosion of 4.7 million m® over the comparison area in the 28-year
comparison period. The numbers are reasonably close as a result of relatively large comparison
area.

Figure 5.20 provides a plot of bottom elevation change at Weaver between 1975 and 2002.
Comparison area is limited by the extent of the 2002 survey. Weaver has a deeper crest than Isle
of Wight. The -10 m contours from both surveys are also shown and show a movement towards
the south (note that the red contour in this figure belongs to 1975). A corresponding
accumulation area is observed on the south side of the shoal. Calculation of erosion and
accretion volumes indicates a total accretion of about 4.0 million m® and total erosion of 3.3
million m® over the comparison area in the 28-year comparison period. The difference is
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attributed to the comparison area being limited, thus not covering all relevant accretion and
erosion features, and to possible survey and datum inaccuracies.

2002 - 1975 Bathymetry Comparison
Weaver Shoal

Surveys used in comparison were referenced to MLLW at Ocean City. %’
Vertical datum was adjusted to reflect the effect of sea level rise. s,
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Figure 5.20 Comparison between 1975 and 2002 surveys around Weaver.
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5.5 Analysis of Shoal Parameters

An analysis of shoal geometric parameters was completed and is presented in this section. This
analysis complements previous comparable efforts completed off the Delmarva
Peninsula/Atlantic by Duane et al. (1972), Figueiredo et al. (1981), and McBride and Moslow
(1991) among others. The objectives of this task are 1) to better understand shoal features, their
genesis, evolution and maintenance, and 2) to support development of dredging guidelines.
Regarding the guidelines, the focus will be to identify possible minimums that should not be
crossed (e.g. shoal height, width, length, volume, etc.) and to determine if the target shoals are
special or unique in some way. Selected shoal parameters are shoal Height (H), shoal Length
(L), shoal Width (W), shoal Base Depth (BD), shoal Crest Depth (CD), shoal Orientation
(Azimuth), shoal Volume (V), and shoal Distance from Shore (DS). Figures 5.21 and 5.22
provide definitions for most of the above parameters. The parameters and their ratios were
plotted against each other in several ways. A summary of the findings is provided here.

Water Surface .

Crest Depth

Base Depth

Figure 5.21 Definitions of Shoal Parameters

Shoals were identified in this study for the area offshore Delaware, Maryland and Virginia
between Delaware Bay and Chesapeake Bay. Figure 5.23 shows the study area. Offshore shoals
between 10 m and 40 m depth contour were considered. Bathymetry of the area was obtained
from National Ocean Service (NOS) hydrographic survey data (see Section 2.2.1). The data was
processed using ESRI® ArcMap™ 9.3.1 and the bathymetry was interpolated as a grid with 50
m resolution. Using classification techniques, the grid was displayed in the GIS such that shoals
could be identified from visual interpretation. Shoal locations were also identified using cross-
shelf bathymetry profiles taken through the interpolated grid and from hydrographic charts.
Shoal location and parameter data were stored as shapefiles, while bathymetric profiles were
stored as feature classes in a geodatabase. Shoal parameters were delineated in the GIS using
heads-up digitizing. Heads-up digitizing is the manual delineation of features observed on a
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computer screen, often from digital imagery or maps. This approach is commonly used for
delineation of features from digital imagery or other base data for GIS analysis (Moore et al.,
2003; Zuzek et al., 2003; Wozencraft et al., 2001). Parameters such as Crest Depth and Base
Depth were interpreted from the bathymetric profiles taken through the interpolated grid and also
from bathymetric contours generated from the grid.

Figure 5.24 shows a typical cross-shelf profile. The above approach allowed for shoals with
height of greater than 6 m to be identified. Exclusion of shoals below 6 m shoal height was
justified given the relatively low potential for such shoals to be considered economically viable
targets for beach fill/dredging operations. Shoals with length shorter than 2 km were also not
considered. In total 130 profiles were investigated and 181 offshore shoals identified.

The identified shoals are shown in Figure 5.23. Of these, 7 are in or offshore Delaware, 50 in or
offshore Maryland and 124 in or offshore Virginia waters. Note that two shoals (one
immediately south of Cape Henlopen on the northern boundary of the study area and another
offshore the central Virginia barrier islands) have a distinct NW-SE orientation, suggesting these
features may be tidally-influenced and/or geologically controlled. These shoals, however, were
not excluded from the analysis as they represent a very small population in the overall dataset.

Legend

2m Contours
——— Estimated Shoal Width
——— Estimated Shoal Length

Figure 5.22 Definition of Shoal Length, Width and Azimuth
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Figure 5.23 Study area, cross-shelf profiles and identified shoals

49



Baird & Associates

Elevation (m)
)
o
I
|

Isle
of
White
-30 - ]
—— Cross-shelf profile
-40 | | | |
0 10000 20000 30000 40000 50000

Distance from Shore (m)

Figure 5.24 Shoal identification and definition of Base Depth (orange arrows) on a cross-shelf profile

A plot of the number of shoals in different depth ranges (Figure 5.25) shows that most of the
shoals are located in water depths of 20 to 35 m.

The Width vs. Length (W-L) plot of Figure 5.26 shows that shoal length varies between 2 km
(i.e. the minimum shoal Length considered) and 16 km, while shoal width ranges from 500 m to
5 km. The data in this figure is color coded by Base Depth class. Shoals in deeper depth class
show a slightly higher Width to Length ratio (i.e. shoals in shallower depths seem to be more
elongated than those in deeper depths; see Figure 5.49 and the corresponding discussion). Shoal
width generally increases with the shoal length for all depth classes.
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The Crest Depth vs. Base Depth (CD-BD) plot (Figure 5.27) suggests the existence of upper and
lower Crest Depth limits for each Base Depth as shown by the two dash lines. The upper limit is
simply because only shoals with height greater than 6 m are included in the present dataset. The
lower limit may suggest a minimum Crest Depth for a given Base Depth. The CD-BD plot also
indicates that minimum Crest Depth is about 5 m and occurs in 10 m to 20 m Base Depth range.
It is expected that shoal height is limited by the local wave and current intensity. The minimum
Crest Depth is in the same order as the 1-year return period storm wave height which is about 5
m. Note that the transport potential of waves and currents increases with decreasing water depth.
It appears that at this site, waves and currents would wash away any accumulation of sand above
5 m depth.

It should be noted that a smaller minimum Crest Depth may be possible in shoals attached to
spit complex and shoreface-attached sand ridges, but such shoals/shoreface-attached ridges
were not generally considered in the present database.

A plot of Crest Depth vs. Distance from Shore (DS) (Figure 5.28) indicates that the minimum
Crest Depth increases linearly with increasing distance from shore. From the above two figures
it may be concluded that shoal growth has ceased once the shoal Base Depth became larger than
25 m under rising water level. In other words, shoals with Base Depth greater than 25 m do not
grow in height anymore.
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Figure 5.28 Shoal Crest Depth vs. Distance from Shore

The Height vs. Base Depth (H-BD) plot presented in Figure 5.29 indicates that shoal Height
could grow to as much as 75% of the Base Depth (red dash line in the figure). Highest shoals
occur in 25 m to 30 m Base Depth range. The highest shoal in the present database is 19 m high
located in 28 m depth. However, not all the shoals in this depth range are high. Fenwick shoal is
in 19 m Base Depth, Isle of Wight (IOW) and Weaver shoals are in 21 m Base Depth. While
Fenwick and IOW have H/BD values close to 0.75, Weaver and many other shoals have much
smaller H/BD values. This is likely not a result of lack of sand availability as there is enough
sand around Weaver. It may be concluded that shoal growth is not entirely a function of today’s
waves and currents influence. Other factors such as initial geometry, distance from updrift or
surrounding shoals, etc. may be involved.

It is noted that on a transgressive shore, a deeper Base Depth is expected to represent an older
shoreline position. Assuming that all shoals were initiated at the shoreline at some point in time
(e.g. Hayes and Nairn, 2004), then the greater the Base Depth, the older is a shoal. Therefore,
the zone between 0 m and 25 m to 30 m Base Depth may be considered as the Shoal Height
Growth Zone under a rising sea level. The 30 m Base Depth may be considered as the limit of
wave influence beyond which the balance changes in favor of current dominated processes (in
the wave-current coexisting system of the study area). Beyond 30 m depth, shoal height shows a
decreasing trend indicative of existence of a possible Shoal Height Decrease Zone. The rate of
height decrease with increasing depth, however, is much less than the rate of height increase in
the growth zone (Figure 5.29).
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The plot of H/BD vs. Base Depth (Figure 5.30) indicates that the maximum relative shoal height
(H/BD) increases with Base Depth until 20 m depth and decreases for depths deeper than 20 m.
If the relative shoal height (H/BD) is considered as the shoal growth index, then Figure 5.30
indicates that Shoal Height Growth Zone ends at about 20 m depth, i.e. in a shallower depth than
indicated by Figure 5.29. This is because beyond the 20 m depth, the process of shoal crest
building by waves is not strong enough to build the shoal sufficiently high to reach the minimum
Crest Depth of 5 m. In other words the 20 m to 30 m Base Depth range may be considered as a
transition zone over which the predominant forcing changes from wave-dominated at 20 m depth
to current-dominated at 30 m depth. Accordingly, IOW, Weaver and Fenwick are located just
before the start of the transition zone.

The plot of Height vs. Distance from Shore (DS) presented in Figure 5.31 shows similar trends.
The DS parameter represents the age or maturity of a shoal on the transgressive Mid-Atlantic
shore. Shoal Height increases with distance from the shore. Note that the horizontal axis is in
logarithmic scale and therefore the relation is not linear. Maximum shoal Height is observed at
about 20 km from the shore, beyond which the shoal height starts to decrease. In either of the
above figures, Fenwick, IOW and Weaver are located in the Growth Zone. They thus have the
potential to rebuild themselves to their existing height once being dredged. On the other hand,
shoals located in waters deeper than 30 m are not expected to re-grow in height if dredged.
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Figure 5.29 Shoal Height vs. Base Depth (the dataset mainly includes shoals with height greater than 6 m)
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Figure 5.30 H/BD vs. Base Depth (mainly for shoals with height greater than 6 m)
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Figure 5.32 Relative shoal height (H/BD) vs. Distance from Shore

A plot of the relative shoal height (H/BD) vs. Distance from Shore (Figure 5.32) shows that
maximum H/BD occurs at distance of about 11 km from the shore and decreases linearly with
DS afterwards.

Shoal Volume was calculated in two ways as 1) the volume above the Base Depth plane in
ArcMap, and 2) L x H x W/ 3. Comparison between the results indicated that shoal Volume
above the Base Depth may be calculated using the following formulation:

Shoal Volume =0.53 x L x H x W

Weaver has a volume of about 100 million m® above its Base Depth while IOW and Fenwick
have volumes close to 140 million m’.

A plot of shoal Base Area vs. Base depth (Figure 5.33) indicates that maximum shoal footprint
Area increases with increasing BD until about 35 m depth. Base Area was defined as the area of
the “bounding rectangle” in ArcMap for calculation of volume. It is roughly equivalent to the
product of Length times Width. Fenwick, IOW and Weaver, all have large Areas close to the
maximum observed in their depth range.
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Figure 5.33 Shoal Base Area vs. Base Depth

A plot of shoal Volume vs. Base Depth (Figure 5.34) indicates that maximum shoal Volume
increases with increasing BD until about 35 m depth. Fenwick, IOW and Weaver, all have large
volumes close to the maximum observed in their depth range.

The Height vs. Length (H-L) plot of Figure 5.35 shows that longer shoals tend to be higher in an
asymptotic manner. However, not all the shoals with the same length grow as high. The H/L
ratio (shoal steepness along its longer axis) does not exceed 1/200 (dash-dot line in the figure).
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Similarly, the Height vs. Width (H-W) plot (Figure 5.36) shows that wider shoals tend to be
higher in an asymptotic manner. However, not all the shoals with the same width grow as high.
Higher shoals have widths in 3 to 6 km range, but the highest shoal is not the widest. This may
be a result of wave focusing effects. Shoals are expected to become narrower and grow in height
under focusing waves. Shoals in deeper water have a wide range of height and width. In
shallower depths, shoals are narrower and their height is limited by the depth. The H/W ratio
(shoal steepness along its shorter axis) does not exceed 1/100 (dash-dot line in the figure).
Maximum shoal Width increases with shoal Base Depth in general (BD-W plot, Figure 5.37).
Similarly, maximum shoal Length increases with increasing Base Depth (BD-L plot, Figure
5.38).

The above observations may be summarized as follows. Maximum shoal Width, Length and
Base Area all increase to approximately 35 m depth and decrease thereafter. Maximum shoal
Height increases to approximately 30 m depth, but the rate of increase in the 20 m to 30 m depth
range is less than the same rate in the 10 m to 20 m depth range. As a result, maximum shoal
volume increases to approximately 35 m depth and decreases thereafter. However, the rate of
increase in shoal Volume in the 20 m to 35 m depth range is less than the same rate in the 10 m
to 20 m depth range (Figure 5.34).
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Figure 5.36 Shoal Height vs. Width (mainly for shoals with height greater than 6 m)
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The plot of Azimuth (orientation of shoal longer axis measured clockwise from north) vs. H
presented in Figure 5.39 indicates that shoal Azimuth ranges between 20° to 60° in the study
area. Higher shoals tend to be more focused around the NE (45°) direction. This suggests that
shoals with orientation close to NE grow larger. Figure 5.40 provides a plot of shoal Azimuth
vs. relative shoal height (H/BD) and indicates that almost all shoals with H/BD larger than 0.5
have more or less an NE orientation and are located in less than 30 m of water. Scatter in
azimuth is high when H/BD < 0.5. Therefore, shoals with H/BD > 0.5 have the potential to
rebuild themselves (likely to their existing height) once being dredged.

As discussed earlier, the minimum Crest Depth in the present study area is 5 m (Figure 5.27).
Therefore, a relative shoal height of 0.75 can only be achieved in a Base Depth of 20 m or
deeper. Similarly, a relative shoal height of 0.5 corresponds to a fully grown shoal in 10 m Base
Depth. Shoals in waters shallower than 20 m may still grow under rising sea levels. Considering
that the relative shoal height of the shoals with Base Depth deeper than 20 m decreases with
increasing the Base Depth (Figure 5.30), maximum shoal Height growth in the present study area
is expected to happen landward of the 20 m depth contour.
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Figure 5.39 Shoal Azimuth vs. Height

It is noted that although most shoals in the 10 m to 25 m BD range have an Azimuth more or less
close to NE direction, they did not all grow towards the limiting H/BD value at the
corresponding depth. Although some of these shoals may still grow/be growing (particularly
under rising sea levels), it is likely that shoal growth is not entirely a function of wave influence
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and other factors such as initial shoal geometry/geology, sand availability, proximity to other
shoals, etc. are also important. At a certain depth, shoals that have reached their corresponding
maximum relative shoal height are more likely to re-grow once they are dredged.
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Figure 5.40 Shoal Azimuth vs. Relative Shoal Height (H/BD)

A plot of shoal Azimuth vs. shoal Base Depth (Figure 5.41) shows that almost all shoals with
Base Depth less than 25 m have an Azimuth of 30° to 60° indicating the importance of wave
action (which is dominated by nor'easters) in shaping the geometry of the shoals over the Shoal
Height Growth Zone. There is a group of shoals in 25 m to 35 m Based depth range that feature
a more northerly orientation (10° to 40°) relative to the shoals in other depth ranges. These
shoals mostly have H/BD values of less than 0.5 (Figure 5.40), i.e. they did not grow fully in
height. Figure 5.42 shows the spatial distribution of shoals color coded based on the Azimuth.
Shoals with Azimuth less than 30° (pink circles) are more or less located along the 30 m depth
contour. Considering that on a transgressive shore, a deeper Base Depth is expected to represent
an older shoreline position, it is possible that this group of shoals belong to a previous historic
time with a more northerly wave climate. Accordingly, it is possible that the reduction in wave
influence observed over the transition zone (i.e. over the 20 m to 30 m depth range) is partly a
result of northerly orientation of the shoals in the 25 m to 35 m depth range. Beyond 35 m depth,
shoal Azimuth is again in the 30° to 60° range.
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Figure 5.42 Spatial distribution of shoal Azimuth in the study area
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A plot of shoal Azimuth vs. Crest Depth (Figure 5.43) shows an overall decreasing trend in shoal
Azimuth with increasing Crest Depth. Shoals with smaller Crest Depth have an Azimuth closer
to NE direction, while shoals with larger Crest Depth fall more in the 10° to 40° azimuth range.
This is because of the fact that shoals with smaller Crest Depth are more influenced by waves
and their corresponding focusing process. Such shoals occur mostly in 10 m to 25 m Base Depth
range. As mentioned earlier, it is possible that shoals in 25 m to 35 m depth range belong to an
earlier historic wave climate with more northerly wave components.
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Figure 5.43 Shoal Azimuth vs. Crest Depth

A plot of shoal Azimuth vs. Length is presented in Figure 5.44 and indicates that longer shoals
have more or less an NE orientation, emphasizing the importance of wave action on shoal
elongation (Length growth).
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Figure 5.44 Shoal Azimuth vs. Length

One of the objectives of the present analysis was to look for possible universal criteria for
protecting the morphologic integrity of shoal features. Such criteria, if they exist, have to be in
the form of dimensionless characteristics such as ratios of Crest Depth to shoal Height, Length to
Width etc. An analysis using dimensionless variables H/L, H/W, H/BD and W/L is provided in
the following.

A plot of H/L vs. BD is provided in Figure 5.45. H/L ranges from 1/1000 to 5/1000 (1/200).
The range is narrower in shallower water (< 20 m) and is between 1/1000 to 2/1000, obviously
because shoal Height is limited by water depth. For IOW, H/L=2/1000.

Figure 5.46 provides a plot of H/'W vs. BD. H/W ranges from 1/500 to 1/100. Isle of Wight has
an H/W value of about 1/200.

A plot of W/L vs. H/BD is provided in Figure 5.47. W/L ranges between 0.2 and 0.8, but is
mostly in the 0.2 to 0.6 range (i.e. shoal Length is generally 1.5 to 5 times of the shoal Width).
The relative shoal height (H/BD) ranges from 0.2 to 0.75. Shoals with higher H/BD values
(H/BD > 0.5) have W/L values smaller than 0.4 and are therefore more elongated. IOW and
Fenwick have H/BD values of 0.71 and 0.74, respectively, (i.e. they have grown nearly to the
maximum relative shoal height). For Weaver, H/BD value is 0.62. They have W/L ratios just
under 0.4 (i.e. shoal Length is roughly 2.5 times the Width).

65



Baird & Associates

[ [
I I
I I
I I
I I
I I
\\\\\ L____1 1 o
I I I
I I I
I I I 5]
I I I
I I I
I I I I L)
\\\\\ e e B--@8 - -
” ” ” ” mae
I I I | /8 @m e
| N "} = mae
I [N I |
el [N I b
\\\\\ r=———="7-x~ "7~~~ 7@ --q- - @-0-_B-- -~
| | \ | |
| | //, |
I I I a
| | / | L]
I I N Il
L B e Eh I LR
\
| | | v |
I I I \@ |
I I I N
I I I N
| | | A} | SE-I-1-]
\\\\\ T T S o
| | | N
I I I I
I I I I [=5]
” ” ” ” =
I I I I LA
\\\\\ e e S S g™
I I I I
I I I I s °
I I I I a
I I I I
| | | ” .H
\\\\\ s e i Bt Bl
< I
o |
5 5 B I
N
2 3 !
E < s = |
5 e [} |
\\\\\ O w =T O | ______ o ______
B 4 e = ”
I
T T T I
I I I I
I I I I
| | | | .
~ © 0 < — o
o o o o o
= = S = =
[S) [S) S S S

0.008

-
-

I

20 25 30 35 40 45
Shoal Base Depth (m)

15

10

Figure 5.45 H/L vs. Base Depth

0.014

T T T
| | |
| | |
| | |
| | =] |
| | = s
| | |
| | [~ ] =] |
| | m |
| | s om
| | a2 |
| | m |
| | |
| | [=[=]

B |
| | o men
” ” m o DD Bm 4
= | =] (= o EmE m g

=]
I (-] =] =] =D} =] |
! ! 5] m = 5] !
| | =] =] =
| | =] 2 § @Emo |
| | 0 B8 EE 0 (=
| | 2 a |
| | ",
| | me =] =]~ -] |

\\\\\\ -—————  — — — — g - - - — —— — 4 - - — =
| | |
| | =] 2 @ =] =]

-] ] !
| | oo Ee@E B |
| | 5B |
| | mn 88 @ am |
| | =] f‘l =] |
| | m I
| | |

=]y -] omm
| | =] g =] |
| | ol =] |
| | =] 0\ =] |
| | a |
| | [= =] =] |

\\\\\\\\\\\\\\\\\\\\\ B----@ - ——-@87-————
| h s B h
! ! m e !
| | L] |
| | e 2
| | |
| | e o

=] =]
| | |
| | |
| | |
|
0 |
< |
2 |
X
[ w I
P S S (S
[} 2
g 2 8§ = !
= 5] ) |
6 &« = 9 |
=} < (6] ] |
|
I I |
. . T T T .
N - [ee} © < N
= o =} o o =}
S o = S = =
[S) [} [S) [S) [}
M/ H

20 25 30 35 40 45
Shoal Base Depth (m)

15

10
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Figure 5.48 presents a plot of H/BD vs. shoal Length. This plot suggests that there is an upper
limit for H/BD value at each shoal Length. The maximum H/BD value of 0.75 occurs at a shoal
Length of about 10 km. Maximum value of H/BD at each shoal Length becomes smaller for
both shorter and longer length values, although sample population for longer shoals is small.
This suggests that longer shoals have the potential to grow higher, indicating a wave-dominated

shoal maintenance mechanism.
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Figure 5.48 H/BD vs. Length

The plot of W/L vs. BD presented in Figure 5.49 indicates that W/L is generally smaller in
shallower depths, i.e. shoals with shallower Base Depth tend to be more elongated than those in
deeper water. However, note that the data is largely scattered.

Figure 5.50 provides a plot of W/L vs. shoal Height. No clear trend is observed. Higher shoals
(> 14 m) have W/L between 2 to 4. W/L for Fenwick, Weaver and IOW is between 2.5 and 3.
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Summary:

More than 180 offshore shoals were identified and analyzed in the study area. The dataset
contains a wide range of shoals resulting in large scatter when shoal parameters are plotted
against each other. A universal relationship was not observed between those parameters.
Nevertheless, several important trends provided insight into shoal behavior and morphologic
evolution. The data suggests that wave influence on the shoals is limited to shoals with Base
Depth of less than 30 m. Waves were found to be the primary factor in shoal height growth and
maintenance (as opposed to currents that have a greater influence on shoal migration as
discussed later in Section 6.7 of this report).

The Shoal Height Growth Zone was identified to be between 10 m and 30 m depth. This zone
was further divided into two areas. In the 10 m to 20 m depth range, shoals can potentially grow
in height up to the minimum Crest Depth of 5 m. In the 20 m to 30 m depth range, shoals may
still grow but to a lesser extent. The 20 m to 30 m Base Depth range is a transition zone over
which the predominant forcing changes from wave-dominated at 20 m depth to current-
dominated at 30 m depth.

The Relative Shoal Height defined as the ratio of shoal Height to Base Depth (H/BD) was found
to be an appropriate indicator of the shoal growth. (H/BD),x varies from 0.5 at 10 m depth to
0.75 at 20 m depth. A shoal that has reached the maximum relative shoal height of its Base
Depth may be considered to be a fully grown shoal at that depth, but may still grow under rising
sea levels. Such a shoal is more likely to re-grow and rebuild itself to the same height upon
being dredged.

Maximum shoal Width, Length and Base Area all increase to approximately 35 m depth and
decrease thereafter. Maximum shoal Height increases to approximately 30 m depth, but the rate
of increase in the 20 m to 30 m depth range (i.e. in the transition zone) is less than the same rate
in the 10 m to 20 m depth range. As a result, maximum shoal volume increases to approximately
35 m depth and decreases thereafter. However, the rate of increase in shoal Volume in the 20 m
to 35 m depth range is less than the same rate in the 10 m to 20 m depth range.

Larger shoals are located in 15 to 25 m depth range and are oriented more or less in NE
direction. They have length to width ratios of greater than 2. However, not all the shoals in the
above depth range have grown to the same extent. Although some of these shoals may still
grow/be growing (particularly under rising sea levels), it is likely that shoal growth is not entirely
a function of wave influence and other factors such as initial shoal geometry/geology, sand
availability, proximity to other shoals, etc. are also important. At a certain depth, shoals that
have reached their corresponding maximum relative shoal height are more likely to re-grow once
they are dredged.

Shoals located in waters deeper than 30 m show a decrease in height with increasing depth
representing a possible Shoal Height Decrease Zone beyond 30 m depth. These shoals are not
expected to grow, once being dredged. On a transgressive shoreline and considering that shoals
are created at the shore, the age of a shoal is directly related to distance from shore. There is a
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group of shoals in 25 m to 35 m Base Depth range featuring a more northerly orientation (10° to
40°) relative to the shoals in other depth ranges. It is possible that this group of shoals belong to
a previous historic time with a more northerly wave climate.
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6.0 NUMERICAL MODELING

Development of the morphology model is discussed in this section. Our modeling approach was
finalized mainly based on the findings from field measurements regarding driving forces as
discussed in Section 6.1. The morphology model requires several modules for calculation of
waves, currents, sediment transport rates and corresponding changes in bottom elevations. A
model selection discussion is provided in section 6.2. Section 6.3 presents the selected
calculation domain, while sample calculation results are provided in Section 6.4. The model was
run for the conditions of field measurements and the results are evaluated against the measured
data in section 6.5. A discussion of selection of input driving forces for long-term morphology
simulations is provided in section 6.6. In Section 6.7, model runs are completed for existing
conditions and long-term evolution of the Isle of Wight shoal is predicted. Model predictions are
compared with historical evolution of this shoal since 1929.

6.1 Modeling Approach

The modeling approach was finalized based on the findings from field measurements regarding
driving forces. Note that in sections 6.1 through 6.5 the 3-month field measurement data is used
for model selection, testing, and model validation. Development of model input driving forces
for simulation of long-term morphologic evolution of shoals is discussed in Section 6.6.

An analysis of the field data was completed in Section 5 to identify the processes and driving
forces involved in morphological evolution of the shoals. The results indicated that there are
three driving forces that could affect movement of the sediment in the study area, i.e. waves,
tides and subtidal currents. In order to examine the relative contribution of each component, the
complete recorded near-bottom velocity data was given as input to a sediment transport model
and the corresponding transport rates were calculated.

Figure 6.1 shows the resulting cumulative sand transport volumes from March 1, 2007 for about
3 months (calculated using Van Rijn sediment transport model). In this figure, transport rates are
presented as two east-west and north-south components that are positive eastward and
northward, respectively. They have been calculated for three different combinations of driving
forces, namely; 1) waves only, 2) waves and tides, and 3) waves, tides and subtidal currents
(called as waves and currents in the figure). Two important observations are made from this
figure. The first observation is that sediment transport mainly occurs under certain storm events
such as the event around Day 17 (March 17) or the one around Day 66 (May 6). These are both
nor’easter events. The second observation is related to contribution from each forcing
mechanism. It is observed that while inclusion of tides (more precisely tidal currents) has only a
minor effect on the transport rates, inclusion of subtidal currents almost doubles the calculated
transport volumes.

The above analysis indicates that synoptic scale pressure gradients associated with nor’easters
result in large scale circulations that play an important role in movement of sediment in the study
area. These sediment transport calculations for representative conditions indicate that the
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contribution of subtidal currents is as important as that from nor’easter waves themselves.
Calculation of large scale circulations across Northwestern Atlantic Ocean requires complicated
coupled meteorological and hydrodynamic modeling and is beyond the scope of the present
study. The other alternative is to use the measured wave and flow conditions as the input driving
force to the model. Using the measured data has the advantage that it includes both locally
generated and large scale wave and current events.

Our approach is, therefore, to use the measured wave and flow conditions as the input driving
forces to the shoal morphology evolution model. Input conditions would include waves and tidal
and subtidal currents at the offshore boundary of the calculations domain. Waves will be
transformed through the calculation domain using a spectral wave transformation model. A
hydrodynamic model will be used to calculate currents inside the calculation domain.
Subsequently, sediment transport rates and corresponding shoal morphology change will be
calculated.

10 T I T I T I T I T I T I T I T I T
Isle of Wight - SE Point - Total Load

Cumulative transport (m*/m)

L — Eastward (waves and currents) .
-30 - — Northward (waves and currents)
— Eastward (waves only)
Northward (waves only)
Eastward (waves and tides)
— Northward (waves and tides) T

_40 1 | 1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 | I
0 10 20 30 40 50 60 70 80 90

Time (days from March 1, 2007)

Figure 6.1 Cumulative sediment transport volumes calculated for the period of field measurements using Van
Rijn sediment transport model.
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6.2 Model Selection

As discussed in section 5.5, waves are believed to have a primary role in the growth and
maintenance of shoal features. Therefore, accurate simulation of waves over the calculation
domain is of critical importance. An analysis of calculated wave field over the shoals by
standard spectral wave models and its sensitivity to wave direction and grid orientation was
completed and the results are presented in this section. It is noted that the accepted rule is that
standard (half-plane) spectral wave models (such as the Baird in-house HYDROSED, STWAVE or
MIKE21 NSW) can handle wave directions of up to 45 deg relative to the grid orientation (in the
direction of wave propagation). It is, therefore, expected that a north-south (N-S) grid can
handle NE waves (nor’easters) as well as other more frequent waves from E and SE directions
for the present study area.

For this sensitivity analysis, transformation of 45 deg (NE) incident waves (H=4 m and T=10 s)
over the shoals was examined using two different grids. One is a large N-S grid and the other a
45° rotated grid. The N-S grid was extended beyond the shoals area to both north and south to
completely avoid the effect of lateral boundaries. The rotated grid is aligned with the incident
wave direction and expected to provide the base results for comparison. Figure 6.2 shows the
two calculation domains (note that north is to the left of this figure and east is to the top). The
Isle of Wight (IOW) Shoal is the most right of the three shoals in the middle of the rotated grid.

Figure 6.2 N-S and rotated calculation grids
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Calculation results by HYDROSED are shown in Figure 6.3. Red vectors correspond to the large
N-S grid. It is observed that with the N-S grid, wave refraction occurs mostly on the SE flank of
the IOW shoal, while with the rotated grid, refraction occurs equally on both SE and NW flanks.
The difference in wave direction around IOW Shoal is up to 15 degrees. Discrepancy in
calculated wave directions is more dramatic on the curved slope south side of the Fenwick Shoal
(first shoal from the left). Similar results were obtained with STWAVE and MIKE21 NSW half-
plane models.

Generally, these shoals feature a number of slopes in various directions and provide severe
conditions for refraction and wave focusing calculations by conventional half-plane spectral
wave transformation models. This results in inaccuracies in calculated wave directions even if
the models are applied within the recommended +45° limitation.

Figure 6.3 Calculated wave directions using half-plane spectral models for the two different grids. Red
vectors correspond to the large N-S grid.

It is not practical to rotate the grid for every wave direction. Therefore, the option to improve the
accuracy of wave direction calculations over the shoal is to use a full-plane wave model.
Calculated wave directions using SWAN and MIKE21 SW full-plane wave models are shown in
Figures 6.4 and 6.5, respectively. Figure 6.4 shows that SWAN results with the N-S grid are in
close agreement with HYDROSED results using rotated grid. Similarly, Figure 10 shows that
calculated wave directions by MIKE21 SW full-plane model are insensitive to the choice of grid
(N-S vs. rotated) and in either case are in close agreement with HYDROSED results using rotated
grid.
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Figure 6.4 HYDROSED wave directions (white) using the rotated grid vs. SWAN wave directions (pink) using
the N-S grid

Figure 6.5 HYDROSED wave directions (white) using the rotated grid vs. MIKE21 SW wave directions (black)
using the N-S grid and MIKE21 SW wave directions (red) using the rotated grid
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It was, therefore, decided to use the SWAN model for the current morphology simulation effort.
The advantage of SWAN was that the source code is publicly available and could be integrated
into the morphology model.

A simple hydrodynamic module was developed and integrated into the morphology model to
calculate currents within the calculation domain. The main concern was regarding the significant
calculation time generally required by hydrodynamic models to converge. For long-term
morphology change simulations, this could lead to impractical simulation times. Therefore, a
site-specific finite difference depth-averaged hydrodynamic model was developed to minimize
the required calculation time. The hydrodynamic model is derived by input depth-averaged
current conditions at the model boundary as well as radiation stresses predicted with the spectral
wave transformation model to calculate tidal, subtidal, and wave generated currents within the
calculation domain. The model is based on depth-averaged momentum and continuity equations
proposed by Nishimura (1988). Wind forcing is not applied within the calculation domain of the
hydrodynamic model, but the effect of winds is included on the input currents at the domain
boundary.

Two sediment transport formulations were considered for this study: 1) the sediment transport
formulation of Van Rijn for waves and depth averaged currents (Van Rijn 1993, 2000), and 2)
the sheet flow transport formulation of Dibajnia and Watanabe (1992) as extended by Dibajnia et
al (2001) and referred to as D&W formula hereafter. It is expected that sheet flow transport is
predominant over the shoals during extreme nor’easter events. The two models provided very
similar results. The D&W formula was used as it required less calculation time.

6.3 Model Domain

A large calculation domain was selected containing Fenwick, Weaver and Isle of Wight shoals to
incorporate possible effects of neighboring shoals and bathymetry on the wave and current fields
around Isle of Wight. The calculation domain was 16.5 km in east-west direction and 26.64 km
in north-south direction as shown in Figure 6.6. The calculation domain is surrounded by water
(open boundary) without any land boundary. For calculation of currents by the hydrodynamic
model, however, at least one closed boundary is required to avoid model instabilities. Therefore,
the calculation domain was doubled towards the west by repeating the bathymetry as shown in
Figure 6.7.

Different grid sizes were used for different modules of the morphology change model. For the
SWAN wave model, a 60 m x 60 m mesh was used resulting in a 275 x 441 grid. For the
hydrodynamic model, the mesh size was increased to 120 m x 120 m to keep calculation time
within practical limits. For the sediment transport and morphology change model a finer 30 m x
30 m mesh was used to better capture shoal movement which is expected to be in the order of
only a few meters per year.
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Figure 6.6 Calculation domain and bathymetry.
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Figure 6.7 Calculation domain for the hydrodynamic model.
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6.4 Sample Calculations

Two sample calculation results are presented in this section to demonstrate the model
performance. Predicted waves, currents and sediment transport vectors are presented for each
case.

Figure 6.8 shows waves and currents vectors for NE (45°) waves of H=4 m, T=10 s with 0.5 m/s
currents from the north. The conditions correspond to those during a rather strong nor’easter.
Wave focusing over the shoals is notable in Figure 6.8, particularly over Fenwick and Isle of
Wight shoals which have shallower crest depths compared to Weaver. Corresponding wave-
induced radiation stresses force the currents on top of the shoals to run along the shoal axes
(towards southwest). Figure 6.9 shows sediment transport vectors for the above conditions.
Transport of sediment is mainly limited to shallower areas over the shoals. For Isle of Wight and
Weaver, transport direction is towards the southwest under this wave condition. Over the
Fenwick, transport is also towards southwest along the shoal crest, but becomes more southward
over the west tail of the shoal.
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Figure 6.8 Calculated wave height and direction (left) and current velocity vectors over bathymetry (right)
for a nor’easter conditions (H=4 m, T=10 s waves from NE with 0.5 m/s currents from the north). Depth
contours are also shown in both figures to identify shoal locations.
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1000 0 1000 m

Figure 6.9 Calculated sediment transport rate vectors (m*/m/s) over bathymetry for the nor’easter conditions.
Depth contours are also shown to identify shoal locations.

Figure 6.10 shows waves and currents vectors for SE (135°) waves of H=4 m, T=10 s with 0.7
m/s currents from the southeast. The conditions correspond to those during a strong
southeasterly event. It is mentioned again that southeasterly events are not as frequent as
nor’easters. Waves follow classical refraction processes without significant wave focusing over
the shoals under these conditions. The input current from southeast is slightly modified over and
around the shoals but maintains it overall direction towards southeast. Figure 6.11 shows
sediment transport vectors for the above conditions. As in the previous case, transport of
sediment is mainly limited to shallower areas over the shoals. For Isle of Wight, Weaver and
Fenwick, transport direction is towards the northwest under this wave condition.
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Figure 6.10 Calculated wave height and direction (left) and current velocity vectors over bathymetry (right)
for a southeasterly event (H=4 m, T=10 s waves from SE with 0.7 m/s currents from the southeast). Depth
contours are also shown in both figures to identify shoal locations.

81



Baird & Associates

a0t

1000 0 1000'm

Figure 6.11 Calculated sediment transport rate vectors (m*/m/s) over bathymetry for the nor’easter
conditions. Depth contours are also shown to identify shoal locations.

6.5 Comparison with Measurements

Waves and depth-averaged currents measured by the deepwater ADCP (at 25 m depth) were
used as input to the above model. Calculated waves and currents at the location of SE and NW
ADCPs were compared with measurements. Figures 6.12 and 6.13 show comparisons between
measured and calculated wave height at SE and NW ADCP locations, respectively. Modeled
wave heights are in general slightly (10% to 20%) higher than corresponding measured values.
Bottom friction and its corresponding energy dissipation were discarded in the wave
calculations. It is noted that while bottom friction works to dissipate wave energy over a wide
shallow shelf, winds may continue generating waves thus providing more energy to the wave
field. It is therefore important to consider the effect of bottom friction and wind forcing
simultaneously. Considering the large extent of the present calculation area, however, proper
model calibrations to include the effect of winds and bottom friction require additional field data
and analysis which are beyond the scope of this study. The observed differences are within the
range of natural variability of the wave field at the study site. Therefore, the observed agreement
with measurements is considered to be very good and sufficient for the purpose of long-term
morphological modeling.
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Figure 6.12 Measured vs. model wave height at SE ADCP.
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Figure 6.13 Measured vs. model wave height at NW ADCP.
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Time series comparisons for 2 nor’easter events of March 17 and May 6, 2007, at SE and NW
ADCEP locations are shown in Figures 6.14 to 6.17. Shown in these figures in order from top to
bottom panels are: measured and calculated wave direction, measured and calculated wave
height, measured and calculated depth-averaged current velocity as well as input offshore current
velocity, wind speed vectors as measured by NDBC Buoy 44009, measured and calculated
depth-averaged current vectors, and measured and offshore input current vectors.

Figure 6.14 shows the comparison at SE ADCP location for the period of March 13 to 19, 2007,
which includes the nor’easter event of March 17. Figure 6.14 indicates that the model does a
great job in simulating wave height and direction during the storm event. Regarding simulation
of the current velocity (third panel), the model performance between March 13 and March 16 is
less than expected. Predicted currents are almost identical to the input deepwater currents and
weaker than the measurements. Measured currents over the above period are believed to be
wind-driven and the observed discrepancy is attributed to the neglect of winds over the
calculation domain. Similarly from March 16 to March 18, i.e. during the storm, the model has
underestimated the current velocity. In fact, Figure 6.14 indicates that the input offshore current
velocity (green line in the third panel) better represents the measured current velocity (orange
line) than the model predictions during the March 17 storm event. Looking at wind speed
vectors (fourth panel) and measured velocity vectors (orange vectors in the fifth panel) it appears
that subtidal currents during a nor’easter were further enhanced by the contemporary local winds.
This resulted in an almost uniform depth-averaged current over the entire study area during the
March 17 storm event. Figure 6.15 shows the comparison at NW ADCP location for the period
of March 13 to 19, 2007. Results are similar to those of Figure 6.14.

Figures 6.16 and 6.17 show time series comparison results during the nor’easter event of May 6,
2007, at SE and NW ADCP locations, respectively. Again good agreement is observed between
measured and predicted wave height and direction. Depth-averaged currents at SE and NW
locations during the storm are better represented by the offshore input depth-averaged current
velocity than by the model predictions. This is attributed to the effect of winds in enhancing the
subtidal currents (note that synoptic scale pressure gradients result in both subtidal sea level rise
and winds in the same direction). The subtidal component has a very long wavelength and its
corresponding current velocity may be considered as uniform over the depth (long wave
assumption). Wind driven currents are created by the wind exerting stress on the sea surface.
This stress causes the surface water to move, and this movement is transmitted through vertical
mixing to the underlying water to a depth that is dependent mainly on the strength and
persistence of the wind. When the wind blows for a sufficiently long time, such as during a
nor’easter, wind-driven currents extend to the sea bottom resulting in a well-mixed current
profile. Under a uniform wind field, this results in a uniform depth-averaged current field.

It is possible that the model performance in simulating currents can be improved with the
inclusion of winds. However, we note from Section 6.1 that sediment transport in the present
study area mainly occurs during extreme events and, therefore, model performance in simulating
extreme events is the most important. The above comparisons suggest that during extreme
events it is sufficient to use the measured depth-averaged current velocity uniformly over the
entire calculation domain. The practice of inclusion of winds in the hydrodynamic model and
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corresponding model calibrations, once completed, would provide similar results and was not
pursued here.
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Figure 6.14 Measured vs. model waves and currents at SE ADCP for March 13 to 19, 2007.
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88



Buoy 44009
Wind Vectors

P

Depth-averaged
Current Vectors

Depth-averaged
Current Vectors

360 - T ‘ ‘ ‘ ‘ ‘ : ‘

300; 777777777 o R R N S N * Measured Wave Direction| |
s | 3 | | | | | * Modelled Wave Direction
5 2401 ‘ : :
5 8 180+
a>.> N 9
= 1204
S |

Current Velocity
(m/s)

Wave Height
(m)
N

Northwest ADCP - Comparison with Model Results

Baird & Associates

o]
o O
L

w
|

A
|

————— Modelled Wave Height ||

Measured Wave Height

© o o o
o N M o ™ O
L | L | L | | L

e e — e — o — Modelled

Measured

Deepwater ADCP

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,

10 m/s
N

i
PPN
v

o

il

i

N
2

)

//// ///W/ gk

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

——— Measured Current
—— Modelled Current

——> Deepwater ADCP Current

f } f }
May-06 May-07 May-08

i
May-09

Figure 6.17 Measured vs. model waves and currents at NW ADCP for May 6 to 11, 2007.

89



Baird & Associates

6.6  Selection of Input Driving Forces for Long-Term Morphologic Modeling

The numerical model offshore boundary is at the location of the deepwater ADCP. However,
comparison between ADCP wave data and the data from NDBC Buoy 44009 (Section 5.1)
showed that the 3-month measured wave climate of this study does not include extreme
nor’easter events as 2007 was a year of low nor’easter activity. Moreover, the 3-month data does
not include a complete annual cycle of events and was found to be biased towards southeasterly
events. In other words, it includes an almost equal number of southeasterly and nor’easter
events, while the long-term wave statistics from the buoys in the area show that nor’easters are
the predominant extreme storms. Therefore, the ADCP data are not appropriate to be used as
input to the long-term morphology model.

It was decided to use a combination of NDBC Buoy waves and MARCOOS currents data
(Section 2.2.4) to create the model input boundary conditions. A complete full-year time series
was desired to avoid, to the extent possible, statistical bias of the events. The one year period
from August 1, 2007 to July 31, 2008 was selected. This period was selected because 1) there
are fewer gaps in MARCOOS surface velocity data compared to earlier periods and 2) wave
activity at the site is minimal during July and August and, therefore, the above period coincides
with the local "wave year" rather than the calendar year.

The closest wave buoy to the present study site is NOAA Buoy 44009. This buoy, however,
does not record wave direction. Figure 6.18 shows the relationship between measured wave
height at the deepwater ADCP and that measured by 44009 during March to May 2007 ADCP
deployment period. A relation of Hapcp = 0.835 X Hasg00 is observed. Thus, wave height
measured by Buoy 44009 was multiplied by 0.835 and used at the model boundary. A one to
one relationship was assumed for the wave period. Record gaps in 44009 data were filled using
a relationship with measured wave heights at MDO002.

Regarding wave direction, a close review of wave and wind time series recorded by Buoy 44009
showed a strong correlation between winds and waves during storm events. Figure 6.19 shows
an example during the nor'easter event of May 2008. In this figure, wave height, wind speed and
wind direction measured by 44009 are shown. The wind speed has been scaled (divided by 4) to
make the comparison more convenient. The strong relation between winds and waves indicates
a locally generated wave field and suggests that wave directions should be very close to the
recorded wind directions. The next closest wave buoy of interest is NDBC Buoy 44014 which is
a directional wave buoy deployed at 48 m depth approximately 200 km south of the present
study site. For comparison, recorded wave directions at this buoy are also shown in Figure 6.19
(green dots). In the absence of direct measurements of wave direction, it is reasonable to assume
that wind directions measured by 44009 also represent the wave direction during storm events.
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As for the measured coastal currents in the calculation area, Figure 2.10 shows the location of
MARCOOS data points relative to the Isle of Wight and other shoals in the study area.
MARCOOS data Point 227 is a few kilometers east of Isle of Wight where the depth is
approximately 20 m. Inter-comparison of MARCOOS velocity data showed little difference
between recorded data at the four points. Figure 6.20 provides comparison between Point 227
and Point 275 data as an example. Recorded current velocity at the two locations is very similar.
Therefore, the data from Point 227 which is the closest point to Isle of Wight was used for the
present study.

100
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-100 -80 -60 -40 i
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Figure 6.20 Comparison between northward components of MARCOOS surface current velocity data at
points 227 and 275.

MARCOOS provides surface velocity data. On the other hand, most sediment transport
relationships for tidal and subtidal environments use depth-averaged currents as the input
velocity. This is because the bottom shear stress is normally formulated in terms of depth-
averaged currents in these environments. Therefore, MARCOOS surface currents needed to be
converted to depth-averaged currents before being used in sediment transport calculations. The
relationship between surface and depth-averaged currents at the site was thus investigated using
ADCP data. Figures 6.21 and 6.22 provide quantile-quantile (QQ) statistical (top figures) as
well as the actual current velocity (bottom figures) comparison plots of surface vs. depth-
averaged currents at SE and NW ADCP locations, respectively. The statistical parameters (Bias,
RMSE, SI, SIB and r) are also given in the figures (see Appendix C for definitions). The
quantile-quantile plots compare the exceedance levels for depth-averaged and surface current
velocity. In other words, they are plots of the corresponding velocity in both data sets at
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equivalent values of cumulative probability. The analysis shows that surface currents are
statistically representative of the depth-averaged currents. Correlation factors (=0.80 and 0.71)
are reasonably high and it may be concluded from both figures that depth-averaged currents are
almost the same as surface currents. This is again an indication of a well developed system of
subtidal and wind-driven currents. MARCOOS surface currents measured at Point 227 were
therefore used uniformly over the entire calculation domain.
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Figure 6.21 QQ and velocity plots of surface vs. depth-averaged current at SE ADCP.
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Figure 6.22 QQ and velocity plots of surface vs. depth-averaged current at NW ADCP.

Time series plots of the one-year wave-current data thus developed are presented in Appendix B.
The developed one-year input wave and current file contains 8764 hourly conditions.
Calculation of morphology change for a single wave condition required a minimum of 5 minutes
on an Intel Quad Core (Q9550 @ 2.83 GHz) machine. Including all the above hourly conditions
in the simulation would thus require a very long calculation time that is impractical. It was
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necessary to set a threshold bed shear stress and consider only those wave conditions that exceed
the set threshold value. Sensitivity of calculated transport rates to various threshold bed shear
stresses (Shields stress) was examined. Wave-induced Shields stress for cutoff purposes was
calculated in 7 m depth, which is the depth at the top of the Isle of Wight shoal. Transport rate
calculations were conducted for a water depth of 10 m. Cumulative transport volumes are shown
in Figure 6.23.

Note that using a threshold Shields stress of 0.5 reduces the number of hourly conditions from
8,764 to 987 conditions. Applying threshold values of 0.6, 0.8, and 1.0 would further reduce the
number of hourly conditions to 698, 373, and 258 conditions, respectively. It was decided to use
a threshold Shields stress of 1.0 to keep calculation time within practical limits. Figure 6.23
indicates that this would result in an underestimation of cumulative transport of about 40%.
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Figure 6.23 Cumulative sediment transport volumes calculated for the developed wave-current field using
Van Rijn sediment transport model.

95



Baird & Associates

Referring to Figure 5.3, the percentage of nor’easters in the above representative wave-current
field is 245 hours which is about 28% more than the average of 196 hours. This is because
nor’easters occurred rather frequently in 2008.

6.7 Simulation of Existing Conditions

The existing bathymetry of the calculation domain was constructed using the overall survey of
1975 and the USACE 2002 surveys of Isle of Wight and Weaver. The model was run with the
one-year wave and current data developed in Section 6.6 as the input driving force. As discussed
in Section 4.3, surface sediment samples from IOW indicate a median grain size ranging from
0.3 mm to 1.5 mm. Modeling of morphology change with graded sediments is presently an area
of ongoing research requiring representation of spatial (both horizontal and vertical) and
temporal variations of the grain size in the calculation domain and is beyond the scope of this
study. Generally, however, the movement of graded sands involves various processes (or modes
of transport) and grain size distribution on a morphodynamically active shoal is subject to
temporal variability and depends on the type and intensity of hydrodynamic forcing that
prevailed prior to sediment sampling. Usually, the coarser sand fraction tends to expose itself
and armor the surface under a moderate wave climate regardless of its low percentage in the
mixture. During extreme events, however, both fine and coarse fractions move together and the
overall transport is expected to be governed by the movement of the finer fraction (Dibajnia and
Watanabe, 2000). Therefore, a median sediment grain size of 0.3 mm was selected for the
present simulations. The D&W transport formula was used.

Calculated transport rates were multiplied by a factor of 10 to calculate the change in
morphology over 10 years. The use of a morphological scaling factor is a common practice in
morphology calculations for simulating evolution over long time periods to reduce the required
calculation time, provided that the rate of morphology change is gradual (Roelvink, 2006). It is
expected to provide similar results to when the 1 year forcing dataset over ten years is used.
Note that the shoals migrate at a rate of a few m/year, which is very small compared to overall
shoal dimensions. Furthermore, since the developed one-year wave-current dataset includes an
above-average number of nor’easters, the predicted change in morphology is expected to
correspond to a longer than 10 year period (closer to 13 years considering that the input time
series contains 28% more nor’easters than average) . Furthermore, using a threshold Shields
value of 1.0 excludes nearly all non-storm wave conditions resulting in emphasizing the effect of
storm events, particularly those of nor'easters.
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Figure 6.24 Initial (left) and final (right) morphology for the existing (Base) conditions.

Figure 6.24 shows the initial and predicted future bathymetry for the existing shoal
configurations. Both IOW and Weaver shoals have moved towards the south. The predicted
morphology represents a slightly higher shoal than the initial shoal. This is the result of wave
focusing over the shoal under nor'easter events. Figure 6.25 shows the initial and final depth
contours (5.0, 7.5, 10.0 and 15.0 m) as well as a map of change in bottom elevations. The
overall contour movement and depth change are in agreement with observations of comparisons
between historic bathymetries described in Section 5.4.
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Figure 6.25 Initial and final depth contours (left) and depth change (right) for the existing (Base) conditions

To obtain a better understanding of the results, several transects were extracted and compared

across the shoal. Figure 6.26 shows locations of transects (3 along the shoal and 7 in transverse
direction). Transects 1 and 7 cross at the shoal crest.

Figure 6.27 compares the evolution of Isle of Wight along the 3 longitudinal transects (1, 2 and
3) since 1929 with the predicted future profile. Note that the input to the morphology model was
the 2002 bathymetry. Similarly Figure 6.28 shows the evolution of Isle of Wight along 4
transverse transects (5, 7, 9 and 10) since 1929 with the predicted future profile.
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Figure 6.26 Extracted transects along and across Isle of Wight

In Figure 6.27, the overall movement of the shoal and its southwest flank towards southwest is
fairly well simulated. The predicted shoal height at Transect 1 is slightly overestimated as a
result of wave focusing effect of nor’easters. The predicted excess height (also observed in
Transect 7, Figure 6.28) is expected to smooth out by the action of less severe daily waves and
currents that are not included in the simulations. Comparisons at Transects 9 and 10 (Figure
6.28) show that sediment accumulation on the west side of the shoal is also properly simulated.

From the above comparisons it is concluded that the predicted future shoal morphology
represents the overall historic evolution and movement of Isle of Wight. The model thus has the
capability of evaluating and comparison of the impacts of various dredging scenarios.
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Figure 6.29 Initial (left) and final (right) morphology for the Base Conditions under waves’ action only.

In order to provide a better understanding of the contribution from the waves to the resulting
shoal morphology, simulations were completed using zero input current velocity. Figure 6.29
shows the initial and predicted future bathymetry for the existing shoal configurations when only
waves are considered as the model driving force. There is accumulation of sediment along the
crest of [OW and the predicted morphology represents a higher shoal than the initial shoal. As
discussed before, this is the result of wave focusing over the shoal under nor'easter events.
Figure 6.30 shows the initial and final depth contours (5.0, 7.5, 10.0 and 15.0 m) as well as a
map of change in bottom elevations. Initial contours are shown by black lines while their
corresponding final contours are shown in color. There is only a limited movement of contours
and depth change is limited to the area around the shoal crest.

Figure 6.31 compares the evolution of Isle of Wight along the 3 longitudinal transects (1, 2 and
3) since 1929 with the predicted future profile. Again, note that the input to the morphology
model was the 2002 bathymetry. Similarly Figure 6.32 shows the evolution of Isle of Wight
along 4 transverse transects (5, 7, 9 and 10) since 1929 with the predicted future profile.

102



Baird & Associates

N
Depth (m) 4 - . Depth Change (m)
150 , r \(: y - - 1500
10.0 i o= J
{ S 0000
75 { e I\)
H . _//,7 [l
50 NS .
L Y o
o~ S ase Conditions " “Base Conditions
1000 / 0 <==7¢ 1000m J ) 1000 / 0 -=2=¢ 1000m / b P
. { Waves Orll_g e e ¢ Waves Only¢

Figure 6.30 Initial and final depth contours (left) and depth change (right) for the Base Conditions umder
waves’ action only.

In Figure 6.31, there is no movement of the shoal and its southwest flank towards the southwest
as in the case of simulation with waves and currents (Figure 6.27). However, the predicted shoal
height at Transect 1 is similar to the results shown in Figure 6.27. Comparisons at Transects 9
and 10 (Figure 6.32) show no signs of sediment accumulation on the west side of the shoal as
was the case in simulations with waves and currents (Figure 6.28).

From the above comparisons it may be concluded that waves are the primary factor in shoal
growth and maintenance while currents are more responsible for shoal migration. This is in
agreement with the findings of Section 5.5.
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Figure 6.31 Evolution of IOW since 1929 along transects 1, 2 and 3 compared to predicted profiles when only

waves are considered.
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7.0 SIMULATION OF DREDGING SCENARIOS

A total of 11 shoal dredging scenarios were considered and model runs completed for each
scenario. In each scenario, the Isle of Wight was partially excavated to the -10 m contour to
provide sand volumes in the range of 1 to 2 million cubic meters. Table 7.1 provides a summary.
Numerical excavation was conducted on the 2002 bathymetry representing the existing
conditions. Similar to the simulation of existing conditions (Section 6.7), the model was run
with the one-year wave and current data developed in Section 6.6 as the input driving force. The
median sediment grain size was 0.3 mm and the D&W transport formula was used. Calculated
transport rates were multiplied by a factor of 10 and the predicted change in morphology is
expected to roughly correspond to a 13-year period. The results have provided valuable insights
on response of different dredging plans that can be used for the development of dredging
guidelines. The results obtained for individual dredging scenarios are presented and discussed in
this section.

Table 7.1 — Dredging scenarios.

Vol e
1 southeastern half of the crest 19
2 northwestern half of the crest 1.6
3 southwestern half of the crest 1.8
4 northeastern half of the crest 1.8
5 top 1/3 of the volume between shoal crest and -10 m contour 0.3
6 top 2/3 of the volume between shoal crest and -10 m contour 15
7 southwestern quarter of the crest 0.95
8 southwestern and northeastern quarters of the crest 1.75
9 southwestern 1/3 of the crest 1.0
10 middle 1/3 of the crest 19
11 northeastern 1/3 of the crest 0.75
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7.1 Numerical Modeling of Dredging Alternatives

Scenario 1

In this scenario the southeastern half of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.1, to provide about 1.9 million m’® of sand.

Figure 7.1 Dredging Scenario 1.

Figure 7.2 shows the initial and predicted future bathymetry for the Scenario 1 dredging
configurations. IOW is reintegrated into a slightly narrower shoal. The shoal height of the
predicted morphology is close to the initial shoal height before dredging. This is the result of
wave focusing over the shoal under nor'easter events. Figure 7.3 shows the initial and final
depth contours (5.0, 7.5, 10.0 and 15.0 m) as well as a map of change in bottom elevations.
Initial contours are shown by black lines, while their corresponding final contours are shown in
color. There is accumulation over the dredged part of the shoal and a new shoal crest is created.
Comparisons at selected transects (Figures 7.4 and 7.5) show that the reformed shoal is about 1.5
m to 2 m lower (at its crest) than the pre-dredge shoal. Note that the pre-dredge shoal is also
shown (green line marked as 2002) in these figures to provide a base for comparisons. When a
certain transect is outside of the excavated area (e.g. Transect 2), then the green line does not
appear in the corresponding transect figure because the green and red (initial) lines are identical.
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Figure 7.3 Initial and final depth contours (left) and depth change (right) for Scenario 1 conditions.
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Figure 7.4 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 1.

109

7000



Baird & Associates

2002 A
Transect 5 ]
— Initial ]

-=-= Final -

-10

-20

O [l [l [l [l I [l [l [l [l I [l [l [l [l I [l [l [l [l I [l [l [l [l I [l :

Transect 7 <

-10

g
'Q ~ 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
2 0 '
(]
A

Transect 9

-10

-20

o

-10

- -
-
-

-20 .
Scenario 1

500 1000 1500 2000 2500
Distance (m)

o

Figure 7.5 Predicted evolution of IOW along transects 5, 7, 9 and 10 after dredging Scenario 1.
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Scenario 2

In this scenario the northwestern half of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.6, to provide about 1.6 million m’ of sand.

Figure 7.6 Dredging Scenario 2.

Figure 7.7 shows the initial and predicted future bathymetry for the Scenario 2 dredging
configurations. IOW is reintegrated into a slightly narrower shoal. Figure 7.8 shows the initial
and final depth contours as well as a map of change in bottom elevations. There is not much
accumulation over the dredged part of the shoal as the overall net transport is towards the non-
dredged (southeast) side of the shoal. Comparisons at the transects presented in Figures 7.9 and
7.10 show that a new shoal crest is formed along Transect 3, i.e. shoal crest is shifted towards
southeast. Looking at comparisons at Transect 1 and Transect 3, the new crest is at 7 m depth,
while the pre-dredge crest was at 6 m depth. Therefore, this dredging scenario is expected to
result in a more asymmetric shoal with a crest height at about 1 m lower than the pre-dredge
conditions.
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Figure 7.8 Initial and final depth contours (left) and depth change (right) for Scenario 2 conditions.
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Scenario 3

In this scenario the southwestern half of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.11, to provide about 1.8 million m® of sand.

a

Figure 7.11 Dredging Scenario 3.

Figure 7.12 shows the initial and predicted future bathymetry for the Scenario 3 dredging
configurations. IOW is reintegrated into a shoal with shorter crest length than the pre-dredge
conditions. Figure 7.13 shows the initial and final depth contours as well as a map of change in
bottom elevations. There is considerable accumulation over the northeast half of the dredged
part. The rest of the dredged platform stays nearly unchanged. Comparisons at selected
transects presented in Figures 7.14 and 7.15 show that the reformed shoal crest has the same
height as the pre-dredge shoal. The new crest, however, is shorter and does not extend far
beyond Transect 7 towards southwest. Therefore, this dredging scenario is expected to result in
a shoal with the same height but with a shorter crest length than the pre-dredge conditions.
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Figure 7.13 Initial and final depth contours (left) and depth change (right) for Scenario 3 conditions.
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Figure 7.14 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 3.

117

7000



Baird & Associates

O i —r r 1 rr+r+rrJrrr T &+ T T T |_
B 275 2002 -
- Transect 6 < i 1
-10 — Initial _
5 -—-- Final -
20 L N
1 (YN T N NN SR TR TR TN NN TN M M NN M Y T T NN TR T T R N N
O i [
- Transect 7 77,
'10 — "-‘W "=

-
-\

] T
\
\
\
\
f
I

1 [ [ [ I [ [ [ [ I [ [ [ [ I [ [ [ [ I [ [ [ [ I [
O I I I I I I I I I I I I I I I I I I I I I I I I I I

Transect 8

-10

-20

Transect 9
-10

t
t
[
[
!
I
[
i
4
I
4

-20

Scenario 3

o

500 1000 1500 2000 2500
Distance (m)
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Scenario 4

In this scenario the northeastern half of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.16, to provide about 1.8 million m® of sand.

Figure 7.16 Dredging Scenario 4.

Figure 7.17 shows the initial and predicted future bathymetry for the Scenario 4 dredging
configurations. IOW is reintegrated into a shoal with shorter crest length than the pre-dredge
conditions. Figure 7.18 shows the initial and final depth contours as well as a map of change in
bottom elevations. There is almost no accumulation over the dredged part of the shoal and the
dredged platform stays unchanged. The new crest is formed on the southwest half of the shoal as
the overall transport (shoal migration) is towards southwest. Comparisons at selected transects
presented in Figures 7.19 and 7.20 show that the dredged area undergoes very little change. The
reformed shoal crest has the same height as the pre-dredge shoal. The new crest, however, is
shorter and limited to the southwest half of the shoal. Therefore, this dredging scenario is
expected to result in a shoal with the same height but with a shorter crest length located on the
southwest half of the shoal compared to the pre-dredge conditions.
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Figure 7.18 Initial and final depth contours (left) and depth change (right) for Scenario 4 conditions.
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Figure 7.19 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 4.
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Figure 7.20 Predicted evolution of IOW along transects 4, 5, 6 and 7 after dredging Scenario 4.
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Scenario 5

In this scenario the top 1/3 of the volume between shoal crest and -10 m contour is dredged (i.e.
from top to -7.3 m contour), as shown in Figure 7.21, to provide about 0.3 million m® of sand.

A e

Figure 7.21 Dredging Scenario 5.

Figure 7.22 shows the initial and predicted future bathymetry for the Scenario 5 dredging
configurations. IOW keeps its overall shape but with a slightly lower crest. Figure 7.23 shows
the initial and final depth contours as well as a map of change in bottom elevations. The
excavated part of the shoal is covered again by sand. Comparisons at the transects presented in
Figures 7.24 and 7.25 show that the reformed shoal crest is at the same location and has almost
the same height as the pre-dredge conditions. Therefore, this dredging scenario is expected to
result in essentially the same shoal with a crest height nearly the same as the pre-dredge
conditions.
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Figure 7.23 Initial and final depth contours (left) and depth change (right) for Scenario 5 conditions.
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Figure 7.24 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 5.
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Figure 7.25 Predicted evolution of IOW along transects 6, 7, 8 and 9 after dredging Scenario 5.
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Scenario 6

In this scenario the top 2/3 of the volume between shoal crest and -10 m contour is dredged (i.e.
from top to -8.7 m contour), as shown in Figure 7.26, to provide about 1.5 million m® of sand.

b,

Figure 7.26 Dredging Scenario 6.

Figure 7.27 shows the initial and predicted future bathymetry for the Scenario 6 dredging
configurations. IOW keeps its overall shape but with a lower crest. Figure 7.28 shows the initial
and final depth contours as well as a map of change in bottom elevations. There is little
accumulation over the dredged part of the shoal. Comparisons at the transects presented in
Figures 7.29 and 7.30 show that the shoal crest stays almost flat (as dredged) and is about 2 m to
3 m lower then the pre-dredge conditions. Therefore, this dredging scenario is expected to result
in essentially the same shoal but with a much (2 m to 3 m) lower crest height than the pre-dredge
conditions.
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Figure 7.28 Initial and final depth contours (left) and depth change (right) for Scenario 6 conditions.
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Figure 7.29 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 6.
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Figure 7.30 Predicted evolution of IOW along transects S, 7, 9 and 10 after dredging Scenario 6.
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Scenario 7

In this scenario the southwestern quarter of the crest of Isle of Wight is dredged to -10 m
contour, as shown in Figure 7.31, to provide about 0.95 million m’ of sand.

PCA N

Figure 7.31 Dredging Scenario 7.

Figure 7.32 shows the initial and predicted future bathymetry for the Scenario 7 dredging
configurations. IOW is reintegrated into a shoal with a smaller shoal crest than the pre-dredge
conditions. The new shoal crest is centered towards the northeast side of the shoal where the
most of wave-focusing effect occurs. Figure 7.33 shows the initial and final depth contours as
well as a map of change in bottom elevations. There is considerable accumulation over the
dredged part. Comparisons at selected transects presented in Figures 7.34 and 7.35 show that the
reformed shoal crest has the same height as the pre-dredge shoal. The new crest is on the
northeast side of the shoal likely due to the fact that the southwest side has been dredged and
does not grow equally. Therefore, this dredging scenario is expected to result in a shoal with the
same height but with a shorter crest length than the pre-dredge conditions.
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Figure 7.33 Initial and final depth contours (left) and depth change (right) for Scenario 7 conditions.
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Figure 7.34 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 7.
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Figure 7.35 Predicted evolution of IOW along transects 6, 7, 8 and 9 after dredging Scenario 7.
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Scenario 8

In this scenario both southwestern and northeastern quarters of the crest of Isle of Wight are
dredged to -10 m contour, as shown in Figure 7.36, to provide about 1.75 million m® of sand.

0

N - i 4N

Figure 7.36 Dredging Scenario 8.

Figure 7.37 shows the initial and predicted future bathymetry for the Scenario 8 dredging
configurations. IOW is reintegrated into a shoal with a smaller shoal crest than the pre-dredge
conditions. The new shoal crest is centered on the southeast side of the shoal where most of the
wave-focusing effect occurs. Figure 7.38 shows the initial and final depth contours as well as a
map of change in bottom elevations. There is considerable accumulation over the southwest
dredged quarter in line with the overall shoal migration direction. Comparisons at selected
transects presented in Figures 7.39 and 7.40 show that the reformed shoal does not reach the
same height as the pre-dredge shoal and is about 1 m to 2 m lower. The new crest is on the
southeast quarter side of the shoal likely due to the fact that the southwest side has been dredged
and does not grow equally. Therefore, this dredging scenario is expected to result in a shoal with
lower height and shorter crest length than the pre-dredge conditions.
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Figure 7.38 Initial and final depth contours (left) and depth change (right) for Scenario 8 conditions.
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Figure 7.39 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 8.
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Figure 7.40 Predicted evolution of IOW along transects S, 6, 7 and 8 after dredging Scenario 8.
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Scenario 9

In this scenario the southwestern 1/3 of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.41, to provide about 1.0 million m® of sand.

Figure 7.41 Dredging Scenario 9.

Figure 7.42 shows the initial and predicted future bathymetry for the Scenario 9 dredging
configurations. Similar to Scenario 3, IOW is reintegrated into a shoal with shorter crest length
than the pre-dredge conditions. Figure 7.43 shows the initial and final depth contours as well as
a map of change in bottom elevations. There is considerable accumulation over the northeast
half of the dredged part. Comparisons at selected transects presented in Figures 7.44 and 7.45
show that although the dredged platform stays partly unchanged, the reformed shoal crest has the
same height as the pre-dredge shoal. The new crest, however, is shorter and does not extend far
beyond Transect 8 towards the southwest. Therefore, this dredging scenario is expected to result
in a shoal with the same height but with a shorter crest length than the pre-dredge conditions.
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Figure 7.43 Initial and final depth contours (left) and depth change (right) for Scenario 9 conditions.
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Figure 7.44 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 9.
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Figure 7.45 Predicted evolution of IOW along transects 7, 8, 9 and 10 after dredging Scenario 9.
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Scenario 10

In this scenario the middle 1/3 of the crest of Isle of Wight is dredged to -10 m contour, as shown
in Figure 7.46, to provide about 1.9 million m® of sand.

Figure 7.46 Dredging Scenario 10.

Figure 7.47 shows the initial and predicted future bathymetry for the Scenario 10 dredging
configurations. IOW is reintegrated into a shoal with double crests. Figure 7.48 shows the
initial and final depth contours as well as a map of change in bottom elevations. There is
considerable accumulation over the northeast half of the dredged part, while the southwest half
receives little accumulation. In fact the remaining southwest part of the shoal crest has moved
towards southwest to form a new crest. Comparisons at the transects presented in Figures 7.49
and 7.50 show that the dredged platform stays almost unchanged and the two crests are formed
by remains of the initial shoal crest on both sides of the dredged area. The overall shoal height is
expected to be the same as that of the pre-dredge shoal. Therefore, this dredging scenario is
expected to result in a shoal with two smaller crests, both expected to be at the same level of the
shoal crest in the pre-dredge conditions.
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Figure 7.48 Initial and final depth contours (left) and depth change (right) for Scenario 10 conditions.
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Figure 7.49 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 10.
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Figure 7.50 Predicted evolution of IOW along transects 5, 6, 7 and 8 after dredging Scenario 10.
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Scenario 11

In this scenario the northeastern 1/3 of the crest of Isle of Wight is dredged to -10 m contour, as
shown in Figure 7.51, to provide about 0.75 million m® of sand.

Figure 7.51 Dredging Scenario 11.

Figure 7.52 shows the initial and predicted future bathymetry for the Scenario 11 dredging
configurations. IOW is reintegrated into a shoal with shorter crest length than the pre-dredge
conditions. Figure 7.53 shows the initial and final depth contours as well as a map of change in
bottom elevations. There is little accumulation over the dredged part of the shoal. The new crest
covers the southwest 2/3 of the shoal as the overall transport (shoal migration) is towards
southwest. Comparisons at selected transects presented in Figures 7.54 and 7.55 show that while
the dredged platform undergoes very little change, the reformed shoal crest has the same height
as the pre-dredge shoal. The new crest, however, is shorter and limited to the southwest 2/3 of
the shoal. Therefore, this dredging scenario is expected to result in a shoal with the same height
but with a shorter crest length centered on the southwest 2/3 of the shoal compared to the pre-
dredge conditions.
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Figure 7.53 Initial and final depth contours (left) and depth change (right) for Scenario 11 conditions.

148



Baird & Associates

Transect 2 2002

— Initial

Final

Transect 3

i Scenario 11
B 1 | 1 | 1 | 1 | 1 | 1 | 1 ]

0 1000 2000 3000 4000 5000 6000 7000
Distance (m)

Figure 7.54 Predicted evolution of IOW along transects 1, 2 and 3 after dredging Scenario 11.
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7.2 Summary of the Numerical Modeling Results

A total of 11 different dredging scenarios were considered and the evolution of the resulting
dredged shoals over a 10 to 15 year period was simulated using the numerical model developed
for this study. Table 7.2 provides a summary of the results. A bullet point summary of the
findings is also presented here:

= For all the simulated scenarios, the shoal was reformed to a shoal with a smaller volume
due to removal of the sediment. In other words, the volume taken by dredging was not
compensated by transport of material from outside of the shoal.

= Despite the reduction in volume, the reformed shoal had the same height as that of the
pre-dredge shoal conditions for some of dredging scenarios.

There is a limit for shoal height recovery when the sediment is taken directly from the top of the
shoal. When 1.3 m of the shoal was removed (Scenario 5), the reformed shoal height was nearly
the same as the height of the pre-dredge conditions. However, when 2.7 m was removed from
the top of the shoal (Scenario 6), the shoal height did not recover back to its pre-dredge
conditions. Considering that the crest of IOW shoal is at -6 m, this means that lowering the shoal
crest to deeper than -7.5 m would result in a permanent reduction of shoal height to that level.
Note that IOW has a Relative Shoal Height (H/BD) of 0.71. Therefore, it is not expected to re-
grow once its Relative Shoal Height becomes less than 0.65 (i.e. removal of more than 1.3 m).
As an example, we note that Weaver has a Relative Shoal Height of 0.62 and has not grown as
high as IOW or Fenwick.

= Among other simulated cases, Scenarios 1, 2 and 8 resulted in a lower shoal height than
the pre-dredge conditions. All these scenarios correspond to cases when material is taken
from the entire length of the shoal crest (i.e. along the longer axis of the shoal).

= Under Scenarios 4 and 11 the reformed shoal height was nearly equivalent to the pre-
dredge conditions but the dredged platform stayed unchanged. These correspond to the
cases where material was taken from the northeast half or 1/3 of the shoal. The new
shoal crest was formed on the southwest side.

=  Under Scenarios 3, 7 and 9 the reformed shoal height was nearly equal to the pre-dredge
conditions and the dredged platform was either partially (Scenario 3) or fully (Scenarios
7 and 9) integrated into the newly formed shoal. These correspond to the cases where
material was taken from the southwest quarter, 1/3, or half the shoal. The new shoal crest
was formed on the southwest side as the overall shoal migration is towards the southwest.

=  Under Scenario 10 where sediment was taken from the middle 1/3 of the shoal, the
reformed shoal had double crests. The shoal height was equal to the pre-dredge
conditions, but the dredged platform stayed relatively unchanged.
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In the present simulations, only dredging from above the -10 m contour was considered
as this is the most active part of a shoal. Regarding dredging from shoal flanks below the
-10 m contour, it should be noted that the important process of wave focusing occurs over
the shoal flanks of the northeast half of the shoal. Therefore, dredging from below the -
10 m contour over the southwest half of the shoal is expected to have little effect on shoal
integrity and little change is anticipated in the dredged area.

The present investigation was focused on excavation of sand from between shoal crest
and the -10 m contour providing from 1 to 2 million m® of material. Dredging scenarios
involving excavation from shoal crest to below the -10 m contour, thus generating more
than 2 million m’ of sand, were not investigated. Additional modeling would be required
to address such larger scale dredging scenarios.

Although the above predictions represent shoal evolution over a nearly 13-year period, it
is expected that the result can be considered to be representative of the trend in a period
of 2 to 3 decades given the overall slow rate of shoal morphology change. The 13-year
period is considered long enough for observation of shoal crest response to dredging and
evolution of the excavated platform. Simulation of longer periods would suffer from
accumulated numerical errors masking the actual morphology change results.
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Table 7.2 — Summary of dredging scenarios.

Dredging
Scenario

Excavation Area

Volume
Dredged
(milliom m?)

Morphologic Response

1.9

Reforms into a slightly narrower shoal
with a shoal height that is about 1.5 m
to 2 m lower (at its crest) than the pre-
dredge shoal. There is accumulation
over the dredged part of the shoal and
a new shoal crest is created.

1.6

Reforms into a slightly narrower shoal
with a shoal height that is about 1 m
lower (at its crest) than the pre-dredge
shoal. Little accumulation occurred
over the dredged part of the shoal
resulting in a more asymmetric shoal
than the pre-dredge conditions.

./.’. -
/

t (‘DREDGE ZONE
\ =7,

1.8

Reforms into a shoal with shorter crest
length but the same shoal height as the
pre-dredge conditions. There is
considerable accumulation over the
northeast half of the dredged part. The
rest of the excavated platform stays
nearly unchanged.

1.8

Reforms into a shoal with shorter crest
length but the same shoal height as the pre-
dredge conditions. The new crest is formed
on the southwest half of the shoal. The
excavated platform stays nearly unchanged.

L

0.3

The shoal keeps its overall shape with
almost the same shoal height as the pre-
dredge conditions. The excavated part of
the shoal is covered again by sand.
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15

The shoal keeps its overall shape but with a
much (i.e. 2 m to 3 m) shorter shoal height
than the pre-dredge conditions. Little
accumulation occurred over the excavated
area and the shoal crest stayed almost flat
(as dredged).

0.95

Reforms into a shoal with a shorter crest
length but the same shoal height as the pre-
dredge conditions. The new shoal crest is
centered towards the northeast side of the
shoal. Considerable accumulation occurred
over the excavated area.

1.75

Reforms into a shoal with a shorter crest
and (1 m to 2 m) shorter shoal height than
the pre-dredge conditions. The new shoal
crest is centered on the southeast side of the
shoal. There is also considerable
accumulation over the southwest excavated
part.

Y &Y

L B C
\DREDGE -

ZONE

1.0

Reforms into a shoal with shorter crest
length but the same shoal height as the pre-
dredge conditions. There is considerable
accumulation over the northeast half of the
dredged part. The rest of the excavated
platform stays nearly unchanged.

10

1.9

Reforms into a shoal with double crests both
have the same shoal height as the pre-
dredge conditions. There is considerable
accumulation over the northeast half of the
excavated area, while the southwest half
receives little accumulation.

11

0.75

Reforms into a shoal with shorter crest
length but the same shoal height as the pre-
dredge conditions. Little accumulation
occurred over the excavated area. The new
crest was centered on the southwest 2/3 of
the shoal.
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7.3 Comparison with CSA/ACR Findings

In a recent study (OCS Study MMS 2010-010), CSA International, Inc. in cooperation with
Applied Coastal Research and Engineering and others investigated geomorphologic changes
associated with potential sand mining scenarios on shoals offshore Fenwick Island, Maryland,
using numerical models. Tidal hydrodynamic, wave process, and sediment transport pattern
models were coupled to assess the morphologic response of offshore sand shoals to various
“dredging” scenarios in support of future beach nourishment requirements. The excavation
scenarios simulated were

* Dredging a hole over a designated area on the shoal,
= Dredging the leading edge of a shoal;
* Dredging the trailing edge of a shoal; and

= Dredging in a striped pattern to facilitate recruitment of benthic invertebrates into
dredged areas.

Tidal hydrodynamics for the continental shelf and nearshore areas offshore the Delmarva
Peninsula were modeled using the Advanced Circulation Model for Oceanic Coastal and
Estuarine Waters (ADCIRC). Tidal velocities were found to be very small (on the order of 0.05
nm/s) and therefore, incident wave energy was considered to play a primary role in sediment
movement and morphology change at the offshore shoals. Nearshore wave heights and
directions across Weaver Shoal, Isle of Wight Shoal, and Shoal A were estimated using the
USACE STeady state spectral WAVE (STWAVE) half-plane model.

Bathymetric change at and adjacent to the shoals in response to various “dredging” geometries
was investigated under a 3-day storm from the northeast (peak storm wave height of 6 m) and a
3-day storm from the east (peak storm wave height of 5 m). In addition to a baseline scenario for
each of the shoals, three dredging geometries for Weaver and Isle of Wight shoals were
simulated, along with two dredging scenarios at Shoal A. Results from the Baseline scenario
indicated dominant sand transport from northeast to southwest and south, where sand is eroded
from shoal crests and deposited on the leading edge of the shoal. Although these results are in
overall agreement with our findings in Section 6.7, details on shoal crest erosion are not be
supported by the fact that wave influence is mainly to build up the shoal crest through wave
focusing processes. Sand is mainly eroded from trailing edge and deposited on the leading edge
of the shoal.

CSA/ACR modeling results illustrated that if dredging is performed on a portion of a shoal that
is not active under present conditions, there will be a lack of sand availability to replenish the
removed sand. On the other hand, material removed from active areas of a shoal will be
replenished by normal wave conditions at the site. Shallow shoal crests, like Isle of Wight
Shoal, and the leading edge of all above-mentioned three shoals are noted as the active areas of
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erosion/deposition. These active transport and deposition areas will recover to original
conditions more rapidly than inactive portions of shoals. These findings are in agreement with
the results of the present study although the CSA/ACR report does not discuss quantitative
details on long-term recovery of the shoal height.

For the dredging scenarios examined, the CSA/ACR report recommends that the most desirable
location or subarea (crest, leading edge, or trailing edge) of a shoal for dredging is the leading
edge from a physical standpoint, followed by the crest as the second choice, and the trailing
edge. In the present study, it was found that only dredging of the leading edge of a shoal has the
potential for complete shoal height recovery.

Considering physical processes, the CSA/ACR report also provides the following general
recommendations:

1. Extracting sand from a depocenter, leading edge, or downdrift margin of a shoal, to avoid
interrupting natural shoal migration and potentially reduce the time required for site
refilling;

2. Avoid dredging in erosional areas that source downdrift depocenters, which also may be
slow to refill after dredging;

3. Dredging in a striped pattern to leave sediment sources adjacent to and interspersed
throughout target areas, leading to a more uniformly distributed infilling process; and

4. Excavation should occur on shoal crests and higher areas of the leading edge rather than
lower areas of the shoals because of greater sediment mobility, which potentially results
in more rapid sediment reworking and site infilling.

The above recommendations are in general agreement with the findings of this study. However,
we note that recommendations #3 and #4 could result in a reformed shoal that has a shorter shoal
Height than the pre-dredged conditions.

The CSA/ACR report also generally states that based on geological models of shoal formation,
there does not appear to be a mechanism supporting the idea that the structural integrity of a
feature will “deflate” or “unravel” when subject to repeated dredging. The report continues that
as long as a seafloor irregularity remains upon which to reform the ridge, dominant shelf
processes will construct these features as described by shelf ridge process models. The
CSA/ACR report does not provide quantitative discussions on the geometry of the required
irregularity and dimensions of the expected reconstructed feature. Therefore, the above
conclusion may generally be interpreted that upon being dredged, a shoal will unconditionally re-
grow (to its pre-dredged conditions) as long as its remaining is left as an irregularity on the
seafloor. In the present investigation, we also did not identify any “shoal deflating” processes.

In other words, there was no indication that there exists a critical threshold for dredging that once
crossed, ridge and shoal features may deflate, losing their morphologic integrity. However, the
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present study suggests that shoals are initially generated at the shoreline and continue to grow
due to wave action under rising sea levels. Once a shoal is in 10 m of water or deeper, it will
only reform into a smaller shoal upon dredging. That is, the more material removed from the
shoal, the smaller the volume of the resulting shoal. It is only under certain dredging conditions
that the reformed shoal may become as high as the pre-dredged shoal.
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RECOMMENDATIONS FOR DREDGING GUIDELINES

Summary of Findings

An analysis of shoal parameters was conducted in Section 5.5 and numerical modeling of several
dredging scenarios was completed in Section 7.1 to assess long-term and short-term shoal
morphology evolution aspects, respectively. A summary of key findings is provided here to be
used for development of dredging guidelines in the next section.

ii.

111

1v.

Analysis of more than 180 offshore shoals in the study area suggested that there is a
Shoal Height Growth Zone between 10 m and 30 m depth. This zone was further
divided into two areas. In the 10 m to 20 m depth range, shoals can potentially grow in
height up to the minimum Crest Depth of 5 m. In the 20 m to 30 m depth range, shoals
may still grow but to a lesser extent. The 20 m to 30 m Base Depth range is a transition
zone over which the predominant forcing changes from wave-dominated at 20 m depth
to current-dominated at 30 m depth.

The Relative Shoal Height defined as the ratio of shoal Height to Base Depth (H/BD)
was found to be an appropriate indicator of the shoal Height growth. The maximum
Relative Shoal Height, (H/BD)pax, varies from 0.5 at 10 m depth to 0.75 at 20 m depth.
A shoal that has reached the maximum relative shoal height of its Base Depth may be
considered as a fully grown shoal (in height) at that depth, but may still grow under
rising sea levels. A fully grown shoal is more likely to re-grow and rebuild itself to the
same height upon being dredged.

Shoals located in waters deeper than 30 m show a decrease in height with increasing
depth representing a possible Shoal Height Decrease Zone beyond 30 m depth. These
shoals are not expected to grow and will not recover in height once they are dredged.

Numerical modeling results indicated that after removal of material from a shoal, the
shoal was reformed to a shoal with a smaller volume due to removal of the sediment. In
other words, the volume taken by dredging was not compensated by transport of
material from outside of the shoal. However, despite the reduction in volume, the
reformed shoal had the same height as that of the pre-dredge shoal conditions for certain
dredging scenarios.

Numerical modeling results indicated that there is a limit for shoal height recovery
when the sediment is taken directly from top of the shoal. When 1.3 m of the shoal was
removed from top of IOW, the reformed shoal height was nearly the same as the height
of the pre-dredge conditions. However, when 2.7 m was removed from top of this
shoal, the shoal height did not recover back to its pre-dredge conditions. IOW has a
Relative Shoal Height (H/BD) of 0.71. Therefore, it is not expected to re-grow once its
Relative Shoal Height becomes less than 0.65 (i.e. removal of more than 1.3 m). As an
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example, it is noted that Weaver has a Relative Shoal Height of 0.62 and has not grown
as high as IOW or Fenwick.

vi. Numerical modeling results indicated that when material was taken from the southwest
quarter, 1/3, or half the shoal, the reformed shoal height was nearly equal to the pre-
dredge conditions and the dredged platform was either partially or fully integrated into
the newly formed shoal. The new shoal crest was formed on the southwest side as the
overall shoal migration is towards the southwest.

vii. Numerical modeling results indicated that when material was taken from the entire
length of the shoal crest the reformed shoal height was less than the pre-dredge
conditions. When material was taken from the northeast 1/3 or half the shoal, the
reformed shoal height was nearly equal to the pre-dredge conditions but the dredged
platform stayed unchanged.

viii. Only dredging from above the -10 m contour was considered in numerical simulations.
Regarding dredging from shoal flanks below the -10 m contour, it should be noted that
wave focusing occurs over the shoal flanks of northeast half of the shoal and dredging
from this area should be avoided. Dredging from below the -10 m contour over the
southwest half of the shoal is expected to have little effect on shoal integrity and little
change is anticipated in the dredged area.

8.2 Proposed Guidelines

Based on the findings of the present study summarized in Section 8.1, the following dredging
guidelines are proposed to maintain and protect the integrity of offshore ridge and shoal regimes.
The proposed guidelines deal with dredging of offshore shoals as well as evaluation of offshore
shoal dredging projects.

The shoal Height (H) was found to be the most important parameter representing the integrity of
a shoal. The present study showed that after removal of material from a shoal, the shoal is
reformed to a shoal with a smaller volume due to removal of the sediment. In other words, the
volume taken by dredging is not compensated by transport of material from outside of the shoal.
However, despite the reduction in volume, the reformed shoal may attain the same height as that
of the pre-dredge shoal conditions for certain dredging scenarios. The following guidelines,
therefore, are intended to provide dredging practices that result in a reformed shoal that has the
same height as the pre-dredge shoal.

= The final dredging approach should be determined based on suitability of the dredged
sand for nourishment as well as ecosystem services associated with the reformed shoal
shape. A determination is required regarding the importance of maintaining the pre-
dredge shoal Height from an ecological perspective.
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The proposed guidelines are not universal and are dictated by the local storm wave
height, storm wave direction, storm related subtidal currents. They are recommended for
the shoals in the area offshore Delaware, Maryland and Virginia between Delaware Bay
and Chesapeake Bay.

Only those shoals located in less than 30 m depth have the potential to re-grow after
dredging, and therefore, shoals with a Base Depth of greater than 30 m should not be
dredged if it is determined to be important to maintain the pre-dredge shoal Height from
an ecological perspective.

Shoals with Relative Shoal Height (defined as H/BD) of less than 0.5 are not likely to
recover after dredging. Therefore, shoals with Relative Shoal Height of less than 0.5
should not be dredged if shoal recovery to its pre-dredge height is desired from an
ecological perspective.

The maximum Relative Shoal Height, (H/BD)yax, varies from 0.5 at 10 m depth to 0.75 at
20 m depth. A shoal that has reached the maximum relative shoal height corresponding
to its Base Depth may be considered as a fully grown shoal at that depth. A fully grown
shoal (in height) can potentially re-grow and rebuild itself to the same height upon being
dredged. Therefore, if shoal recovery to its pre-dredge height is desired, shoals that have
reached their maximum relative shoal height are recommended for dredging. For the
present study area, maximum Relative Shoal Height at a certain Base Depth (BD) may be
estimated as: (H/BD)m.x = (BD-5)/BD.

In case of Isle of Wight or other shoals with the same Base Depth (i.e. 21 m), when
dredging from the top of the shoal, the relative shoal height should not be reduced to less
than 0.65 (i.e. removal of more than 1.3 m) after dredging or it will not re-grow to the
same pre-dredge height. Dredging directly from the shoal crest is thus not recommended
in this case.

Sand should not be removed from the entire length of the shoal. Longitudinal dredging
(i.e. dredging all along the longer axis) is not preferred because it affects wave focusing
processes and the shoal does recover to the same pre-dredge height.

In the present study area, it is recommended to dredge sand from the SW side of a shoal.
This is because 1) wave focusing is concentrated on the NE side of a shoal, and 2) overall
shoal migration is towards the southwest. Therefore, after removal of material from the
SW side of a shoal, a new shoal crest is formed over the excavated area by transport of
material from the NE side.

In case of Isle of Wight, dredging from SW side of the shoal above -10 m contour is
recommended as it would result in creation of a smaller shoal with the same shoal height
as the pre-dredge conditions.
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Dredging from shoal flanks below the -10 m contour over the SW half of the shoal is
expected to have little effect on shoal integrity and little change is anticipated to happen
to the dredged area. This dredging option is thus recommended if it can provide sand
suitable for nourishment.

Similar guidelines are expected to apply to shoals in areas other than present study area.
Details, however, would be dictated by local wave and current conditions. It is
recommended that a similar study be completed for other regions when the ecological
role of the shoal height/shape is very important to justify the associated study cost. Note
that USACE (2008) determined that cost differences between dredging scenarios with vs.
without comparable guidelines in place are below level of cost concern for future Ocean
City borrow work. Below are a few guidelines for such a study:

0 The study should involve analysis of historic and recent bathymetry data to
determine shoal migration trends, field measurements of waves and currents to
identify the driving forces involved, sediment sampling, dimensional analysis of
shoal parameters to define those parameters critical to shoal integrity, and long-
term morphological numerical modeling to evaluate dredged shoal response.

0 When planning hydrographic surveys of offshore shoals, as recognized by most
hydrographic survey standards, it is important to deploy a tide gage in the survey
area at the time of the hydrographic survey to apply proper tidal corrections and
reference the survey to a correct datum. If comparison of successive
hydrographic surveys is intended, the two surveys need to be several years apart
as errors commonly involved in a hydrographic survey are comparable in
magnitude to the annual slow rate of change of bottom morphology and affect
short-term bathymetry comparisons.

0 Numerical modeling of long-term morphologic evolution of the shoals is a
challenging task. One of the difficulties is regarding definition of proper input
driving forces. Measurement of waves and currents are recommended to identify
key driving forces and mechanisms affecting local shoal morphology.
Appropriate representative wind, wave, tide and current conditions should then be
prepared to drive the model for long-term morphology simulations. Measured
data, if available, may be used to develop the model input file. Otherwise,
significant modeling efforts may be required to develop appropriate model input
conditions.

0 Full plane spectral (or equivalent) wave models must be used for wave
transformation calculations. Standard (half-plane) spectral wave models cannot
accurately simulate wave transformation processes over offshore shoals even if
the models are applied within their recommended +45° limitation. Generally,
these shoals feature a number of slopes in various directions and provide severe
conditions for refraction and wave focusing calculations by conventional half-
plane spectral wave transformation models.
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9.0 CONCLUSIONS

W.F. Baird & Associates Ltd. (Baird) was retained by the Minerals Management Service (MMS)
for execution of the project “Investigation of Dredging Guidelines to Maintain and Protect the
Integrity of Offshore Ridge and Shoal Regimes/Detailed Morphologic Evaluation of Offshore
Shoals”. The purpose of this study was to formulate and recommend offshore dredging
guidelines to protect and maintain the integrity of the ridge and shoal features found on the Outer
Continental Shelf (OCS) which are being targeted as sand borrow sites for beach nourishment
and coastal restoration efforts.

A series of investigations were completed in the present study to support the guidelines through
an improved understanding of the morphologic evolution of ridge and shoal features. These
investigations included a field measurement program, analysis of historic data and numerical
modeling.

The field measurements involved deployment of three Acoustic Doppler Current Profilers
(ADCP) for 3 months (March to May 2007) to measure waves and currents in the study area.
Sediment sampling and analysis and limited hydrographic survey of Isle of Wight were also
completed. A number of severe storm events were recorded by the ADCPs during the three-
month deployment and provided invaluable insight on various driving forces contributing to
costal processes in the study area. Measured current velocities indicated the presence of both
tidal and subtidal (storm-driven) current components. Further analysis of ADCP data indicated
that synoptic scale pressure gradients associated with nor’easters result in large scale circulations
that play an important role in movement of sediment in the study area. Initial sediment transport
calculations indicated that the contribution of subtidal currents is as important as that from
nor’easter waves themselves.

Analysis of water surface elevations measured by the ADCPs indicated that tides in the study
area are very similar in range to those measured at Atlantic City. This is despite the fact that
Ocean City is much closer to the present site and all hydrographic surveys are referenced to
Ocean City datum. It is, therefore, important to deploy a tide gage in the survey area at the time
of any hydrographic survey. Two hydrographic surveys of the leading (SW) edge of Isle of
Wight were completed in March 2007 and January 2008 and compared with each other. It was
found that errors commonly involved in a hydrographic survey are comparable in magnitude to
the annual slow rate of change of bottom morphology in the study area, affecting short-term
bathymetry comparisons.

Long-term morphological evolution of Isle of Wight was investigated in GIS using surveys from
1929, 1975 and 2002. All surveys were referenced to MLLW at Ocean City, and the effect of sea
level rise was taken into account (~ 4 mm/year). The 1929-2002 comparison showed an overall
southward movement of the shoal, while the comparison between 1975 and 2002 surveys
indicated a movement in SW direction. The reasons behind the differences observed between
1929-2002 and 1975-2002 comparisons are not clear. One possibility could be long-term
(decadal or longer) shifts/variations in the wave and current climate of the area.
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A dimensional analysis of shoal parameters was completed. More than 180 offshore shoals were
identified and analyzed in the study area offshore Delmarva Atlantic Coast. The dataset contains
a wide range of shoals resulting in large scatter when shoal parameters are plotted against each
other. A universal relationship was not observed between those parameters. Nevertheless,
several important trends provided insight into shoal behavior and morphologic evolution. The
data suggests that wave influence on the shoals is limited to shoals with Base Depth of less than
30 m. Waves were found to be the primary factor in shoal height growth and maintenance (as
opposed to currents that have a greater influence on shoal migration).

The analysis suggested that there is a Shoal Height Growth Zone between 10 m and 30 m depth.
This zone was further divided into two areas. In the 10 m to 20 m depth range, shoals can
potentially grow in height up to the minimum Crest Depth of 5 m. In the 20 m to 30 m depth
range, shoals may still grow but to a lesser extent. The 20 m to 30 m Base Depth range is a
transition zone over which the predominant forcing changes from wave-dominated at 20 m depth
to current-dominated at 30 m depth.

The Relative Shoal Height defined as the ratio of shoal Height to Base Depth (H/BD) was found
to be an appropriate indicator of the shoal Height growth. The maximum Relative Shoal Height,
(H/BD)pmax, varies from 0.5 at 10 m depth to 0.75 at 20 m depth. A shoal that has reached the
maximum relative shoal height of its Base Depth may be considered as a fully grown shoal (in
height) at that depth, but may still grow under rising sea levels. A fully grown shoal is more
likely to re-grow and rebuild itself to the same height upon being dredged. Shoals located in
waters deeper than 30 m show a decrease in height with increasing depth representing a possible
Shoal Height Decrease Zone beyond 30 m depth. These shoals are not expected to grow and will
not recover in height once they are dredged.

Numerical modeling of long-term morphologic evolution of the shoals proved to be a challenge.
One of the difficulties was regarding representation of subtidal currents in the model.
Calculation of large scale circulations and corresponding subtidal currents across Northwestern
Atlantic Ocean requires complicated coupled meteorological and hydrodynamic modeling which
is not currently available. Given the importance of subtidal currents, it was decided to use
measured wave and flow conditions as the input driving force to the shoal morphology evolution
model. Therefore, model input driving forces (waves and currents) had to be assembled from a
variety of sources including MARCOOS (Mid-Atlantic Regional Coastal Ocean Observing
System) high frequency radar surface current data for currents and various NDBC Buoy data for
waves.

An analysis of calculated wave field over the shoals by standard (half-plane) spectral wave
models and its sensitivity to wave direction and grid orientation indicated that even if the models
are applied within their recommended +45° limitation, they cannot accurately simulate wave
transformation processes over offshore shoals. Generally, these shoals feature a number of
slopes in various directions and provide severe conditions for refraction and wave focusing
calculations by conventional half-plane spectral wave transformation models. This results in
inaccuracies in calculated wave directions even if the models are applied within their
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recommended +45° limitation. A full-plane model (SWAN) was used for the current
morphology simulation effort to improve the accuracy of wave direction calculations.

The numerical model was used to simulate long-term evolution of the existing Isle of Wight
shoal conditions. Comparisons with 1929, 1975 and 2002 surveys indicated that the predicted
future shoal morphology represents the overall historic evolution and movement of Isle of Wight.
The model thus has the capability to evaluate and compare the impacts of various dredging
scenarios. Modeling results also indicated that waves are the primary factor in shoal growth and
maintenance while currents are more responsible for shoal migration.

A total of 11 shoal dredging scenarios were considered and model runs completed for each
scenario. In each scenario, the Isle of Wight was partially excavated to the -10 m contour to
provide sand volumes in the range of 1 to 2 million cubic meters. The model was run to predict
change in morphology over a 10 to 15 year period. The results provided valuable insights on
response of different dredging plans that were used for the development of dredging guidelines.

It was found that after removal of material from a shoal, the shoal reforms itself with a smaller
volume due to removal of the sediment. In other words, the volume taken by dredging is not
compensated by transport of material from outside of the shoal. However, despite the reduction
in volume, the reformed shoal may attain the same height as that of the pre-dredge shoal
conditions for certain dredging scenarios. Although shoals get smaller as a result of dredging,
there was no evidence of possible shoal diminishing/deflation after dredging. In other words,
there was no indication that there exists a critical threshold for dredging that once crossed, ridge
and shoal features may deflate, losing their morphologic integrity.

A series of dredging guidelines were provided with the objective to provide dredging practices
that result in a reformed shoal that has the same height as the pre-dredge shoal. The provided
guidelines are not universal and are recommended for the shoals in the area offshore Delaware,
Maryland and Virginia between Delaware Bay and Chesapeake Bay.

Similar guidelines are expected to apply to shoals in areas other than present study area. Details,
however, would be dictated by local wave and current conditions. It is recommended that a
similar study be completed for other regions. The study should involve analysis of historic
bathymetry data to determine shoal migration trends, field measurements of waves and currents
to identify the driving forces involved, dimensional analysis of shoal parameters to define those
parameters critical to shoal integrity, and long-term morphological numerical modeling to
evaluate dredged shoal response.
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APPENDIX A
Time Series of ADCP Measurements
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APPENDIX B
Time Series of the Developed One-year Wave and Current Input Data
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Baird & Associates

Bias:

Bias is the difference between the variable and the expected value of the estimator of the
variable.

Bias = (y —X)
Root Mean Square Error (RMSE):

RMSE is the measure of total error defined as the square root of the sum of the variance and the
square of the bias.

RMSE = /1/nY  (y, - %)

Scatter Index (SI):

Root Mean Square Error divided by Bias

Sl = S/ (s - 9) = (% = %))
X

Scatter Index (Bias Removed):

S =1/nY ((y; = Y) - (, — X))’
Correlation Coefficient (r):

Correlation (CC) or “r” is a measure of the closeness of the relationship between two or more
variables. Correlation coefficients can range from -1.00 to +1.00. Perfect negative correlation is
represented by —1 and perfect positive correlation is given by +1.0, while a value of 0.0
represents a lack of correlation

Z(Xi - 7)(yi - )_/)
V2 =% Y (v, - 9)

CC =

Appendix C



	MMS Guidelines-Final Report
	Appendix A
	Appendix B

