

OCS Scientific Committee Meeting May 2014

Doug Piatkowski

Physical Scientist

Office of Environmental Programs Division of Environmental Assessment

Douglas.Piatkowski@boem.gov

Page #	Discipline	Title	Rank
367	FE/HE	Ecological Function and Recovery of Biological Communities within Dredged Ridge-Swale Habitats in the South-Atlantic Bight	1
371	FE/HE	Development of a Decision Support Tool to Reduce Sea Turtle Dredging Entrainment Risk	2
373	IM	Managing Dredge Impacts by Optimizing the Use of Sand Resources	3
377	FE	Sediment Sorting During Coastal Restoration Projects: Implications for Resource Management, Environmental Impacts, and Multiple Use Conflicts	4
FE = Fates & Effects		HE = Habitat & Ecology IM = Information Management	

BOEM Information Needs:

- Determine the extent of sediment sorting during dredging, handling, and placement processes
- Quantify the losses and percent changes of fine-grained material through the full hopper dredging life-cycle
- Evaluate environmental trade-offs and inform impact assessments

Date Information is Required:

 Ongoing need for current and future projects

Marine Minerals Program

Background:

- <u>State Sediment Compatibility Requirements</u>:
 - Grain Size Distribution
 - *FL*: \leq 5% fines
 - *NC:* < 5% fines over the native
- Borrow Area Screening:
 - "Compatibility" exclusion criteria:
 - Borrow source vs. native beach

• <u>Current Assumptions</u>:

- Overly precautionary relative to limited sand sources
- No consideration of project life cycle losses and associated resource consequences and tradeoffs
- Screening borrow sources towards more environmentally sensitive areas (i.e., sand ridges, shoals, etc.)

Marine Minerals Program

Current Borrow Area "Compatibility" Screening Process

Mechanical Losses Associated with Dredging and Placement Operations

(1) Draghead

(4) Productive Load

(2) Inflow

(3) **Overflow**

5) Re-Slurry/Pumpout

(6) Placement

Background:

A) Relationship with Previous Efforts

•USACE Engineer Research and Development Center (ERDC):

 Hopper overflow and plume dynamics associated with dredging fine-grained sediment

International Literature:

 Niche topics with respect to overflow sedimentation and plume dynamics

•USACE Jacksonville District –Sediment Assessment and Needs Determination (SAND) Study:

• In-situ vs. post construction sediment data

Marine Minerals Program

Background:

B) Relationship with Concurrent/Future Efforts

- USACE Jacksonville District

 Evaluating sediment behavior throughout the dredging and placement process
 - •No existing studies quantifying losses through the full project life cycle relative to resource implications

Marine Minerals Program

Study's Objectives:

 Quantify changes in sediment characteristics (i.e., grain size, sorting) and the degree, timing, and variability of sediment sorting during dredging, pump-out, and placement operations

Marine Minerals Program

Study's Methods:

- **Repeat sediment sampling** Four operational phases:
 - 1. Borrow area,
 - Within the hopper
 Pipeline discharge

 - 4. Constructed beach
- **Turbidity/suspended sediment measurements**
- ADCP backscatter/particle imaging videography: Document lacksquaresediment transport and settling dynamics and quantify overflow losses
- Sediment tracers
- Laboratory analyses sediment grain size, color, sorting, ulletflocculation behavior, and settling velocity

Marine Minerals Program

Additional Pertinent Information

- Partnership and Collaboration:
 - USACE Districts, USACE ERDC, state agencies, dredging contractors, engineering firms, and other vested stakeholders

• Leveraging Opportunities:

- Existing pre-construction and post-construction monitoring efforts
- Existing research efforts
- <u>Technical and Cost Ramifications</u>:
 - Close coordination and partnership with dredging contractors to minimize non-productive time