Chemo III: Site Selection Criteria and Procedures

Harry H. Roberts

Coastal Studies Institute Department of Oceanography & Coastal Sciences School of the Coast & Environment Louisiana State University

Presentation Points

- Complex Geologic Framework
- Unique Database for Continental Slope
- Prioritization of Sites to be Sampled
- Site Characteristics

Louisiana Continental Slope

Geologic Configuration of the Northern Gulf of Mexico

(From Peel et al. 1995)

Cross-Continental Margin Structural Styles

N

S

(From Rowan 1995)

Louisiana Continental Slope

Seafloor Reflectivity and Gas Migration Relationship

Data Characteristics and Procedures

- 1. Used GeoQuest's IESX Interpretation Software
- 2. Seafloor Identified (Auto- and Hand-Picked) Generally a Strong Reflector
- 3. Posted Seafloor Amplitude Extraction for Survey and Selected Sites of Interest
- 4. High Positives Hard-Bottom Areas
- 5. Low Positives or Negatives Gas-Rich Sediments
- 6. Plan-View Amplitude Patterns Flows, Cones, etc.
- 7. Seismic Profiles Identify Migration Pathways
- 8. Care Taken to Identify Non-Expulsion Anomalies

Most work on hydrocarbon seeps and their communities/geology was concentrated on the upper slope (<1,000 m WD). Middle and lower slope largely unknown territory.

Time-Table for Major Project Milestones

DSV Alvin (2006)

- Oct. 2005–March 2006 (Choose Dive Site Pool)
- March 2006 (Photo Recon Cruise)
- May–June 2006 (Alvin Cruise)

ROV Jason (2007)

- March 2007 (AUV Data Collection)
- February–April 2007 (New Site Selection)
- June–July 2007 (Jason II Cruise)

Potential ALVIN Dive Sites

Final ALVIN Dive Sites

Final ALVIN and JASON II Dive Sites

Deployment of HUGIN AUV

Advantages of the AUV

- Survey Speed 4 kts Deep Tow 2.5 kts.
- Line Turns Made in Minutes Deep Tow = Hours
- AUV Better Navigation Corrects for Currents
- AUV Maintains Constant Height Above Bottom

Seafloor Verification and Site Characteristics

AT 340 Location Map

AT 340 Site Map

AT 340 Geologic Framework

- Site: Salt-Supported Bathymetric High
- Fluid-Gas Expulsion: Fault-Controlled Migration Pathways
- Bathymetry: Complex Mound
- High Seafloor Amplitudes: Scattered at Mound Crests
- Moderate Seafloor Amplitudes: Off Mound Flows

AT 340 Bathymetry

AT 340 3-D Seismic Surface Amplitude Map

AT 340 3-D Seismic Profile

AT340 Multibeam Bathymetry

AT340 Backscatter

AT340 Gradient

AT340 Multibeam Bathymetry

Line 304

AT340—Line 304

AT340 – Line 402

AT 340 Extensive Mussel Communities and Associated Carbonates

AT 340 Tube Worm "Bushes" at Edges of Carbonate Slabs

AT 340

AT 340

Dolomite

AT 340 Seafloor Characteristics

- ALVIN Dives: 5
- High Amplitudes: Extensive Lithifiction (Blocks and Pavement)
- Low Amplitudes: Expulsion Centers
- Abundant Mussel Beds, Tube Worms, Urchins (Some Soft Corals)
- NW Mound: Brine, Hydrocarbons, Fluidized Sediment (Mussel Shell Pavements-Blocks

GC 852 Location Map

GC 852 Site Map

GC 852 Geologic Framework

- Site: Salt-Supported Ridge (WD ~1450 m)
- Bathymetry: N-S Ridge > 200 m Relief
- High Seafloor Amplitudes: Along Ridge Crest and West Flank
- Oil Slicks Over Site
GC 852 3-D Seismic Surface Amplitude Map

GC 852 E-W Oriented Profile

GC852 Multibeam Bathymetry

GC852 – Line 609

GC 852 Hard Corals on Authigenic Carbonate Substrates

GC 852 Gorgonians (soft corals) in a Strong Current

GC 852 Tube Worms, Mussels, Shells, and Carbonates

GC 852

GC 852

GC 852

High Mg-Cal. 2500x

Pyrite 2000x

Aragonite 200x

GC 852 Seafloor Characteristics

- ALVIN Dives: 5
- High Amplitudes: Extensive Lithification (Blocks and Pavement)
- Mussel Beds, Tube Worms, Clams Along Crest
- Hard and Soft Corals on Authigenic Carbonates (Strong Current)

AC 601 Location Map

AC 601 Site Map

AC 601 Geologic Framework

- Site: Sigsbee Escarpment Reentrant (WD ~2340 m)
- Fluid-Gas Expulsion: Breached Anticline
- Bathymetry: Complex
- High Seafloor Amplitudes: Around Localized Expulsion Sites (4 in AC 601)
- Brine Seepage

AC 601 3-D Seismic Surface Amplitude Map

AC601 Multibeam Bathymetry

AC601 Backscatter

AC601 – Line 105

Acoustically opaque area

Acoustically opaque area

AC601 – Line 105

AC 601 Barite Crystal "Rafts" in Brine Lake

AC 601 Barite "Clots" Along Brine Lake Shoreline

X-Ray Diffraction (Long Scan) Filtered Sample, Crystal Rafts – Brine Lake (AC601)

2-fheta (*)

AC 601 Brine Lake Sample

AC 601 Seafloor Characteristics

- ALVIN Dives: 2
- Low Amplitude: Depression with Brine
- Brine Lake: ~4 m Deep, ~180 m Diameter
- White Crystalline "Flocs" in Brine, Lake Bottom
- Scattered Mussels, Clams, Tube Worms, Urchins Around Lake
- High Amplitudes: Local Lithification Around Lake

AC 818 Location Map

AC 818 Site Map

AC 818 3-D Seismic Surface Amplitude Map

AC 818 Geologic Framework

- Site: Seaward of Sigsbee Escarpment (WD ~2775 m)
- Seepage: Along N-NE to S-SW Trending Fault
- Bathymetry: Simple
- High Seafloor Amplitude: Localized
 Along Fault

AC 818 Clam Beds Distributed Along Fault

AC 818 Urchins Exploiting Reducing Sediment

AC 818 Tube Worm "Bush" and Mussels Along Fault

AC 818

AC 818 Seafloor Characteristics

- ALVIN Dives: 2
- Narrow Belt of Chemosynthetic Communities
- Lucinid-Vesycomyid Clam Beds Common
- Localized Mussels, Tube Worms, Urchins, Carbonates
- Community Scale: Generally Below Seismic Resolution

Carbonate Mineralogy

C and **O** Isotope Values

Summary

- 3D-Seismic Surface Amplitude Mapping Identifies 1,000s of Slope-Wide Anomalies
- Manned Submersible and ROV Dives Confirm Amplitudes Products of Fluid and Gas Expulsion
- Chemosynthetic Community Sites for DSV ALVIN and ROV Jason Dive Identified by This Method ('06 and '07 Cruises)
References

- Peel, F.J., C.J. Travis, and J.R. Hossack. 1995. Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico: A preliminary analysis. In: Jackson, M.P.A., D.G. Roberts, and S. Snelson, eds. Salt Tectonics: A Global Perspective. American Association of Petroleum Geologists Memoir 65. Pp. 153– 175.
- Rowan, M.G. 1995. Structural styles and evolution of allochthonous salt, central Louisiana outer shelf and upper slope. In: Jackson, M.P.A., D.G. Roberts, and S. Snelson, eds. Salt Tectonics: A Global Perspective. American Association of Petroleum Geologists Memoir 65. Pp. 199–228.