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Introduction
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Charismatic megafauna Charismatic meiofauna/macrofauna?
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Nutrition at seeps

• Most data from large fauna that host endosymbiotic chemoautotrophic 
bacteria 
– Via SIA, autotrophic enzyme analysis, electron microscopic studies, molecular 

sequencing of symbionts
– Both methane and sulphur-based symbioses fuel tubeworms, mussels and 

clams  (e.g., Childress et al. 1986; Brooks et al. 1987; Fisher et al. 1993; Peek 
et al. 1998)

• SIA reported for larger, megafaunal heterotrophic species from GOM seeps 
(Brooks et al. 1987; Fisher 1996; MacAvoy et al. 2002, 2005, 2008)

• Nutritional relations of smaller macro/meiofaunal seep associates not well 
understood



Nutrition for infauna
• Food-limited deep sea: what are 

they eating?
• Major options include

– Organic matter derived from 
chemosynthetic endo/ectosymbionts

– Heterotrophic consumption of free-
living chemosynthetic 
bacteria/archaea

– Consumption of photosynthetically-
fixed material deposited from above



Nutrition for infauna
• SIA revealed different food resources 

utilized 
– Symbioses (nematodes: Dando et al. 1991, 

Jensen et al. 1992)
– Local chemosynthetic production (Levin and 

Michener 2002; Van Dover et al. 2003)

• Macrofaunal reliance on chemo-derived 
sources may be depth dependent

• Nutritional relations for seep associates 
(infauna) in the lower slope GOM 
remain unknown

(see reviews by Conway et al. 1994; Levin 2005; Van Dover 2007)



Objectives

• To determine which, if any, infauna derive their 
nutrition from chemosynthetic production

– δ13C, δ15N analyses were used to investigate trophic 
linkages among the macrofauna (infauna) closely 
associated with seep environments



Phytoplankton derivedMethane  based Sulfide oxidation

Chemosynthetic Habitats

• Very negative tissue carbon values (δ13C < -45 ‰): 
methane derived carbon

• Carbon fixation fueled by energy derived from sulfide 
oxidation: δ13C  = -27 to -40‰. 

• Phytoplankton derived organic matter: δ13C  = -15 to -25 ‰

cf. Kennicutt et al. 1992; Levin and Michener 2002, references therein





Methods

• Box core samples
• 33 cm2 push cores

– Infaunal community 
analysis

– Stable isotopes
– Sediment porewater

chemistry, particle size 
and organic c/n
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Map of atwater valleyAtwater Valley

Sampling Depth: ~ 2,200 m
Distance to closest seep:  75-260 m

Sampling locations
Known seep communities

Multibeam courtesy of  MMS/OE Chemo III Study P.I.s
Seep locations from TDI-Brooks 2006 
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Green Canyon
Sampling Depth: ~ 1,400 m
Distance to seeps:  27–1,000 m

Sampling locations
Known seep communities

Multibeam courtesy of  MMS/OE Chemo III Study P.I.s
Seep locations from TDI-Brooks 2006



Infauna
Primary Sources

Green Canyon
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Alaminos Canyon
Sampling Depth: ~ 2,400 m
Distance to closest seep:  78 m

Sampling locations
Known seep communities

Multibeam courtesy of  MMS/OE Chemo III Study P.I.s
Seep locations from TDI-Brooks 2006
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Alaminos Canyon
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AT Infauna

AC Infauna

GC Infauna

Infauna and epifauna from seeps and 
background sediments 
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Results and Discussion
• SI values of heterotrophic macroinfauna exhibited a 

large range in δ13C and δ15N values
– Lightest 13C values likely reflect input from methane-derived 

carbon 
– Most infauna had intermediate isotope values (maybe mixed 

diet)
– Few taxa exhibited values consistent with phytoplankton-

derived diets

• Three lower slope sites yielded similar average isotope 
values

• Results consistent with other seep ecosystems



Discussion: Macrofaunal Nutrition
• Large range in isotope values may reflect species-

specific differences in the importance of 
chemosynthesis 

• Light δ13C values have been reported for nematodes 
(Levin and Mendoza 2007)

• Light δ15N values reported for several seep-associated 
taxa (MacAvoy et al. 2002, 2005, 2008; Carney 2008)

• Majority of macrofauna at deep seeps exhibit stable 
isotopic evidence of chemosynthesis-based nutrition



Conclusions
• Surprising how spatially widespread these 

chemosynthetic signals are among infaunal
communities

• Chemosynthetic bacterial mats can be extensive 
(Sassen et al. 1993), potentially fueling these 
communities (cf. Kelley et  al. 1998, Gilhooly et al. 
2007)

• Future work includes
– Community comparisons, sediment and porewater

characteristics
– Linking infauna to higher trophic levels
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