Detecting a Greenhouse Gas Warming Signal Using Only Maximum Daily Temperatures

Richard McNider

Arastoo Biazar

William B. Norris

Justin Walters

Xingzhong Shi

University of Alabama in Huntsville

The essence of concern in anthropogenic greenhouse gas (AGHG) warming is the accumulation of heat in the atmosphere and ocean. Such accumulation is thought to possibly impact climate and climate regimes.

Past models and theory suggest that AGHG accumulated warming should be largest in the mid-upper troposphere

Most global data sets constructed to attempt to detect this warming use a mean daily surface temperature (average of Tmin and Tmax).

"Global" Surface Temperature

Are Mean Surface Temperatures a Proper Metric for Detecting Tropospheric Heat Accumulation

This asymmetry in warming is one of the most significant signals in the observed climate record

- The reasons for this asymmetrical rise have been subject to considerable debate
- 1. Increased cloudiness (Dai et al.1999)
- 2. Urbanization (Balling and Idso, 2002, Gallo et al. 1999)
- 3. Surface moisture/irrigation (Durre and Wallace, 2001, Christy et al. 2006)
- 4. Greenhouse gases (Cao et al. 1992, Stone and Weaver 2003)
- 5. Aerosols (Charlson et al. 1992, Dai et al. 1997)
- 6. Contrails (Travis et al. 2004)
- 7. Stable boundary layer dynamics Walters et al. 2007

While the reasons for the night time warming are subject to debate it makes up a significant part of the warming in the surface instrumental record that has been part of the call for greenhouse gas reductions. GHCN and Average GCM Trend Differences (TMAX - TMIN) for Global Land Surface Temperatures

Day vs. Night Surface Temp

Nighttime - disconnected shallow layer/inversion. Temperature affected by land-use changes, buildings, farming, etc. Daytime - deep layer mixing, connected with levels impacted by enhanced greenhouse effect. Larger wind speeds increase footprint of measurements. Is this night time warming really a signal of the accumulation of heat due to anthropogenic greenhouse gases (AGHG)?

Is the night time boundary layer a good place to detect the accumulation of heat in the atmosphere due to anthropogenic greenhouse gases (AGHG)?

Nighttime Temperatures Are Extremely Sensitive to Land Use Change

Nighttime stable boundary layers are quite shallow, usually less than 500 m and often less than 200m. Their very existence signals a decoupling between the surface and the atmosphere above.

Runnals and Oke (2006) concluded that nighttime temperatures and/or the amount of stabilization are highly sensitive to surface land characteristics .

In fact they concluded that differences in climate temperature trends at night between closely space stations is evidence of changes in land use. They showed that the nighttime temperatures are much more sensitive to urbanization/land use change than daytime temperatures.

Surface temperature collapses to a cold state

Surface temperature remains warm

Use of Nonlinear Analysis to Explore Climate Sensitivity

Rather than integrating the ODEs numerically we employ some recent tools in nonlinear analysis to explore the behavior of the system of equations. The primary tools are numerical continuation that can trace out the equilibrium bifurcation diagram, determine special bifurcation points and compute the eigenvalues of the system as a function of the bifurcation parameters.

- McNider, R.T., D.E. England, M.J. Friedman, and X. Shi. 1995. On the predictability of the stable boundary layer. J. Atmos. Sci. 52(10):1602–1614.
- Shi, X., R.T. McNider, D.E. England, M.J. Friedman, W.Lapenta, and B. Norris. 2005. On the behavior of the stable boundary layer and role of initial conditions. Pure Appl. Geophys. 162: 1811–1829.
- Walters, J., R. McNider, X.Shi, W. Norris, and J. Christy. 2007. Positive surface temperature feedback in the stable boundary layer. Geophys. Res. Lett. 34:L12709.

Bifurcation Diagrams

Layer 1 temperature versus geostrophic wind U_g

Parameters Impacting Surface Temperature Trends

Heat Capacity

Heat capacity of the surface in a grid model is highly uncertain and in fact is more a model heuristic than a fundamental physical parameter. (McNider et al. 2005)

Surface heat capacity increases with moisture and vegetative fraction.

Irrigation increases heat capacity.

Urbanization can increase heat capacity and conductivity.

MODIS 21 Jul 2002

Jacques Descloitres MODIS Land Rapid Response Team NASA GSFC

CA Valley and Sierra (Jun-Nov) 1910-2003

Christy et al. 2006

Parameters Impacting Surface Temperature Trends

Increased Downward Longwave Radiation

Greenhouse gases have increased downward radiation 2–4 watts/sq meter (Walters et al. 2007)

Cloud cover also implicated in nighttime warming

To first order temperature response to IR forcing will depend on boundary layer height

For a given IR forcing, warming will depend inversely (but perhaps not linearly) on boundary layer depth. Thus, temperature response will be greater at night than day (Eastman et al. 2001)

Region of Interest

Green House Gas Supplement (W m⁻²)

Additional longwave heating from clouds vs air temperature (5 m)

Increases in downward radiation and/or increases in surface heat capacity or roughness act to make the stable boundary less stable

This decreased stability in certain parameter spaces causes the surface to be more connected with the air aloft leading to enhanced warming

Thus, this acts as a positive climate feedback in that slight changes in parameters can lead to large changes in temperature.

However, it is not a net energetic increase but only a redistribution of heat !

Temperature Difference profiles - (GHG-CNTRL)

East Africa Temperature Trends

How well do GCM handle these processes?

While most GCMs have some stability dependence in their surface layer schemes the parameterization is often crude and heavily engineered.

Higher resolution boundary layer models generally have a closure scheme dependent on turbulent kinetic energy (TKE) equations or Richardson Number analogues.

$$\frac{\partial (TKE)}{\partial t} \approx K_m (\frac{\partial}{\partial} \frac{V}{z})^2 + K_h \frac{g}{\vartheta} \frac{\partial \vartheta}{\partial z} + dissipation$$
shear generation buoyancy suppression
Ratio of buoyancy term
and shear generation term
is the Richardson Number
$$Ri = \frac{g}{\vartheta} \frac{\partial}{\partial z} / (\frac{\partial}{\partial} \frac{V}{z})^2$$

The problem with implementing these closures in large scale models is that the closure is grid dependent

$$Ri = \frac{g}{g} \frac{\partial g}{\partial z} / (\frac{\partial}{\partial} \frac{V}{z})^2$$

While the Richardson Number is dimensionless it is dependent on grid size

$$Ri = f(\Delta z)$$

As the vertical grid size increases Ri becomes larger. Thus, mixing becomes less.

Large scale models fight this tendency of too little mixing. In the stable boundary layer, the model nearly always wants to go to the cold solution (Beljaars and Vitirbo 1998, Steeneveld et al. 2006) and in fact to a runaway cooling.

Modelers engineer around this by adding more mixing or using stability functions with more mixing (Louis profiles)

GCM's lose their sensitivity to landuse change and downward radiation by having long-tailed stability functions

FIG. 7. Various stability functions for turbulent exchange as a function of the bulk Richardson number. The dots correspond to the *time-averaged* (30 min) values of the stability function during an intermittent run with the original quadratic stability function used in each time step

While engineering fixes keep the model within reasonable parameter spaces the, models lose much of their dynamic dependence on changes in stability.

Thus, GCMs in general would not capture the boundary layer climate feedback responses discussed here.

Night Surface Temp

Nighttime – disconnected shallow layer/inversion. But this situation can be sensitive to small changes such as roughness or heat sources. Buildings, heat releasing surfaces, aerosols, greenhouse gases, etc. can disrupt the delicate inversion, mixing warm air downward affecting TMin.

- 1. Minimum temperature trends are easily influenced by land use change.
- 2. Minimum temperatures only measure a shallow layer.
- 3. Mimimum temperatures are very sensitive to radiative forcing from enhanced greenhouse gases, clouds and aerosols. But these temperature changes are largely due to a redistribution of heat.
- 4. Models don't handle night-time boundary layers very well.
- So why use night-time temperatures to detect accumulation of heat due to CO2 climate change?
- Better to use measurements of deep atmosphereballoons or satellite or surface maximum temperatures.

True Color Earth

by WeatherStreet.com

Global Bulk Atmospheric Temperatures UAH Satellite Data

Douglass et al. 2007

Conclusions

Above evidence suggests that Tmin is a <u>terrible</u> way to track the accumulation of heat from anthropogenic greenhouse gases in the deep atmosphere.

Maximum temperatures (Tmax) have a better chance of detecting heat accumulation in the deep atmosphere

- A. Tmax usually represents a deep measure of temperature since daytime temperatures are generally well mixed up to 1 km or 2 km.
- B. Larger average wind speeds means the horizontal foot prints of the measurements are larger and less sensitive to local land use change.
- C. Tree rings which are a prime way to extend the past climate record beyond the instrumental era are evidently better correlated with maximum temperatures (Wilson and Luckman 2003)

Opinion: In general, surface temperature data sets as now constructed have numerous flaws. They are not sufficient to make key public policy decisions.

References

- Balling Jr., R.C. and C.D. Idso. 2002. Analysis of adjustments to the United States Historical Climatology Network (USHCN) temperature database. Geophys. Res. Lett. 29(10):1387, doi: 10.1029/2002GL014825
- Beljaars, A.C.M. and P. Viterbo. 1998. The role of the boundary layer in a numerical weather prediction model. In: Holstlag, A.A.M. and P.G. Duynkerke, eds. Clear and Cloudy Boundary Layers. Amsterdam: Royal Netherlands Academy of Arts and Sciences Pp. 287–304.
- Cao, H.X., J.FB. Mitchell, and R. Lavery. 1992. Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled CO2 climates. J. Climate 5:920–943.
- Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hoffman. 1992. Climate forcing by anthropogenic aerosols. Science 255:423–430, doi:10.1126/science.255.5043.423

- Christy, J.R., W.B. Norris, K. Redmond, and K.P. Gallo. 2006. Methodology and results of calculating Central California surface temperature trends: Evidence of human-induced climate change? J. of Climate 19:548–563.
- Dai, A., I. Y.Fung, and A. Del Genio. 1997. Surface observed global land variations 1900–1988. J. Climate 10:2943–2962.
- Dai, A., K.E. Trenberth, and T.R. Karl, 1999. Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate 12:2451–2473.
- Douglass, D.H., J.R. Christy, B.D. Pearson, and S.F. Singer. 2007. A comparison of tropical temperature trends with model predictions. Int. J. Climatol. 27, doi: 10.1002/joc.1651.

- Durre, I and J. Wallace. 2001. The warm season dip in diurnal temperature range over the eastern U.S. J. Climate 14:354–360.
- Eastman, J.L., M.B. Coughenour, and R.A. Pielke. 2001. The effects of CO2 and landscape change using a coupled plant and meteorological model. Global Change Bio. 7:797–815.
- Gallo, K.P. and T.W. Owen. 1999. Satellite-based adjustments for urban heat island temperature bias. J. Appl. Meteorol. 38:806–813.
- McNider, R.T., W.M. Lapenta, A. Biazar, G. Jedlovec, R. Suggs, and J. Pleim. 2005. Retrieval of grid scale heat capacity using geostationary satellite products: Part I: Case-study application. J. Appl. Meteor. 88:1346–1360.

- Runnalls, K.E. and T.R. Oke. 2006. A microclimatic technique to detect inhomogeneities in historical records of screen-level air temperature. J. Climate 19:959–978.
- Steeneveld, G.J., B.J.H. van de Wiel, and A.A.M. Holtslag. 2006. Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci. 63:920–935.
- Stone, D.A. and A.J. Weaver. 2003. Factors contributing to diurnal temperature range trends in the twentieth and twenty first century simulations of the CCAma coupled model. Climate Dynamics. 20:435–445.
- Travis, D.J., A. Carleton, and R. Lauritsen. 2004. Regional variations in U.S. diurnal temperature range for the 11–14 September 2001 aircraft groundings: Evidence of jet contrail influence on climate. J. Climate 17:1123–1134.

- Van de Wiel, B.J.H., R.J. Ronda, A.F. Moene, H.A.R. De Bruin, and A.A.M. Holtslag. 2002. Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci. 59:942–958.
- Walters, J.T., R.T. McNider, X. Shi, W.B. Norris, and J.R. Christy. 2007. Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys. Res. Lett., 34:L12709, doi: 10.1029/2007GL029505.
- Wilson, R.J.S. and B.H. Luckman. 2003. Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendrocronologia 20:257–268.