Quantitative Image Analyses of Cold Seep and Hard Ground Communities on the Lower Louisiana Slope

Ian MacDonald Stephanie Lessard-Pilon

CHEMO III Program

25th Minerals Management Service Information Transfer Meeting

The French Quarter * New Orleans * January 6 - 8, 2009

PENNSTATE

Supporting Program

Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico: Minerals Management Service, NOAA Ocean Exploration

Contributing Investigators CHEMO III project team TAMUCC Students: Mikell Smith, Oscar Garcia, Doug Weaver, Brenna Williams, Shannon Strong, Adriana Leiva

Photographic studies of seep & coral communities on outer slope

- Replicated photograph samples taken with scale and position control and distributed with a nonbiased design
 - Measure extent and distribution of fauna & habitats over large areas (ie 250x250 m)
 - Compare characteristics of communities among representative study sites
- Mosaic of photographs to obtain complete & high resolution study of a single area
 - Potentially complete count of individuals
 - Species-species & species-substrate associations
 - Time-series comparison—long and short term

5 km twt sec 2

AT340

GYRE Reconn CRUISE: 14–28 MARCH 2006

Reconnaissance cruise

ALVIN cruise

JASON 2007: Photo-Survey Sites

AT340 (2), MC640, GC852 (2), WR697, AC601, & AC645

AC601 (brine pool) Radial design

2330

2330

+++ 😧 🎪

2320

Major Habitat Categories

Carbonate & coral

Tube Worm Clusters

Brine pools

Heart Urchin fields

Background

sediment

Bacterial Mats

Variables

Non-living	Living–Chemosynthethic	Living–Heterotrophic
Brine Pool	Bacteria_mat_white	Alcyonacea
Brine Channel	Bac_mat_yellow	Zoantharia
Carbonate rubble	Bac_mat_orange	Actinaria
Carbonate low relief	Bac_spot	Holothurian
Carbonate high relief	Tube worm single	Echinoidea
	Tube worm cluster	Gastropoda
	Pogonophorans	Asteroidea
	Vesicomyidae_single	Ophiuroidea
	Vesicomyidae_cluster	Caridea
	Vesicomyidae	Brachyura
	Bathymodiolus_single	Anomura
	Bathymodiolus_cluster	Galatheid
	Bathymodiolus	Ostracoda
	Bathymodiolus	Amphipods
	Bathymodiolus	Cnidarian
	Bathymodiolus	Fish

Photo-Surveys Completed 2007

<u>Site/survey</u>	<u>No Photos</u>	Total area
AC601	381	3,523
AC645	512	3,922
AT340.West	375	3,309
AT340.East	432	3,623
GB852.North	286	2,854
GC852.South	178	1,319
MC462	176	1,219
WR269	235	1,548
Grand Total	2,575	21,317

Habitat AreasCarbonate (all)Bacterial Mats

Study Sites / Photosurvey

Study Sites / Photosurvey

Animal Abundance (normalized to relative survey areas)

Study Sites / Photosurvey

Animal Abundances (proportional to group totals)

Study Sites / Photosurvey

Photomosaicking

- Enables identification and quantification of megafauna associated with different communities
 - Images enable us to identify megafauna greater than 1 cm in size
 - Photomosaics are entered into a GIS and digitized, allowing densities, coverage areas and associations between organisms to be quantified

Where do we have photomosaics?

Pogonophoran communities

- Previously uncharacterized communities in Walker Ridge 269
- Two separate image collections from 2006 and 2007

Urchin communities

- Also previously uncharacterized communities dominated by Sarsiaster griegi heart urchins found at both Atwater Valley and Alaminos Canyon
- Repeated photomosaics demonstrate rate of movement in these communities

Mixed tubeworm and mussel communities

- Two sites within Atwater Valley were mosaicked in 2006 and repeated in 2007
- One site within Alaminos Canyon was videomosaicked in 1992 and repeated in 2007

Mixed tubeworm, mussel and urchin communities

 One site within Alaminos Canyon was mosaicked in 2006 and repeated in 2007

Species associations at a large mussel bed at Atwater Valley

Habitat-forming faunal and other substrate coverages

Mobile fauna are tightly associated with the presence of live mussels

80% -60% -40% -20% -0% *best and the set of the set of*

Some organisms are strongly associated with other fauna or particular substrates. Asterisks indicate organisms which are non-randomly distributed across substrate types (Bonferroni corrected X^2 test, p < 0.0033).

= 2007

= 2006

Repeated photomosaics permit analysis of changes in community composition and structure over time

• SHORT TIME SCALES:

- Previously uncharacterized communities dominated by Sarsiaster griegi heart urchins (approximate density can be up to 12 urchins per m²) at Atwater Valley 340
- A photomosaic of an urchin community was repeated after 10 days and again after another 2 days
- Preliminary analysis indicates that urchins are capable of moving at a rate of 0.5 m a day, faster than values previously reported in literature for heart urchin movement and sufficient for significant impact on meiofaunal communities

1 meter

Repeated photomosaics permit analysis of changes in community composition and structure over time II

MEDIUM TIME SCALES

- Three sites, two within Atwater Valley 340 and one within Alaminos Canyon 818 were imaged in 2006 and again in 2007
- At both Atwater Valley sites, there are noticeable decreases in small and large mussel coverage suggesting temporal changes in mussel communities over relatively short time scales (as compared to tubeworm communities)

Repeated photomosaics permit analysis of changes in community composition and structure over time III

LONG TIME SCALES

- Tubeworm- and mussel- dominated communities were imaged in 1992 and re-imaged in 2007 at Alaminos Canyon 645
- The area covered by tubeworms has increased while the area covered by live mussels has decreased suggesting successional changes as demonstrated for upper slope communities

1992

2007

Percent substrate cover in 1992 and 2007

Digital Macro Camera

- Hand-held with dedicate light source
- 3.2 megapixel images with macro lens

Rotary time-lapse camera

- Time-series study of mobile fauna
- Unique image presentations for outreach

Photo-Survey Findings

- Drift-camera surveys are a cost-effective method for confirming suspected chemo & coral communities.
- Randomized photo-surveys can be accomplished with efficient use of ROV time.
- Carbonates (of widely varying characterisits) and bacterial mats represent the largest areal coverages, but still occupy < 15% of total area.
- Due to the patchy nature of seepage, small aggregations may escape detection in randomized surveys.

Mosaic Findings

- Specific associations of mobile megafauna with particular habitat-forming organisms and substrates suggest that these organisms are assembling according to habitat or resource-based needs.
- Changes in habitats are quantifiable from year to year
 - All these sites show a progression from areas that have bacterial mat to mussel beds, and from mussels to dead mussels or tubeworms
- Changes at AC 645 over 15 years suggest the same kind of progression as observed over the course of one year. This may be due to successional changes or to cyclical changes over time.

Ongoing Work

- Multi-dimensional scaling studies of survey results with geologic/geophysical characteristics of sites.
- Ecological modeling of species and habitat associations in high-resolution mosaics.
- Technology development for improved macro- and timelapse imaging equipment.