

Habitat Impacts of Offshore Wind and Wave Energy Development

Presented November 2, 2016
at the California Ocean Renewable Energy Conference, Davis, CA
Pete Nelson, PhD and Sharon Kramer, PhD

Offshore Marine Environment

- dynamic
- open water—no obstructions
- light gradient
- thermal structure
- variable O₂ content
- substrate: unconsolidated sediments

solid structure historically large wood, currently anthropogenic

Who Lives Here?

benthos + open water

- invertebrates, sessile and motile
- planktonic organisms
- fishes
- marine turtles
- seals and sea lions
- sea otters
- whales, dolphins and porpoises
- SECOLITICS

 H. T. HARVEY & ASSOCIATES

 Ecological Consultants

Two ecological communities affected BENTHIC and PELAGIC

Benthic Impacts

- scour and winnowing
- hard substrate
- relief—artificial reef effect

SCALE ILLUSTRATION OF A GRAY WHALE WITHIN THE POWERBUOY ARRAY

Scaled full-size adult gray whale - 45 feet (NMFS 2007a).

POWERBUOY AND MOORING SCHEMATIC PowerBuoy Catenary Line Mooring Bridle Tendon Line Power/Fiber Optic Cable Subsurface Float Subsea Pod Subsea Cable to Shore

Installations

Artificial Reef Effect

- rapid colonization certain
- species
 composition
 comparable to
 natural reefs
- likely high recruitment rates

Benthic Ecology

- impact footprint small relative to comparable habitat
- localized areas of higher biodiversity
- fishery and conservation enhancement
- stepping stone effect (whale fall)?

Pelagic Impacts

- structure in open water
- fixed visual reference point
- entanglement of fishing gear

Wind and Wave Energy Conversion Installations as Fish Aggregation Devices (FADs)

Structure

- surface structure
- subsurface mooring gear
- anchors (not shown at left)
- unburied cable?

optimum artificial reef design

- reef set: 400 m³
 minimum for viability
- area of influence: 200-300 m
- max aggregation effect in reef fish w 400 m between groups
- fish biomass 2 orders of magnitude > natural reefs (highly design dependent)

Habitat Concerns

Real	Possible	Unlikely
entanglement of lost fishing gear	entanglement in lost fishing gear	predation effects on spp of concern
artificial reef effect—high local biodiversity	FAD effects select spp in SCB	FAD effects on forage species
	MPA effect	EMF disturbance
		impacts on plankton
		avoidance by migratory animals
Source: H.T. Harvey & Associates		collision by large whales

Conclusions

- anchored structures: linking artificial reef to FAD effects
- oceanography probably reduces effects
- lost fishing gear & entanglement
- conservation & fishery management
- otherwise, many concerns appear to be very low risk, based on consideration of surrogates and animal behavior

H. T. HARVEY & ASSOCIATES

Ecological Consultants

Acknowledgements

Thanks to Scott Terrill, Donna Schroeder, Ann Scarborough Bull, and Christine Hamilton.

www.harveyecology.com