Errata for the

Maryland Offshore Wind

Final Environmental Impact Statement

August 22, 2024

Bureau of Ocean Energy Management Office of Renewable Energy Programs

Errata Overview

The following errata to the Maryland Offshore Wind Final Environmental Impact Statement (FEIS) represent corrections related to technical errors and clarifications.

1. FEIS, Chapter 2, Page 2-5

The initial description of the Proposed Action in Section 2.1.2 did not include the meteorological (met) tower.

The corrected Section 2.1.2 with redline edits now reads:

The Proposed Action (Figure 2-1) is to construct, operate, maintain, and decommission an up to 2.2-GW wind energy facility in the Lease Area, 10.1 miles (16.2 kilometers) off the coast of Maryland. The PDE would consist of up to 121 WTGs ranging from 14 to 18 MW each, up to four offshore substations (OSSs), <u>1 Met Tower</u>, inter-array cables in strings of four to six linking the WTGs to the OSSs, and substation interconnector cables linking the OSSs to each other.

2. FEIS, Chapter 3, Page 3-6

Section 3.1, Table 3.1-1 does not include met towers as an offshore structure source and activity associated with the presence of structures impact producing factor.

IPF	Sources and Activities	Description
Presence of structures	Onshore structures, including towers and transmission cable infrastructure • Offshore structures, including wind turbine generators, offshore substations, <u>met towers,</u> and scour/cable protection	Refers to the post-construction, long-term presence of onshore or offshore structures.

The corrected Table 3.1-1 with redline edits now reads:

3. FEIS, Appendix A, Section A.3.3.2, pages A-14 to A-15

The FEIS incorrectly identified Maryland Department of Natural Resources (MD DNR) as a state cooperating agency.

The corrected list of State Cooperating agencies in Section A.3.3.2 with redlines now reads:

State Cooperating Agencies

• MD DNR

• Delaware Department of Natural Resources and Environmental Control (DNREC)

The corrected text in Section A.3.3.2 with redlines now reads:

MD DNR and DNREC are is serving as a cooperating state agencies agency pursuant to 40 CFR 1501.8 because they have it has special expertise with respect to potential impacts that may occur as a result of the Proposed Action.

4. FEIS, Appendix E, Section E.1.2, page E-2

The text describing missing and incomplete information included partial information on the status of the air modeling at the time of FEIS publication, and incorrectly stated that social cost of carbon was not included in the analysis.

The corrected Section E.1.2 with redline edits now reads:

This EIS is missing air dispersion modeling results showing that actions will be under the National Ambient Air Quality Standards (NAAQS) thresholds. The Applicant submitted a standard Offshore and Coastal Dispersion (OCD) modeling protocol to the Maryland Department of the Environment (MDE) on September 16, 2022. MDE responded December 27, 2022, that an alternative modelling protocol should be used. All alternative modeling protocols require approval by the U.S. Environmental Protection Agency (USEPA) Region 3. On January 26, 2023, the Applicant, USEPA, and MDE met to discuss the alternative protocol review and approval process. The approval process, including receipt of data from USEPA, is expected to take approximately 2 months from submission. Additional mitigation measures may be identified during the best available control technology and modeling processes. On March 10, 2023, US Wind submitted the alternative modeling protocol to MDE, and submitted an OCS Air Permit Application on August 17, 2023. An alternative model request was approved by MDE on September 11, 2023, and the application was deemed administratively complete on January 4, 2024. As part of the technical review, and in response to requests from MDE, the U.S. Fish and Wildlife Service (USFWS) and the National Park Service (NPS) requested that the Lessee provide long-range air transport modeling. On May 23, 2024, US Wind provided a Class I AQRV air quality modeling protocol to address CALPUFF (a multi-layer, multi-species nonsteady-state puff dispersion model) long range transport modeling for assessing Class I area Air Quality Related Values (AQRVs). The nearest Class I areas to the Project are the Edwin B. Forsythe National Wildlife Refuge (the Brigantine Wilderness Area) in New Jersey (126 km), and the Shenandoah National Park in Virginia (290 km). The Class I AQRV protocol was approved by USFWS and NPS on May 29 and June 4, 2024, respectively. The modeling is expected to be submitted in July 2024, and results will not be available for this FEIS. MDE anticipates issuance of the OCS air permits on or before January 4, 2025.

Avoided emission calculations do not conform to updated USEPA Port Emission Inventory Guidance (EPA-420-D-22-011, April 2022). However, the Applicant has utilized the BOEM Offshore Wind Energy Facilities Emission Estimating Tool, Version 2.0 (BOEM 2021) (BOEM Tool), which calculates the avoided emissions by using the EPA's AVERT modeling tool to obtain emission factors for the regional mix of conventional energy sources.

This EIS does not include an analysis of the social cost of carbon both with individual GHG (CO2, CH4, N2O) and with CO2e. However, the Applicant provided GHG emissions (CO2, CH4, and CO2e) from Construction and O&M.

Although a quantitative emissions inventory analysis of the region, or regional modeling of pollutant concentrations, <u>using updated data</u> over the planned project life (25-35 years) would more accurately assess the overall impacts of the changes in emissions from the Project, any action alternative would lead to reduced emissions regionally and can only lead to a net improvement in regional air quality. Pending issuance of an Outer Continental Shelf (OCS) air quality permit and confirmation that air dispersion modeling results show that actions will be under the NAAQS thresholds, the differences among action alternatives with respect to direct emissions due to construction, operation and maintenance (O&M), and decommissioning of the Project are expected to be small.

5. FEIS, Appendix E, Section E.1.4, page E-3

The text describing missing and incomplete information omitted the Indian River Bay Sediment Transport Modeling in the list of previous US Wind surveys.

The corrected Section E.1.4 with redline edits now reads:

Although there is uncertainty regarding the spatial and temporal distribution of benthic (faunal) resources and periods during which they might be especially vulnerable to disturbance, US Wind's surveys of benthic resources (COP Appendices II- B2, Suspended Sediment Transport Modeling Study Offshore Submarine Cable Installation; B3, Indian River Bay Sediment Transport Modeling; D4, Lease Area and Offshore Export Cable Corridors Benthic Report, 2021; D5, Onshore Export Cable Corridors Benthic Report, 2022; E1, Information to Support Essential Fish Habitat Assessment; K5, Preliminary Cable Burial Risk Assessment; and K7, Preliminary Cable Burial Risk Assessment Export Cable Corridor; US Wind 2022) and other broad-scale studies (Guida et al. 2017; Cutter et al. 2000; NOS 2015; BOEM 2011, 2012; Slacum et al. 2010; and Rutecki et al. 2014) provided a suitable basis for generally predicting the species, abundances, and distributions of benthic resources within the geographic analysis area. Uncertainty also exists regarding the impact of some impact-producing factors (IPFs) on benthic resources. For example, specific stimulus-response related to acoustics and EMF is not well studied, although there is some emerging information from benthic monitoring at European wind facilities and the Block Island Wind Farm in the United States that allows for a broad understanding of the impacts. Similarly, specific secondary impacts, such as changes in diets throughout the food chain resulting from habitat modification and synergistic behavioral impacts from multiple IPFs, are not fully known. Again, results of benthic monitoring at European wind facilities and the Block Island Wind Farm in the United States provide general knowledge of the overall impacts of these IPFs

combined, if not individually. Therefore, the analysis provided in this EIS is sufficient to support sound scientific judgments and informed decision-making related to the overall impacts. For these reasons, BOEM does not believe that there is incomplete or unavailable information on benthic resources that is essential to a reasoned choice among alternatives.

6. FEIS, Appendix G, Table G-1, pages G-4, G-6 and G-7

US Wind has not proposed tree clearing would be conducted between October 1 and March 31. The COP includes only a time of year restriction for tree clearing. US Wind removed beneficial reuse of dredge material from the COP as a project element. Instead, dredged material will be placed in an approved landfill.

Resource Area Mitigated	Project Stage*	Mitigation and Monitoring Measure	Source	Anticipated Enforcing Agency
Bats	С	Following consultation with DNREC-and USFWS, US Wind would conduct extend the restriction of tree clearing activities at the US Wind Substations location required for Project construction to between October 1 and March 31. No tree clearing at the substation landfall would occur from April 1 through July 31 to avoid or minimize impacts to northern long-eared bat during the summer maternity period.	COP, Volume II, Section 1.5 (US Wind 2024)	USACE, USFWS
Coastal Habitat and Fauna	С	Following consultation with DNREC-and USFWS, US Wind would conduct extend the restriction of tree clearing activities at the US Wind Substations location required for Project construction to between October 1 and March 31. No tree clearing at the substation landfall would occur from April 1 through July 31 to avoid or minimize impacts to northern long-cared bat during the summer maternity period.	COP, Volume II, Section 1.5 (US Wind 2024)	USACE, USFWS
Coastal Habitat and Fauna	e	US Wind would prioritize beneficial reuse of dredge material (i.e., wetland restoration, beach renourishment), based on the material characteristics and opportunities as they present themselves, over placement in offshore or onshore disposal areas.	COP, Volume II, Section 1.5 (US Wind 2024)	BSEE, USACE, DNREC

The corrected Table G-1 with redlines now reads:

7. FEIS, Appendix G, Table G-1, page G-12

US Wind's July 2024 COP corrected the burial depth consistent with USACE's request. Additionally, US Wind has not included the second sentence in the mitigation measure the FEIS attributed to US Wind.

Resource Area Mitigated	Project Stage*	Mitigation and Monitoring Measure	Source	Anticipated Enforcing Agency
Other Uses	С	Bury submarine cables at least <u>6.6 feet 1.8</u> <u>m</u> (<u>2 meters6 ft</u>) below the <u>maintenance</u> <u>depth of the Indian River Bay authorized</u> depth of any state or federal navigation channel-or any waterway used for navigation. If the existing bottom is deeper than the authorized depth, then the cables shall be buried at least 6.6 feet (2 meters) below existing depth.	COP, Volume II, Section 1.5 (US Wind 2024)	BSEE, USCG

The corrected Table G-1 with redlines now reads:

8. FEIS, Appendix G, Table G-1, page G-13

The source identified for the visual resource monitoring plan measure was incorrect.

The corrected Table G-1 with redlines now reads:

Resource Area Mitigated	Project Stage*	Mitigation and Monitoring Measure	Source	Anticipated Enforcing Agency
Visual	С	US Wind will coordinate with BOEM to prepare and implement a scenic and visual resource monitoring plan that monitors and compares the visual effects of the wind farm during construction and operations/maintenance (daytime and nighttime) to the findings in this assessment and verifies the accuracy of the visual simulations (photo and video). This would include the monitoring of meteorological influences on turbine visibility and the frequency of ADLS activations.	COP, Volume II, Section <u>1.5Appendix II-</u> <u>J1, Section 6.0</u> (US Wind 2024)	BSEE, USCG

9. FEIS, Chapter 3, Table 3.5.2-2, page 3-89; Chapter 3, Table 3.5.5-8, page 3-186; Appendix G, Table G-2, page G-40 to G-43;

The measures for EFH Conservation Recommendations described in detail in Appendix G and analyzed in Chapter 3 did not indicate that the measures resulting from this consultation are those Conservation Recommendations that have been identified as adopted or partially adopted by BOEM and USACE.

EFH Conservation Recommendations ¹ Minimize impacts to finfish, invertebrates, and E Indian River Bay, other estuaries, and offshore environments, through restrictions on timing and location of Project activities and infrastructure; minimize acoustic impacts through mitigation an monitoring related to acoustic activities; minimize minimize	Measure	Effect
impacts of invasive species through monitoring.	EFH Conservation Recommendations ¹	Minimize impacts to finfish, invertebrates, and EFH in Indian River Bay, other estuaries, and offshore environments, through restrictions on timing and location of Project activities and infrastructure; minimize acoustic impacts through mitigation and monitoring related to acoustic activities; minimize impacts of invasive species through monitoring.

The corrected Tables 3.5.2-2 and 3.5.5.8 with redlines now read:

¹ NMFS EFH Consultation letter dated May 2, 2024, provided EFH Conservation Recommendations for activities under BOEM's and USACE's jurisdiction. In a letter signed July 12, 2024, BOEM provided a detailed response to each EFH Conservation Recommendation under BOEM's jurisdiction. In a letter dated July 19, 2024, USACE provided a detailed response letter to each EFH Conservation Recommendation under USACE's jurisdiction. EFH Conservation Recommendations resulting from Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (i.e., EFH consultation) include only those Conservation Recommendations that BOEM and USACE are adopting or partially adopting as specified in the agencies' detailed response letters.

The corrected Table G-2 with redlines now reads:

Resource Area Mitigated	Project Stage*	Mitigation and Monitoring Measure	Source	Anticipated Enforcing Agency
Benthic resources, finfish, invertebrates, and EFH	С, О&М	 Recommendations to Avoid and Minimize Impacts to Estuarine Habitats (Indian River Bay and Inlet, Delaware and Sinepuxent Bay, Maryland) Locate the inshore export cable (IEC) entirely on uplands (Alternative C-2 in the FEIS) to avoid adverse impacts to EFH and other NOAA trust resources in Indian River Bay (IRB). If dredging is authorized in IRB, restore the dredged footprint to pre-construction conditions with clean, compatible materials or with material removed during dredging. Avoid trenching (without immediate backfill/infill), sidecasting, and other open- water disposal in open nearshore/estuarine waters, including in IRB. If open trenching is used, excavated materials should not be sidecast or placed in the aquatic environment. All materials should be stored on uplands or barges and placed 	NMFS- proposed EFH Conservation Recommenda tions (corresponden ce dated May 2, 2024) ¹	USACE, DNREC, MDE

		back into the trench to restore the	
		excavated areas, or removed to a suitable	
		upland disposal site. Trenched areas should	
		be restored to pre-construction conditions	
		with native and/or clean, compatible	
		material	
	4	Avoid in-water work in Indian River Bay	
	т.	and Inlet from March 1 to Sentember 30 to	
		and miet from Water 1 to September 50 to	
		avoid and minimize impacts to EFH,	
		rederany managed species, their prey, and	
		other resources under our purview	
		including:	
		1. Avoid in-water work in	
		Indian River Bay from April	
		1 to September 30 to avoid	
		impacts to nursery habitat for	
		summer flounder, black sea	
		bass, and numerous other	
		estuarine-dependent species.	
		ii. Avoid in-water work in	
		Indian River Bay from March	
		1 to June 30 in Indian River	
		Inlet and Bay to minimize	
		impacts to diadromous fish	
		migrations	
	5	Avoid in-water work including impact nile	
	5.	driving from February 15 to June 30 in	
		Sinepuyent Bay to minimize impacts to	
		migrating diadromous species	
	6	Deien te commune en entre fin enerte en ele	
	0.	Prior to commencement of in-water work	
		within IRB, defineate areas of shellfish in	
		accordance with the methods used by the	
		Delaware Department of Natural	
		Resources and Environmental Control.	
		Maps of delineated shellfish beds should	
		be provided to vessel operators to facilitate	
		impact avoidance.	
	7.	Avoid siting infrastructure, including	
		cables, piers, and gravity cells for HDD	
		entrance/exit pits in ecologically sensitive	
		estuarine areas including, but not limited	
		to, SAV beds, mudflats, tidal wetlands,	
		shellfish beds/reefs.	
	8.	Avoid anchoring or placing jack-up barge	
		piles or spud cans in ecologically sensitive	
		estuarine areas including, but not limited	
		to, SAV beds, mudflats, tidal wetlands,	
		shellfish beds/reefs. Habitat maps	
		delineating these resources should be	
		provided to vessel operators to facilitate	
		impact avoidance.	
	9.	Avoid excavation, cable installation, or the	
	<i>.</i>	staging of equipment within tidal wetlands	
		SAV or mudflat. Where unavoidable	
		impacts to SAV wetlands or mudflats	
		accur provide compensatory mitigation in	
		occur, provide compensatory mugation m	

		 accordance with 33 CFR Parts 325 and 332 "Compensatory Mitigation for Losses of Aquatic Resources," (Mitigation Rule) and NOAA's Mitigation Policy for Trust Resource). The plan should be submitted to our office (NMFS.GAR.HESDoffshorewind@noaa.g ov) for review and include monitoring and maintenance/adaptive management plan, be monitored for a minimum of five years, and annual reports should be provided to our office. 10. Require vessels and barges float at all stages of the tide to minimize benthic habitat impacts from vessel operation/barge grounding. 11. Dewater all dredged material at an upland location or to be reused to restore dredged areas. 12. Within IRB, capture and contain HDD drilling muds and dispose of these materials in an upland location. 13. Develop and implement a frac-out plan for all areas where HDD is proposed to be used. A copy of the final plan should be provided to NMFS HESD at NMFS.GAR.HESDoffshorewind@noaa.go v prior to construction. 		
Benthic resources, finfish, invertebrates, and EFH	С, О&М	 Recommendations to Avoid and Minimize Impacts to Benthic Habitats (Offshore and/or Nearshore) 14. Avoid impacts to areas of high relief sand ridge and trough complexes and large distinct bathymetric features by removing or relocating 11 WTGs, associated inter- array cables, and repositioning the corresponding OEC (as outlined in Alternative E in the EIS). 15. Avoid the placement of all infrastructure (cables, WTGs, OSSs, scour protection, met tower, etc.) in sensitive and ecologically important habitats including complex habitats, sand waves, biogenic habitats, including shellfish beds, aggregations, and reefs, hard and soft corals, and soft bottom habitats with dense emergent fauna (e.g. octocorals and pennatulids, tube dwelling anemones and structure forming amphipods and polychaetes). 16. Minimize the extent of inter array cables overlapping sand ridge and trough complexes and other bathymetric features 	NMFS- proposed EFH Conservation Recommenda tions (corresponden ce dated May 2, 2024) ¹	BOEM, BSEE, USACE

|

l

		identified by NMFS as Areas of Concerns	
		(Alternative E) by modifying the inter	
		array layout configuration to reduce the	
		extent of disturbance, leveling, or removal	
		of complex habitats and benthic features,	
		including sand waves (inclusive of sand	
		ridge and trough complexes) due to site	
		preparation and installation of cables,	
		WTGs, and OSSs. The final inter array	
		cable configuration, including	
		modifications to reduce impacts to these	
		important features should be provided to	
		NMFS HFSD at	
		NMES GAR HESDoffshorewind@noaa go	
		v	
	17	$\underline{\cdot}$. The portion of the export cable corridor	
	1/.	that overlaps with New Jersey Prime	
		Fishing Areas (also identified as Areas of	
		Concern in the FIS) should be microsited	
		to minimize imposts/evenlar with complex	
		and haters approved approved by habitat and	
		and neuerogeneous complex nabilat and	
		sand waves. This may include incrosting	
		or identifying areas outside the proposed	
		cable corridor that would reduce overlap $\mathbf{E}^{\mathbf{i}}$	
		with the New Jersey Prime Fishing areas	
	10	and associated complex habitats.	
	18.	Microsite WIGs, USSs, and cables to	
		minimize impacts to small-scale habitat	
		elements/features including areas identified	
		as complex and heterogeneous complex	
		habitats and sand waves. Soft bottom areas	
		(identified by low multibeam backscatter	
		returns) absent benthic features and	
		biogenic/living resources should be	
		targeted for micrositing. Multibeam	
		echosounder backscatter and side-scan	
		sonar data along with seafloor	
		samples/visual surveys should be used to	
		facilitate micrositing to avoid the above-	
	10	mentioned habitats.	
	19.	To the extent practicable, cables unable to	
		avoid complex habitats and benthic	
		features should cross mapped complex	
		habitat areas (including complex and	
		heterogeneous complex habitats)	
		perpendicularly at the narrowest points and	
		be sited along natural benthic contours	
		within troughs/lows, to maximize cable	
		burial while minimizing disturbance to	
	•	local submarine topography.	
	20.	Cables (interarray, interconnection,	
		interlink, and export) should be installed	

		into the existing seafloor via jetting (i.e.,	
		jet trenching) or mechanical trenching with	
		simultaneous lay and burial and laid in	
		ways that maintain submarine topography	
		and contours on medium (meter) to large	
		(kilometer) scales: henthic features	
		including megazinnles and sand waves	
		(including inegal ppies and said waves	
		(inclusive of sand huge and troughs and	
	0.1	sand banks) should be maintained.	
	21.	All cables should be sited to allow for full	
		burial depth, prioritizing soft bottom	
		habitat where full burial depth is likely to	
		occur, to minimize permanent adverse	
		impacts to existing benthic habitats from	
		the placement of scour protection.	
	22.	Avoid anchoring or placing jack-up barge	
		footings and spud cans in sensitive and	
		ecologically important habitats such as	
		complex habitats, sand waves, shellfish	
		beds and reefs, hard and soft corals, and	
		soft bottom habitats with dense emergent	
		fauna (e.g. octocorals and pennatulids, tube	
		dwelling anemones). Multibeam	
		echosounder backscatter and side-scan	
		sonar data as well as all sampling data	
		available for the lease area should be used	
		to facilitate avoidance of these habitats	
		Habitat maps identifying or delineating	
		these resources should be provided to	
		unese resources should be provided to	
		vessel operators to facilitate impact	
	22	avoidance.	
	23.	Use dynamic positioning systems (DPS) or	
		mid-line buoys on anchor chains to	
		minimize adverse impacts to benthic	
		habitats from anchor chains/chain sweep.	
	24.	If anchoring for cable installation is	
		necessary in areas with complex and	
		heterogeneous complex habitats, large	
		benthic features, including sand waves,	
		ridge and trough complexes, sandbanks,	
		and sand shoals, anchor lines should be	
		extended to the extent practicable to	
		minimize the number of times the anchors	
		must be raised and lowered to reduce the	
		amount of habitat disturbance.	
	25.	In areas where scour protection is required,	
		use Nature Inclusive Design principles.	
		including natural or rounded engineered	
		stone of consistent grain size that mimics	
		the properties of existing people could	
		and houlder sediments within the lease	
		area and export cable corridors (OEC and	
		area and export cable corridors (DEC and	

			IEC) to minimize normanant adverse		
			impacts of habitat conversion from scour		
			protection Any exposed surface laver		
			should provide three dimensional		
			structural complexity that creates a		
			diversity of crevice sizes (e.g. mixed stone		
			sizes) and rounded edges (e.g., tumbled		
			stone) and he sloped such that outer edges		
			match the natural grade of the seafloor		
			Avoid the use of angular stone ripron or		
			concrete mattresses. Should the use of		
			concrete mattresses be necessary (e.g.		
			cable crossings) bioactive concrete (i.e.		
			with his enhancing admixtures) should be		
			used as the primary scour protection (e.g.		
			concrete mattrasses) or veneer to support		
			biotic growth		
		26	Regrade any herm created from the cable		
		20.	installation that exceeds 4.5 ft above the		
			existing grade to bury the cable to match		
			the existing grade/pre-construction		
			conditions		
		27	Avoid the use of plastics/recycled		
		27.	nolvesters/net material (i.e. rock-filled		
			mesh bags fronded mattresses scour		
			protection mats) in all scour protection		
			protection mais) in an seour protection.		
		Recomm	endations to Minimize Acoustic Impacts		
		28.	Require the use of noise mitigating		
		_0.	measures during pile driving to minimize		
			impacts from offshore pile		
			installation/driving. This may include		
			using vibratory hammers, noise-impact		
			reducing hammers, soft start/ramp up		
			procedures and the deployment of noise	NIMES	
			dampening equipment such as bubble	nivir 5-	
			curtains that achieves a minimum 10	EFH	
Benthic			decibel (dB) attenuation.	Conservation	
resources,		29.	Use additional noise dampening/mitigation	Recommenda	BOEM,
finfish,	C,		measures during all impact pile driving	tions	BSEE,
invertebrates,	Oam		within 13.6 kilometers (km) of any	(corresponden	USACE
and EFH			artificial reef sites/shipwrecks/fish havens	ce dated May	
			(including "Old Grounds") to minimize	$(2, 2024)^{1}$	
			impacts (noise above the behavioral		
			threshold for fish) to areas where fish are		
			known to aggregate. If sound field		
			verification indicates the behavioral		
			threshold for fish extends beyond the		
			modeled 13.6 km, additional noise		
			dampening/mitigation measures should be		
			used. Additional noise mitigation measures		
			may include, but are not limited to,		

l

		 isolation casings, isolation casings with bubble curtains inside, and double-wain isolation casings. 30. Prohibit continuous pile driving for 24 hours/day. A minimum mandatory quiperiod of at least 4 hours should be required per 24 hours to minimize effective from pile driving. 31. Provide acoustic monitoring reports the include any/all noise-related monitoring NMFS HESD at NMFS.GAR.HESD offshorewind@notv. 32. Notify NMFS HESD within 24 hours any evidence of a fish kill during construction activity is observed. Prior resuming pile driving activities, provide NMFS with information on modification that will be made to reduce the risk of additional fish kills in the project area an adaptive management plan) 	h lled let ects aat ng to aa.go if r to de ions (i.e.	
Benthic resources, finfish, invertebrates, and EFH	С, О&М, D	 Recommendations Minimize Impacts from Proj Operation 33. Require, as a Term and Condition of C approval, the Lessee develop and implement a Lionfish Adaptive Management Plan. The plan should in regular monitoring for lionfish in the project area and identify mitigation op to reduce the proliferation of the invas species. The plan should be provided to NMFS HESD at NMFS.GAR.HESDoffshorewind@not v for review and comment. The plan should be updated based on comments received by NMFS. 34. Bury high voltage subsea cables as dee possible below the stable seabed to minimize impacts to habitats and spec from exposure to anthropogenically elevated electromagnetic fields (EMFs and heat. 35. Avoid any activities (i.e., site preparat or placement of permanent infrastructu within 1000 ft. of any designated artifi reef sites, observed fish havens, Prime Fishing Areas (N.J. A.C 7:7-9-4), kno shipwrecks, or other fish aggregation a such as subway cars, tanks, or rail cars 36. Require the implementation of preven measures and spill plans to minimize t risk of contaminant emissions or accid 	ect COP clude trions nive to aa.go proposed EFH Conservation Recommenda tions (corresponden ce dated May 2, 2024) ¹ s) ion) ure icial wm areass s. tive the lental	BOEM, BSEE, USACE

|

		 release of chemicals, grout, lubricants, etc. that may adversely impact pelagic habitat. Such measures may include backup systems, secondary containments, closed loop systems, and/or recovery tanks. 37. Use aluminum (Al) sacrificial anodes instead of zinc (Zn) anodes to minimize the risk of water quality impacts via contamination. 		
Benthic resources, finfish, invertebrates, and EFH	C, O&M	 <i>Recommendations for Monitoring</i> 38. Develop an in situ project specific monitoring program to address impacts of the operation of the Maryland Wind Project on EFH. This monitoring recommendation is consistent with principles outlined in NOAA's Mitigation Policy for Trust Resources, which highlights the use of the best available scientific information, such as results of surveys and other data collection efforts when existing information is not sufficient for the evaluation of proposed actions and mitigation, or when additional information would facilitate more effective or efficient mitigation recommendations. The project specific monitoring program should include Benthic Habitat and Fisheries Monitoring Plans that measure, in situ, the stressors created by project operation on the ecosystem from operational noise, electromagnetic fields (EMF), wind wake effects, and the presence of structures. Studies should also evaluate the biological effects of those stressors on commercially important species in the project area such as black sea bass and whelk. Monitoring plans should include the collection of a minimum of three years of baseline data, during construction, and a minimum of five years of post-construction data collection. Plans should be incorporated into a comprehensive monitoring strategy and be provided to NOAA Fisheries GARFO and NEFSC for review and comment within 90 days of ROD issuance. A response to NOAA Fisheries comments should be provided. All data and metadata resulting from research and monitoring studies should be provided to NOAA Fisheries. These monitoring studies should be developed in partnership with NOAA 	NMFS- proposed EFH Conservation Recommenda tions (corresponden ce dated May 2, 2024) ¹	BOEM, BSEE, USACE

I

	Fisher	ies and other scientific institutions to	
	aid in	addressing the following questions:	
	a	What are the measurable levels of	
		exposure of specific impact	
		producing factors (IPFs; i.e.,	
		sound and particle motion, EMF,	
		wind wake effects, presence of	
		structure induced vertical mixing)	
		within the project area during and	
		post-construction?	
	b	How do commercially important	
	-	species (e.g. black sea bass)	
		within the project area respond to	
		the exposure to specific IPFs	
		identified?	
	c	To what extent has benthic	
	-	habitat within the project area	
		been converted or fragmented as	
		a result of project construction?	
	d	What are the measurable impacts	
	_	on the regional hydrodynamic	
		regime, and specifically the Mid-	
		Atlantic Cold Pool, as a result of	
		the presence of structures within	
		the project area?	
	e	Does the presence of novel hard	
	-	structures (WTGs, OSS, and	
		associated scour protection)	
		change the distribution and	
		abundance of exotic, invasive	
		species, including the Indo-	
		Pacific lionfish [Pterois volitans	
		and P. miles]) in the project area?	
	і. Т	o what extent do the presence of	
	st	ructures in the wind farm facilitate	
	C	olonization by exotics or invasive	
	St	pecies?	
	ii. W	hat are the distributions and	
	al	oundances of exotics or invasive	
	SI	becies in the wind farm area broken	
	d	own by structure and composition	
	ty	rpe (e.g., WTG, steel; scour	
	p:	rotection, mattress)?	
	iii. H	ow do individual structures or wind	
	fa	rm as a whole change the thermal	
	re	gime, especially in the context of	
	fa	cilitating overwintering/colonization	
	0	f invasive lionfish?	
	iv. D	o lionfish exhibit age-specific habitat	
	p	references on novel wind farm	
	st	ructures (i.e., do young-of-year	
	li	onfish prefer scour protection while	

		1. v. ex ex	adult lionfish prefer vertical monopile)? Do the presence of structures facilitate pansion (i.e., stepping stone effects) of otics or invasives, including lionfish?		
Benthic resources, finfish, invertebrates, and EFH	C, O&M, D	Consultatio 39. Th rei a. b. c. d. e. f.	 a EFH consultation should be initiated: If the proposed action deviates in any substantive way from what is described in the EFH Assessment; If boulders are encountered during pre-construction or construction activities that require removal or relocation because the EFH Assessment does not currently consider boulder relocation activities or what would occur if boulders are encountered. If additional dredging in IRB beyond what is described in the March 22, 2024, is proposed. If dredging is proposed at the O&M facility in West Ocean City, MD. If dredged material placement locations are changed to include placing any dredged material in wetlands or other aquatic habitats, including any proposed beneficial use projects. Prior to decommissioning WTGs to ensure that the impacts to EFH as a result of the decommissioning activities have been fully evaluated and minimized to the extent practicable. Pre-consultation coordination with our agency related to decommissioning should occur early, at least five years prior to proposed decommissioning. 	NMFS- proposed EFH Conservation Recommenda tions (corresponden ce dated May 2, 2024) ¹	BOEM, BSEE, USACE

¹ NMFS EFH Consultation letter dated May 2, 2024, provided EFH Conservation Recommendations for activities under BOEM's and USACE's jurisdiction. In a letter signed July 12, 2024, BOEM provided a detailed response to each EFH Conservation Recommendation under BOEM's jurisdiction. In a letter dated July 19, 2024, USACE provided a detailed response letter to each EFH Conservation Recommendation under USACE's jurisdiction. EFH Conservation Recommendations resulting from Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (i.e., EFH consultation) include only those Conservation Recommendations that BOEM and USACE are adopting or partially adopting as specified in the agencies' detailed response letters.

10. FEIS, Appendix G, page G-2; Appendix H, pages H-3 and H-4; Appendix I, page I-2 and Section I.1, page I-3

The text incorrectly refers to US Wind Inc. as US Wind, LLC in 5 locations.

The corrected section with redline edits in Appendix G, page G-2 now reads:

The Final Environmental Impact Statement (EIS) assesses the potential biological, socioeconomic, physical, and cultural impacts that could result from the construction, operations and maintenance (O&M), and conceptual decommissioning of the Maryland Offshore Wind Project (Project) proposed by US Wind LLC-Inc.(US Wind), in its Construction and Operations Plan (COP) (US Wind 2024¹). The proposed Project described in the COP and this Final EIS would be up to 2,000 megawatts (MW) in scale and sited 11.5 statute miles (mi) (18.5 kilometers [km]) off the coast of Maryland, within the area of Renewable Energy Lease Number OCS-A 0490 (Lease Area). The Project is designed to serve demand for renewable energy in the Delmarva Peninsula, including Maryland.

The corrected entry with redline edits in the list of abbreviations and acronyms in Appendix H, page H-3 now reads:

US Wind US Wind, <u>LLCInc.</u>

The corrected section in Appendix H, page H-4 now reads:

US Wind, <u>Inc. LLC</u> (US Wind) proposes to construct, operate, and eventually decommission the Maryland Offshore Wind Project (Project), which would consist of wind energy facilities generating up to 2,000 megawatts within the Bureau of Ocean Energy Management (BOEM) Renewable Energy Lease Area (Lease Area) OCS-A 0490. Figure H-1 shows the location of the Project, as well as other approved or planned offshore wind projects within the Delmarva Peninsula, including Maryland.

The corrected entry with redline edits in the list of abbreviations and acronyms in Appendix I, page I-2 now reads:

US Wind US Wind, <u>LLCInc.</u>

The corrected section with redline edits in Appendix I, Section I-1, page I-3 now reads:

US Wind <u>LLC-Inc.</u> (US Wind) proposes to construct, operate, and eventually decommission the Maryland Offshore Wind Project (Project), which would consist of wind energy facilities generating at least up to 2,000 megawatts within Bureau of Ocean Energy Management (BOEM) Renewable Energy Lease Area (Lease Area) OCS-A 0490. The Project would be offshore of Ocean City, Maryland in the Delmarva Peninsula. The Project would include a maximum of 114 wind turbine generators (WTG) and 4 offshore substations (OSS), and one meteorological (met) tower positions on foundation support structures. Up to four offshore export cables would transmit electricity from the WTGs and OSSs to an onshore export cable corridor.