

Appendix H Final Soil Characterization Findings Report, 39th Street Pier, South Brooklyn Marine Terminal, May 7, 2009

May 7, 2009

Ms. Kay Zias Vice President, Planning New York City Economic Development Corporation 110 William Street Brooklyn, NY 10038

RE: Final Soil Characterization Findings Report
39th Street Pier, South Brooklyn Marine Terminal (SBMT)
Brooklyn, New York

Dear Ms. Zias.

The Louis Berger Group, Inc. (LBG) is pleased to present this Final Soil Characterization Findings Report to the New York City Economic Development Corporation (NYCEDC) to detail the results of the waste classification soil samples collected at the above-referenced property. LBG understands that soils from the northeastern corner of the existing bulkhead at the 39th Street Pier (the "Site") located in Brooklyn, New York (see Figure 1 – Site Location Map in Attachment A) will be excavated by others and reconstructed as a rip-rap revetment and concrete barrier. It is anticipated that up to 7,000 cubic yards (CY) (240 feet long by 40 feet wide by 20 feet deep) of material (predominantly soil) will be excavated. LBG characterized the soil in-situ to evaluate soil management issues (i.e. disposal, recycling, reuse, etc.) of soils to be excavated during this project. LBG understands that the ultimate removal of soils associated with the construction of the proposed rip-rap will be addressed by a qualified Contractor procured by Turner Construction (Turner).

Eleven (11) soil borings were advanced within the proposed excavation area to a depth of 20 feet below ground surface (bgs) across the designated section of the existing bulkhead. One (1) additional soil boring, boring B-12, was advanced outside of the proposed excavation area to a depth of 20 feet bgs at the request of Turner's on-site representative. Boring B-12 was located closer to the building to evaluate soil characteristics in that area for future utility relocation. The proposed excavation area was divided equally into six (6) subsections, which each consisted of approximately 1,170 CY of soil. Soil samples were collected from all borings. Discrete soil samples were collected from seven (7) of the 12 borings and analyzed for full Target Analyte List/Target Compound List (TAL/TCL) parameters. One (1) groundwater sample was collected from one of the boreholes and analyzed for Full TAL/TCL parameters. Additionally, six (6) composite samples were collected and analyzed for Toxicity Characteristics Leaching Procedure (TCLP) and Resource Conservation and Recovery Act (RCRA)

waste characteristics. Each composite sample consisted of soil from two (2) boring locations. Laboratory analytical results were compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM 4046) Recommended Soil Cleanup Objectives (RSCO) and RCRA Hazardous Waste Levels. In addition, the results were compared to 6 NYCRR Subpart 375-6 Unrestricted and selected Restricted Use Remedial Cleanup Objectives (UUSCOs and RUSCOs). The following is a summary of the sample collection, analysis and evaluation of the sample results.

Sample Collection

All sampling and investigation activities were performed in accordance with the NYSDEC *Draft DER- 10: Technical Guidance for Site Investigation and Remediation (December, 2002).*

From April 7 to April 13, 2009, ADT Drilling of New York performed soil borings with LBG oversight at 12 locations across the Site (see Figure 2 - Soil Boring Location Plan in Attachment A) to a depth of 20 feet below ground surface (bgs). To complete this task, the boring locations were first cleared of utilities using an air-knife to a depth of 6 feet bgs. A hollow stem auger drill rig was then utilized to advance the borings to the required depth. Soil samples were collected using standard split spoon samplers from multiple intervals within each boring, with samples biased toward potentially contaminated intervals based on field screening, visual observations, etc. One discrete soil sample and one waste classification sample was collected from each subsection within the proposed excavation area (see Figure 2 in Attachment A).

The soils were field-screened for organic vapors using a photoionization detector (PID) and classified using the Burmister Soil Classification System (BSCS). To obtain a general characterization of the soil present at the Site, discrete soil samples were collected from seven (7) of the 12 soil borings (B-1, B-3, B-6, B-7, B-10, B-11, and B-12) and analyzed for full TAL/TCL. These soil samples were collected in half-foot intervals from various depths ranging from 5.0 to 20.5 feet bgs. Additionally, soil collected from the two (2) borings within each subsection were combined into one (1) composite sample for TCLP and RCRA analysis using a steel bowl and trowel and mixed until homogenized. A total of six (6) composite samples were collected from the 11 soil borings located within the proposed excavation area for waste classification. In addition, one (1) groundwater sample was collected using a Teflon bailer from boring B-11 and analyzed for full TAL/TCL.

Collected samples were transferred to laboratory supplied glassware, preserved on ice and submitted to Hampton Clarke Veritech Laboratories (HCV) under chain of custody on a 2-week turnaround time (TAT) for the above parameters.

Sample Results

The soil samples collected indicated the presence of non-native fill material throughout the existing bulkhead (see attached Boring Logs in Attachment B). The fill material consisted of dark, yellowish-

brown to moderate yellowish-brown sand with some coarse to fine gravel and miscellaneous debris in the form of wood and concrete fragments. Non-native fill was observed throughout all 12 soil borings to a depth of approximately 15 feet bgs. PID readings were below 1-ppm for all soils encountered. Groundwater was encountered at a depth of approximately 7.0 feet bgs. The following provides a summary of the analytical results for the samples collected at the Site. Summary tables are provided in Attachment C and the laboratory analytical report is provided in Attachment D.

Discrete Soil Samples

Seven (7) discrete soil samples were collected from B-2 (5.5-6.0 feet bgs), B-3 (11.0-11.5 feet bgs), B-6 (20.0-20.5 feet bgs), B-7 (15.5-16.0 feet bgs), B-10 (10.0-10.5 feet bgs), B-11 (5.0-5.5 feet bgs), and B-12 (6.0-6.5 feet bgs) and analyzed for Full TCL/TAL parameters. The results were compared to NYSDEC TAGM RSCOs, Eastern USA Soil Background levels (where applicable and available) and 6 NYCRR Subpart 376-6 UUSCOs and RUSCOs (see Tables 1-3 in Attachment C).

Laboratory results indicate exceedances of TAGM standards in soil collected from each of the borings for several TAL metals including arsenic, chromium, copper, iron, mercury, nickel, selenium and zinc. The results also indicate exceedances of Subpart 376-6 UUSCOs for several TAL metals including chromium, copper, lead, manganese, mercury, nickel, selenium, and zinc. In addition, two borings (B-3 and B-7) contained selenium exceeding the Protection of Groundwater RUSCOs and two borings (B-7 and B-11) contained mercury in excess of the Protection of Groundwater RUSCOs. Elevated levels of metals are mainly attributed to contaminants in urban fill material, historical use of the Site as a rail yard, and may partially be attributed to native background conditions.

The laboratory data also showed several TCL semi-volatile organic compounds (SVOCs) exceeding TAGM, UUSCO, and RUSCO standards. Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluorene, chrysene, and dibenzo(a,h)anthracene were observed in excess of TAGM 4046 RSCO standards. In addition, benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceeded Subpart 376-6 UUSCOs in borings B-7 and B-11, and benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene exceeded RUSCO Protection of Groundwater standards in two borings, B-7 and B-11.

Waste Classification Samples

Six (6) composite samples (WC-1 through WC-6) were collected from the Site for waste classification. Each sample was composited from soil from two adjacent borings as shown in Figure 2 with the exception of WC-1, which only consisted of soil from boring B-11. Soil from all depth intervals within the borings were used in the composite samples. Laboratory results from the 6 composited soil samples indicate no exceedances for any of the TCLP parameters and RCRA hazardous waste characteristics (see Table 4 in Attachment C). Barium and lead were detected in several of the samples but in concentrations below the RCRA Hazardous Waste Levels.

Discrete Groundwater Sample

One (1) discrete groundwater sample was collected from boring B-11 and analyzed for Full TCL/TAL parameters. Groundwater in this boring was observed at 7 feet bgs. The results were compared to NYSDEC Class GA Groundwater Standards and Guidance Values (see Tables 5 – 6 in Attachment C). The analytical laboratory report is provided in Attachment D. The groundwater contained several TAL metals and TCL SVOCs in excess of the NYSDEC groundwater standards. The metals in excess of the groundwater standards included arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, sodium, vanadium, and zinc. Bis(2-ethylhexyl)phalate was the only SVOC that exceeded the groundwater standard.

Conclusions

The results of LBG's characterization sampling indicate that the soils proposed to be excavated for the rip-rap revetment and concrete barrier are non-hazardous and potentially re-usable on-site as further discussed below.

Contaminated soils excavated from a site in New York State may be subject to New York State Solid Waste Regulations NYCRR Part 360. However, excavated contaminated soils can be exempt from the solid waste regulations under several conditions, including allowable beneficial use on-site as per 6 NYCRR Subpart 360-1 §360-1.15(b)(8), as stated below:

"nonhazardous, contaminated soil which has been excavated as part of a construction project, other than a department-approved or undertaken inactive hazardous waste disposal site remediation program, and which is used as backfill for the same excavation or excavations containing similar contaminants at the same site. Excess materials on these projects are subject to the requirements of this Part. (Note: use of in-place and stockpiled soil from a site being converted to a realty subdivision, as defined by the Public Health Law (10 NYCRR 72), must be approved by the local health department.)"

Based on the above excerpt as well as that the soil contaminants do not exceed the Industrial or Protection of Groundwater RUSCOs (with the exception of borings B-3, B-7 and B-11), the excavated soils can be reused as backfill material at the Site in areas with potentially similar materials and contaminants.

However, LBG understands that there is no place within the project area to reuse these soils. As such, all soils will be subject to Solid Waste Regulations NYCRR Part 360, and can be disposed of at an appropriate off-site disposal/recycling facility. Based on the comparison of the results to the RCRA Hazardous Waste Criteria, the soils sampled at the Site should be considered non-hazardous waste for disposal/recycling; however, the final determination of the waste classification will be made by the disposal/recycling facility. The facility will determine whether the material is acceptable under their permit.

If soil is to be transported off-site, LBG requests the following information on behalf of NYCEDC from Turner prior to any waste being transported off-site:

- Receiving facility's name;
- Receiving facility's permit number;
- Receiving facility's location and contact information;
- The receiving facility acceptance letter;
- Turner's submission package to the receiving facility, including waste profile, etc.

Should you have any questions regarding acceptable soil re-use options on-site or any other matters addressed in this letter, please call me at (212) 612-7900 x-1397.

Sincerely,

THE LOUIS BERGER GROUP, INC.

Su 7. MS= yel

Sean T. McGonigal, P.E. Project Manager

cc: K. Zias (NYCEDC)

M. McCloskey; S. Morse, A. Kathuria (LBG)

Attachments:

Attachment A - Figures

Figure 1 – Site Location Map

Figure 2 – Soil Boring Location Plan

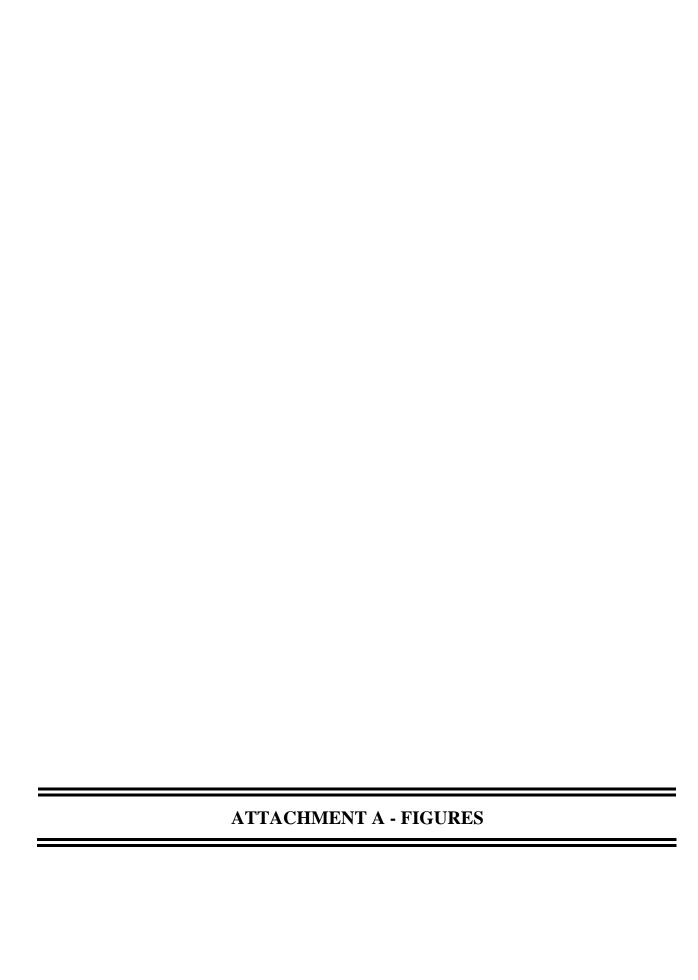
Attachment B – Boring Logs

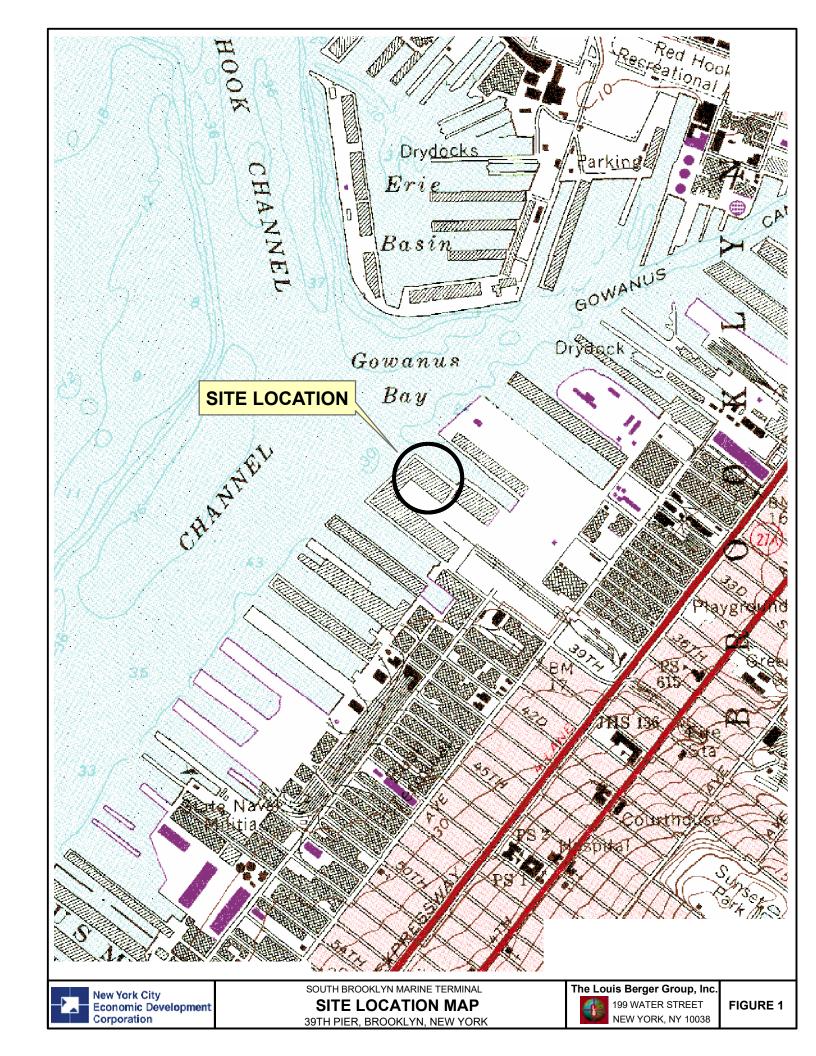
Attachment C – Tables

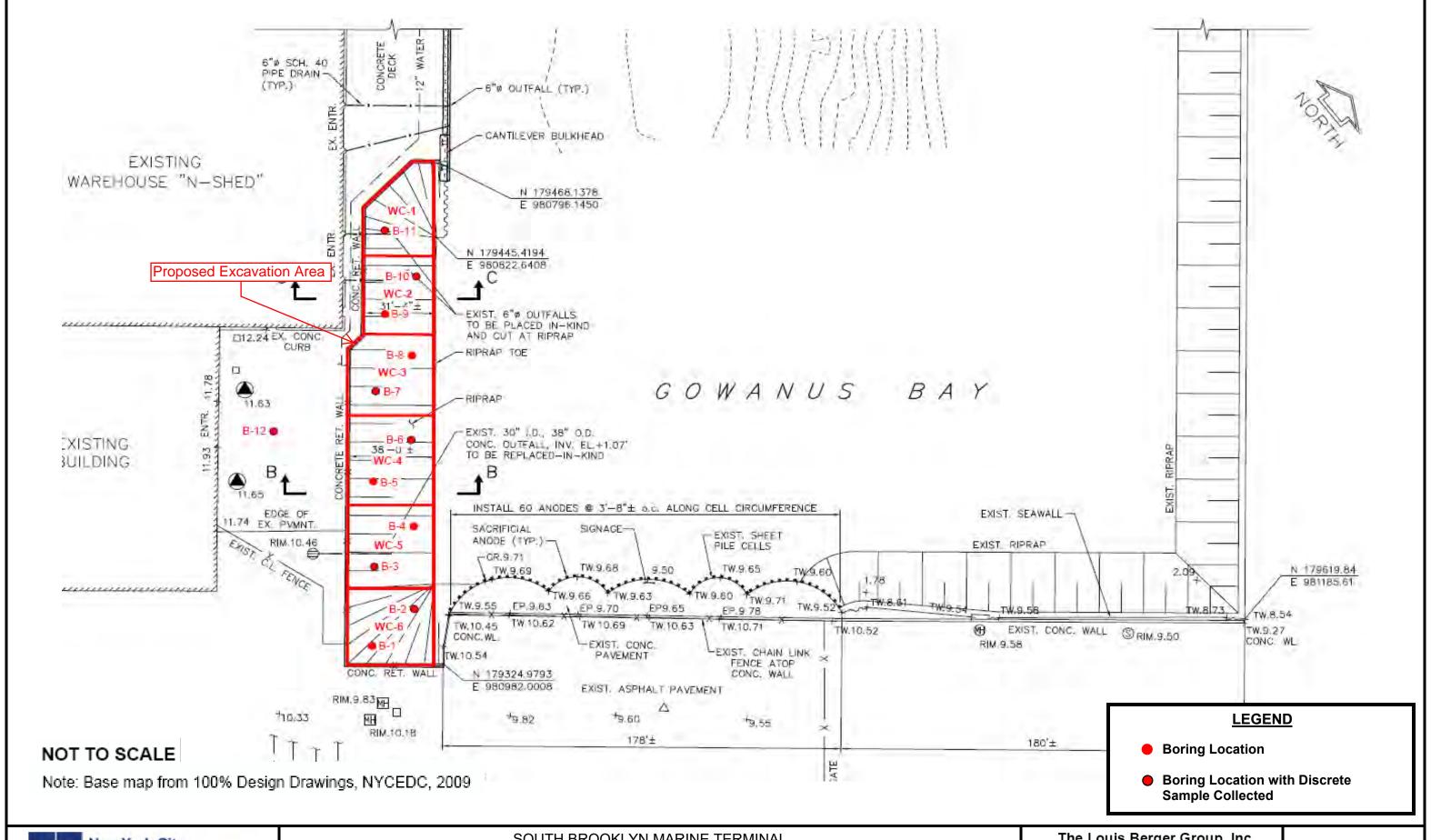
Table 1 – Summary of TCL Volatile Organic Compounds Detected in Soil

Table 2 – Summary of TCL Semi-Volatile Organic Compounds Detected in Soil

Table 3 – Summary of TAL Metals Detected in Soil

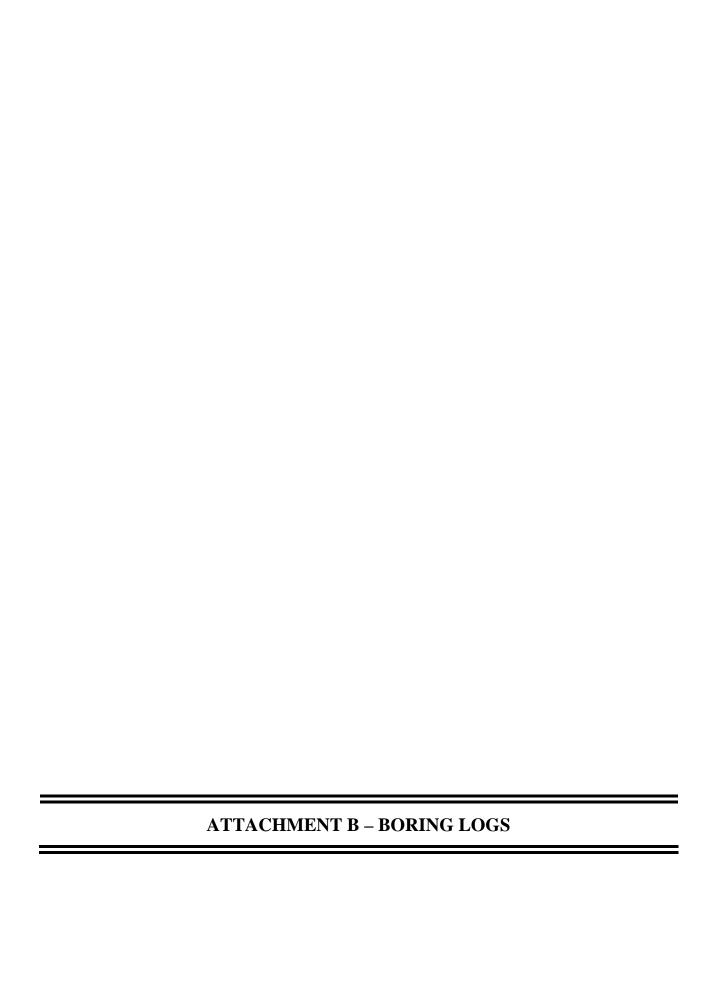

Table 4 – Summary of TCLP Parameters Detected in Composite Soil Sample


Table 5 – Summary of TAL Metals Detected in Groundwater


Table 6 – Summary of TCL Semi-Volatile Organic Compounds Detected in Groundwater

Attachment D – Analytical Report

Data Deliverable (Hard Copy)



SOUTH BROOKLYN MARINE TERMINAL
SOIL BORING LOCATION PLAN
39TH PIER, BROOKLYN, NEW YORK

The Louis Berger Group, Inc.

FIGURE 2

			s Berger (_	-			Drilling Log	BORING NO.: B	-1
			er Street, 2 k, NY 100		F1001	r		Page 1 of 2	WELL NO.: N	/A
CLIENT	Ne	w Y	ork City	Eco	nomi	c De	velop	ment Corporation	PROJECT NO: K	Г200А7
PROJEC									DATE STARTED: 4/	13/2009
DRILLIN	IG (CON	TRACI	OR	:	Aqui	fer D	rilling and Testing, Inc.	DATE FINISHED: 4/	13/2009
DRILLIN	IG I	MET	THOD:		I	Hollo	w Ste	em Auger	DRILLER: T.	Palomeque
В	OR	EH(DLE DA	TA				WELL DATA	INSPECTOR: J.	Lacanlale
Diameter	(in)	:	4			(Comp	letion: N/A	NORTHING (ft): N/	
Total Dep	oth (ft):	22.0	0		_		Depth (ft): N/A	EASTING (ft): N/	
Sampler:			Split Sp	oon		_		Length (ft) /Slot (in): N/A	GROUND ELEVATI	
Depth to						_		to Water (ft): N/A	TOC ELEVATION (1	(t): N/A
Depth to	Roc	k (f	t): N/	Ά]	Perm	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	nscs	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0		ASPHALT				N/A	Asphalt.		Asphalt
	1 - 2 -		CONCRE				N/A	Concrete (Airknifed from 0.0 to 5.0 ft	ogs).	Concrete
	3 -									
	5 - 6 - 8 - 9 -	424242424242424	FILL			5 8	<1	Moderate yellowish brown (10YR5/4) coarse to fine Gravel, little Silt; moist.	coarse to fine SAND, some	Gravelly Sand (Fill) Water Level at 7 ft. bgs.

The Louis Berger Group, Inc.
199 Water Street, 23rd Floor
New York, NY 10038

PROJECT NO.: KT200A7

Page 2 of 2

WELL NO.:

Description

B-1

N/A

	11011	ı oın,	, IN 1 1U					rage 2 of 2		7.1
Well	Depth	Lith.	OSCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-		FILL			3	<1	Dark yellowish brown (10YR4/2) coarse to fine SA to fine Gravel, little Silt; wet.	AND, some coarse	
	11-					5				
	13-									
	14-									
	15-		SP			4	<1	Dark yellowish brown (10YR4/2) medium to fine S	AND; wet.	Sand
	16-					2				
	17-					3				
	18-									
	19-	は、使、受 ・でできる。 を、使、を ・でできる。 ・ででできる。 ・でででできる。 ・ででできる。 ・でででででできる。 ・でででできる。 ・でででででででででででででででででででででででででででででででででででで								Collected composite sample WC-6
	20-		SP			2	<1	Dark yellowish brown (10YR4/2) medium to fine S	AND; wet.	from B-1 and B-2
	21-	(世代) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大				3				End of Boring at 22 ft. bgs.

18			s Berger (-			Drilling Log	BORING NO.:	B-2
B			er Street, 2 k, NY 100		Floo	r		Page 1 of 2	WELL NO.:	N/A
			•		nomi	ic De	evelon	ment Corporation		KT200A7
PROJEC								*	DATE STARTED:	
DRILLIN				•				rilling and Testing, Inc.	DATE FINISHED:	
DRILLIN				~				em Auger		T. Palomeque
-			OLE DA	TA				WELL DATA	INSPECTOR:	J. Lacanlale
Diameter	(in)):	4				Comp	oletion: N/A	NORTHING (ft):	N/A
Total Dep	oth (ft):	16.0	0		7	Γotal	Depth (ft): N/A	EASTING (ft):	N/A
Sampler:			Split Sp	oon		_		n Length (ft) /Slot (in): N/A	GROUND ELEVAT	ΓΙΟΝ (ft): N/A
Depth to								to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/	Ά]	Perm	it No.: N/A		
NOTES:										
				al	ŗŗ					
Well	l h	gy	Ñ	Sample Interval	Sample Recovery	m (iii	m			
Well	Depth	Lithology	nscs	e In	Be Re	FID (ppm)	PID (ppm)	Description		Remarks
Con		Lit		mpl	nple	FID	PID			
	0				Sar					
	U		ASPHALT	\bigotimes			N/A	Asphalt.		Asphalt
			CONCRE	₩			N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	s).	Concrete
	1 -					[,	,	
				\bowtie		ļ				
					///					
	2 -									
	3 -									
	4 -									
	5 -			XXX	///	6	<1			Silty Sand
			FILL	\bowtie		0	<1	Moderate yellowish brown (10YR5/4) of Silt, little coarse to fine Gravel; moist.	coarse to fine SAND, som	(Fill),
		N.		\bowtie		4		Sin, inde coarse to time Graver; moist.		collected B-2
	6 -		†	\bowtie	<i>[//</i>	_				from 5.5 - 6.0
	!		<u> </u>		}	5				ft bgs
			ł	\bigotimes	}	20				
	7 -		ļ	\bowtie	}					✓ Water Level at
			†							7 ft. bgs.
	!		<u> </u>							8
	8 -		ł							
			ļ							
	!									
	9 -		<u>}</u>							
<u> </u>	<u> </u>		1	1		· · · · · ·	1	ı		1

40	The Louis Berger Group, Inc. 199 Water Street, 23rd Floor							ROJECT NO.: KT200A7	BORING NO.: B-2	
			k, NY 10		1100			N/A		
Well	Depth	Lith.	nscs	Interval	Rec.	Blows	PID	Description	1	Remarks
	10-		FILL			7	<1	Dusky brown (5YR2/2) coarse to fine S Gravel, little wood debris; wet.	SAND, some coarse to fine	Gravelly Sand (Fill)
	11-					15 18				
	12-				3					
	13-									
	14-									
	15-		FILL		///	50/3	" <1	Wood debris; wet.		Refusal at 16 ft bgs
	16		<u> </u>	<u>KXX</u>	3					

CLIENT: PROJEC DRILLIN DRILLIN	New T: NG (NG NG N	Wate York Sout CON MET EHO:	th Brookl TTRACT THOD: DLE DA 4 22.0 Split Sp ft): 7	23rd 2038 Econ lyn NTOR TA 0 DOOON	nomi Marin : 4	c De ne Te Aqui Hollo	ermina fer Dr ow Ste Comp Total Screen	DATE STARTED: 4/9/2 rilling and Testing, Inc. DATE FINISHED: 4/9/2 em Auger DRILLER: J. M.	00A7 2009 2009 eyer acanlale N (ft): N/A
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description	Remarks
	1 - 2 - 3 - 4 -		ASPHALT CONCRE	₩			N/A N/A	Asphalt. Concrete (Airknife from 0.0 to 6.0 ft bgs).	Asphalt
	5 - 6 - 7 - 8 - 9 -		FILL			3 4 4 4 2 2	<1	Dark yellowish brown (10YR4/2) medium to fine SAND, little Silt, trace coarse to fine Gravel; moist.	Sand (Fill) Water Level at 7 ft. bgs.

PROJECT NO.: KT200A7 **BORING NO.:** B-3 199 Water Street, 23rd Floor Page 2 of 2 N/A WELL NO.: New York, NY 10038 **NSCS** Interval Blows Rec. PID Description Remarks Collected B-3 FILL Dark yellowish brown (10YR4/2) medium to fine SAND, little Silt, from 11.0 trace coarse to fine Gravel; wet. 11.5 ft bgs Silty Clay <1 Dark yellowish brown (10YR4/2) to pale yellowish brown (10YR6/2) Silty CLAY; wet. <1 Sand Medium dark gray (N4) to dusky yellowish brown (10YR2/2) medium to fine SAND, little Silt, trace coarse to fine Gravel; wet. 15 Composite sample collected from 3 B-3 and B-4 13 Medium dark gray (N4) to dusky yellowish brown (10YR2/2) medium to fine SAND, little Silt, trace coarse to fine Gravel; wet. **End of Boring** at 22 ft. bgs.

The Louis Berger Group, Inc.

			s Berger (_				Drilling Log	BORING NO.: B	-4
			k, NY 100		F 1001	r		Page 1 of 2	WELL NO.: No	'A
CLIENT	: Ne	w Y	ork City	Ecor	nomi	c De	velop	oment Corporation	PROJECT NO: K	Г200А7
PROJEC									DATE STARTED: 4/9	9/2009
DRILLIN								rilling and Testing, Inc.	DATE FINISHED: 4/9	9/2009
DRILLIN	NG N	ИΕΊ	THOD:		I	Hollo	w Ste	em Auger	DRILLER: J.	Meyer
В	ORI	EH(DLE DA	TA				WELL DATA	INSPECTOR: J. 1	Lacanlale
Diameter	(in)	:	4			(Comp	letion: N/A	NORTHING (ft): N/	A
Total Dep	oth (ft):	22.0	0		1	otal	Depth (ft): N/A	EASTING (ft): N/	A
Sampler:			Split Sp	poon		_		n Length (ft) /Slot (in): N/A	GROUND ELEVATION	ON (ft): N/A
Depth to	Wat	er (f						to Water (ft): N/A	TOC ELEVATION (f	t): N/A
Depth to	Roc	k (ft	t): N/	'A		I	Perm	it No.: N/A		
NOTES:										
Well	Depth	Lithology	nscs	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0		ASPHALT			,	N/A	Asphalt.		Asphalt
	2 - 3 - 5 -		CONCRE				N/A	Concrete (Airknife from 0.0 - 6.0 ft bg	s).	Concrete
	6 - 8 - 9 -		FILL			4 4 7 7 7 8 8 8 8 8 14 14	<1	Moderate yellowish brown (10YR5/4) Silt, little coarse to fine Gravel; moist.	medium to fine SAND, some	Silty Sand (Fill) Water Level at 7 ft. bgs.

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-4 199 Water Street, 23rd Floor Page 2 of 2 N/A WELL NO.: New York, NY 10038 **USCS** Interval Blows Rec. PID Description Remarks Gravelly Sand <1 FILL Dark yellowish brown (10YR4/2) coarse to fine SAND, some coarse (Fill) to fine Gravel, little wood debris; wet. 19 30 17 <1 FILL Moderate yellowish brown (10YR5/4) coarse to fine SAND, some coarse to fine Gravel, little wood debris; wet. 12 <1 Medium dark gray (N4) Wood debris; wet. 9 Collected composite sample WC-5 from B-3 and **B-4** Sand 12 Medium dark gray (N4) coarse to fine SAND, little medium to fine Gravel; wet. **End of Boring** at 22 ft. bgs. 8

CLIENT: PROJEC DRILLIN DRILLIN	New T: NG (NG NG N	Wate York W Y Sout Sout ECON MET : : : : : : : : : : : : :	th Brookl TTRACT THOD: DLE DA 4 22.0 Split Sp ft): 7	Econ lyn N FOR TA	nomi Marin : 4	r De Come Te Aqui Hollo	ermina fer Dr ow Ste Comp Total Screen	Page 1 of 2 Page 2 of 2 Page	ATE STARTED: 4/9 ATE FINISHED: 4/9 RILLER: J. N	A (200A7 (2009 (200) (2009 (2009 (2009 (2009 (2009 (2009 (200) (2009 (2009 (2009 (200) (2009 (2009 (200) (2009 (2009 (200) (200) (200) (2009 (200) (20
Well Construction	Depth	Lithology	nscs	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0 1 - 2 - 3 - 4 -		ASPHALT		\$		N/A N/A	Asphalt. Concrete (Airknife from 0.0 to 6.0 ft bgs).		Asphalt Concrete
	5 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9		FILL			1 1 1 1	<1	Moderate yellowish brown (10YR5/4) coar coarse to fine Gravel, trace Silt; moist.	se to fine SAND, little	Sand (Fill) Water Level at 7 ft. bgs.

The Louis Berger Group, Inc.
199 Water Street, 23rd Floor
New York, NY 10038

PROJECT NO.: KT200A7

Page 2 of 2

WELL NO.: N/A

Pege 2 of 2

Description

Remains

	New Tork, NT 10038							1 uge 2 of 2	WEELING	(/11
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-		FILL			5 2	<1	Moderate yellowish brown (10YR5/4) coars coarse to fine Gravel, trace Silt; wet.	se to fine SAND, little	
	12-					3				
	13-									
	14-									
	15-		SP			WH	<1	Medium gray (N5) medium to fine SAND, t	crace fine Gravel; wet.	Sand
	16-	を、使りま を、できる。 を、できる。 できないました。 できないました。 できないました。 を、できる。 できないました。 を、できる。 できないました。 できないまないまないまないまないまないまないまないまないまないまないまないまないまな				1 WH				Composite sample WC-4
	17-					1				collected from B-5 and B-6
	18-	を できません アン・ストル マン・ストル マン・ストルル マン・ストルルル マン・ストルルル マン・ストルルル マン・ストルルル マン・ストルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルル								
	19-									
	20-	日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の	SP			2	<1	Medium gray (N5) medium to fine SAND;	wet.	
	21-					2				End of Boring at 22 ft. bgs.
	22			$\times\!\!\!\times\!\!\!\times$	V/	<u> </u>				

			s Berger (Drilling Log	BORING NO.: B	-6
			er Street, 2 k, NY 100		F1001	r		Page 1 of 2	WELL NO.: N	/A
CLIENT:	Ne	w Y	ork City	Eco	nomi	c De	velop	ment Corporation	PROJECT NO: K	Г200А7
PROJEC								=	DATE STARTED: 4/	9/2009
DRILLIN				•				rilling and Testing, Inc.	DATE FINISHED: 4/	
DRILLIN						Hollo	w Ste	em Auger	DRILLER: J.	Meyer
В	OR	EH(OLE DA	TA				WELL DATA	INSPECTOR: J.	Lacanlale
Diameter	(in)	:	4			(Comp	letion: N/A	NORTHING (ft): N/	A
Total Dep	oth (ft):	22.0	0		T	otal	Depth (ft): N/A	EASTING (ft): N/	A
Sampler:			Split Sp	poon		S	cree	Length (ft) /Slot (in): N/A	GROUND ELEVATION	ON (ft): N/A
Depth to	Wat	er (1				Ι	Depth	to Water (ft): N/A	TOC ELEVATION (f	t): N/A
Depth to	Roc	k (ft	t): N/	/A		I	Perm	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	nscs	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0		ASPHALT				N/A	Asphalt.		Asphalt
	2 -		CONCRE				N/A	Concrete (Airknife from 0.0 to 6.0 ft by	gs).	Concrete
	4 -									GW G
	6 - 8 - 9 -		FILL			3	<1	Moderate yellowish brown (10YR5/4) Silt, little coarse to fine Gravel; moist.	medium to fine SAND, some	Silty Sand (Fill) Water Level at 7 ft. bgs.

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-6 199 Water Street, 23rd Floor Page 2 of 2 N/A**WELL NO.:** New York, NY 10038 **USCS** Interval Rec. PID Description Remarks **Gravelly Sand** 13 <1 FILL Dark yellowish brown (10YR4/2) coarse to fine SAND, some coarse (Fill) to fine Gravel, little wood debris; wet. 8 <1 Dark yellowish brown (10YR4/2) to medium gray (N5) coarse to fine SAND, some coarse to fine Gravel; wet. Collected composite sample WC-4 from B-5 and B-6, collected B-6 from 20.0 - 20.5 ft bgs Sand Medium gray (N5) medium to fine SAND; wet. 2

1

End of Boring

at 22 ft. bgs.

All In			s Berger (_				Drilling Log	BORING NO.: B-7	
			er Street, i k, NY 100		Floor	.		0 0	WELL NO.: N/A	
CLIENT			*		nomi	c De	walon	Page 1 of 2 ment Corporation		00A7
PROJEC									DATE STARTED: 4/10	
DRILLI								rilling and Testing, Inc.	DATE STARTED: 4/10	
DRILLI				IOK				em Auger	DRILLER: J. M	
			OLE DA	TA			200	WELL DATA		canlale
Diamete			4			1	Comp	letion: N/A	NORTHING (ft): N/A	
Total De	pth ((ft):	22.0	00		_		Depth (ft): N/A	EASTING (ft): N/A	
Sampler	<u>-</u>		Split S ₁	poon		S	creei	Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A
Depth to	Wat	ter (ft): 7			Ι	Depth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A
Depth to	Roc	k (f	(t): N	/A		I	Permi			
NOTES	:									
uc				val	ery					
Well Construction	Depth	Lithology	nscs	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
V	Ď	Lith	Š	nple	ple]	Œ.	D (•		
				San	Sam	¥	I			
	0		ASPHAL	ı XX			N/A	Asphalt.		Asphalt
				\bowtie						
	1 _			\bowtie						
	1 -		CONCRE	₩			N/A	Concrete (Airknife from 0.0 to 5.0 ft bg	s).	Concrete
				\bowtie						
	2 -									
	3 -									
	3									
	4 -									
	5 -			***						
			NA	\bowtie		4	N/A	No Recovery		
					[5				
	6 -			\bowtie						
						1				
				\bowtie		1				
	7 -									₩ater Level at 7 ft. bgs.
	8 -									
	0									
	9 –									

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-7 199 Water Street, 23rd Floor Page 2 of 2 N/AWELL NO.: New York, NY 10038 **USCS** Interval Blows Rec. PID Description Remarks Silty Sand FILL Dark yellowich brown (10YR4/2) medium to fine SAND, some Silt, (Fill) little medium to fine Gravel; wet. 3 3 Collected B-7 FILL Dark yellowich brown (10YR4/2) medium to fine SAND, some Silt, from 15.5 little medium to fine Gravel; wet. 16.0 ft bgs 2 2 Composite sample WC-3 collected from **B-7 and B-8** Sand Dark yellowich brown (10YR4/2) to medium gray (N5) medium to fine SAND; wet.

End of Boring at 22 ft. bgs.

The Louis Berger Group, Inc. 199 Water Street, 23rd Floor	Drilling Log	BORING NO.: B-8
New York, NY 10038	Page 1 of 2	WELL NO.: N/A
CLIENT: New York City Economic I	Development Corporation 1	PROJECT NO: KT200A7
PROJECT: South Brooklyn Marine	Terminal 1	DATE STARTED: 4/10/2009
ORILLING CONTRACTOR: Aq	uifer Drilling and Testing, Inc.	DATE FINISHED: 4/10/2009
PRILLING METHOD: Hol	llow Stem Auger	DRILLER: J. Meyer
BOREHOLE DATA	WELL DATA	INSPECTOR: J. Lacanlale
Diameter (in): 4	Completion: N/A	NORTHING (ft): N/A
Total Depth (ft): 22.00	Total Depth (ft): N/A	EASTING (ft): N/A
ampler: Split Spoon	9 , ,	GROUND ELEVATION (ft): N/
Pepth to Water (ft): 7		TOC ELEVATION (ft): N/A
Depth to Rock (ft): N/A	Permit No.: N/A	
NOTES:		
Well Construction Depth Lithology USCS Sample Interval	Description	Rema
1 - 2 - 3 - 3 -	N/A Asphalt (Airknife from 0.0 to 6.0 ft bgs).	Asphalt

<1

FILL

Dark yellowish orange (10YR6/6) medium to fine SAND, some Silt, little medium to fine Gravel; moist.

Silty Sand

▽ Water Level at

7 ft. bgs.

(Fill)

The Louis Berger Group, Inc.
199 Water Street, 23rd Floor
New York, NY 10038

PROJECT NO.: KT200A7

Page 2 of 2

WELL NO.: N/A

4		1011	k, NY 10					rage 2 or 2 WELL NO.:	1/A
Well	Depth	Lith.	SOSO	Interval	Rec.	Blows	PID	Description	Remarks
	10-	45445445	, FILL			12	<1	Moderate yellowish brown (10YR5/4) medium to fine SAND, some Silt, little wood debris; wet.	
	11-		, - -			11 7			
	12-		,						
	13-								
	14-								
	15-		FILL			41	<1	Moderate yellowish brown (10YR5/4) to medium gray (N5) coarse to fine SAND, some coarse to fine Gravel; wet.	Gravelly sand (Fill)
	16-					14			
	17-					17			
	18-								Composite sample WC-3
	19-								collected from B-7 and B-8
	20-		SP	***		5	<1	Medium gray (N5) to medium dark gray (N4) medium to fine SAND,	Sand
	21-					12		little medium to fine Gravel; wet.	
	22					10			End of Boring at 22 ft. bgs.

46			s Berger (er Street, 2	_				Drilling Log	BORING NO.: B-	9
			k, NY 100		F 1001			Page 1 of 2	WELL NO.: N/	A
CLIENT	: Ne	w Y	ork City	Eco	nomi	c De	velop	oment Corporation	PROJECT NO: KT	C200A7
PROJEC									DATE STARTED: 4/3	10/2009
DRILLI								rilling and Testing, Inc.	DATE FINISHED: 4/2	10/2009
DRILLI	IG N	MET	THOD:		I	Hollo	w Ste	em Auger	DRILLER: J. 1	Meyer
В	OR	EH(OLE DA	TA				WELL DATA	INSPECTOR: J. 1	Lacanlale
Diameter	(in)	:	4			(Comp	letion: N/A	NORTHING (ft): N/A	A
Total Dep	oth (ft):	22.0	0		T	otal	Depth (ft): N/A	EASTING (ft): N/A	A
Sampler:			Split S ₁	poon		S	creei	n Length (ft) /Slot (in): N/A	GROUND ELEVATION (ft): N/	
Depth to	Wat	er (1						to Water (ft): N/A	TOC ELEVATION (f	t): N/A
Depth to	Roc	k (ft	t): N/	/A		I	Perm	it No.: N/A		
NOTES:	T 1			T	I ~ I		ı			
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0		ASPHALT				N/A	Asphalt.		Asphalt
	2 - 3 - 5 -		CONCRE				N/A	Concrete (Airknife from 0.0 to 0.5 ft by	gs).	Concrete
	6 - 7 - 8 - 9 -		FILL			3 3	<1	Moderate yellowish brown (10YR5/4) Silt, little medium to fine Gravel; mois		Silty Sand (Fill) Water Level at 7 ft. bgs.

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-9 199 Water Street, 23rd Floor Page 2 of 2 N/AWELL NO.: New York, NY 10038 **NSCS** Depth Interval Blows Rec. PID Description Remarks 1 N/A NA No Recovey 1 11 1 1 12-13-14-Sand Dark yellowish brown (10YR4/2) medium to fine SAND; wet. Collected composite sample WC-2 from B-9 and B-10 Dark yellowish brown (10YR4/2) medium to fine SAND; wet.

End of Boring at 22 ft. bgs.

	199 ` New	Wate Yor	s Berger (er Street, 2 k, NY 100	23rd 038	Flooi	•		Drilling Log Page 1 of 2	BORING NO.: B-WELL NO.: N/	A
CLIENT	: Ne	ew Y	ork City	Eco	nomi	c De	evelop	ment Corporation	PROJECT NO: KT	C200A7
PROJEC	T:	Sou	th Brook	lyn N					DATE STARTED: 4/1	0/2009
DRILLI				ГOR				rilling and Testing, Inc.	DATE FINISHED: 4/10/2009	
DRILLI					I	Hollo	ow Ste	em Auger	DRILLER: J. Meyer	
			OLE DA	TA				WELL DATA	INSPECTOR: J. Lacanlale	
Diameter			4			_		letion: N/A	NORTHING (ft): N/A	
Total De	oth ((ft):	22.0					Depth (ft): N/A	EASTING (ft): N/A	
Sampler:	***	4 /	Split S ₁	poon		_		Length (ft) /Slot (in): N/A	GROUND ELEVATION	
Depth to		`		/ A				to Water (ft): N/A	TOC ELEVATION (fo	:): N/A
Depth to NOTES:		ck (f	t): N	Ά			Permi	it No.: N/A		
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0		ASPHAL				N/A	Asphalt.		Asphalt
	2 - 3 - 4 -		CONCRE				N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	gs).	Concrete
	6 -		FILL			2 4 5 2	<1	Dark yellowish brown (10YR4/2) coar to fine Gravel; moist.	se to fine SAND, some coarso	Gravelly San (Fill) Water Level 7 ft. bgs.

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-10 199 Water Street, 23rd Floor Page 2 of 2 N/AWELL NO.: New York, NY 10038 **USCS** Interval Rec. PID Description Remarks Collected B-<1 FILL Dark yellowish brown (10YR4/2) coarse to fine SAND, some coarse 10 from 10.0 to fine Gravel; wet. 10.5 ft bgs 6 10

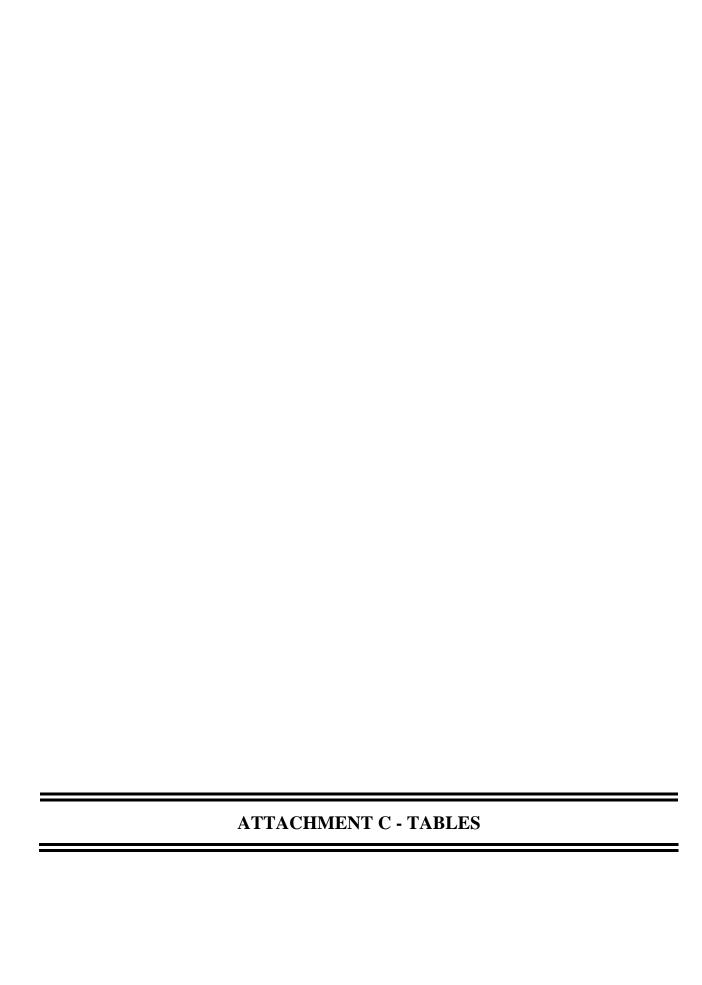
<1 FILL Dark yellowish brown (10YR4/2) coarse to fine SAND, some coarse to fine Gravel; wet. Wood debris <1 FILL Wood debris. 5 12 Collected composite sample WC-2 from B-9 and **B-10** 14 FILL Wood debris.

End of Boring 12 at 22 ft. bgs

45			s Berger (_				Drilling Log	BORING NO.: B-1	1
			er Street, 2 k, NY 100		Floor			Page 1 of 2	WELL NO.: N/A	Λ
CLIENT			•		nomi	c De	evelop	ment Corporation	PROJECT NO: KT	200A7
PROJEC								=	DATE STARTED: 4/13	3/2009
DRILLI	NG (CON	TRAC	ΓOR	: 4	Aqui	ifer D	rilling and Testing, Inc.	DATE FINISHED: 4/13	3/2009
DRILLI					I	Iollo	ow Ste	em Auger		Palomeque
			DLE DA	TA		_		WELL DATA		acanlale
Diameter			4	0		_		letion: N/A	NORTHING (ft): N/A	
Total De	•	<u>(tt):</u>	22.0			-		Depth (ft): N/A	EASTING (ft): N/A GROUND ELEVATION (ft): N/	
Sampler: Depth to		er ($\frac{\text{Split Sp}}{\text{ft}} \cdot 7$	poon		_		to Water (ft): N/A N/A	TOC ELEVATION (ft)	
Depth to				/A		-		it No.: N/A	TOC ELEVATION (II)	· IV/A
NOTES:		11 (1)	<i>c)</i> • · ·					17/11		
110125										
uo				val	ery					
Well Construction	ţ.	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Danasintias		Remarks
W	Depth	itho	SO	l əld	le R	D (p	D (p	Description		Remarks
్ర చ		L		aml	amp	F	Id			
	0			1	Š		N/A			Asphalt
			ASPHALT CONCRE				N/A	Asphalt. Concrete (Airknife from 0.0 to 6.0 ft bg	rs).	Concrete
				\bowtie				Concrete (i minime from old to old it og		
	1 -			\bowtie						
					7 / /					
	2 -									
	3 -									
	4									
	4 -									
	5 -									
			FILL			16	<1	Dark yellowish brown (10YR4/2) coar	se to fine SAND, some coarse	Gravelly Sand
					Y/4	15		to fine Gravel; moist.		collected B-11
	6 -			\bowtie	}					from 5.0 - 5.5
					}	4				ft bgs
			•		}	4				
	7 -			\bowtie	}					VVa4 → T
	8 -									
	1	///	ľ							
	5 - 6 - 7 - 8 -	15HSHSHSHSHSHSHSHSH	FILL			15 4	<1	Dark yellowish brown (10YR4/2) coart to fine Gravel; moist.	se to fine SAND, some coarse	(Fill), collected B-

The Louis Berger Group, Inc. PROJECT NO.: KT200A7 **BORING NO.:** B-11 199 Water Street, 23rd Floor Page 2 of 2 N/AWELL NO.: New York, NY 10038 **NSCS** Interval Rec. PID Description Remarks Sand (Fill) <1 FILL Dark yellowish brown (10YR4/2) medium to fine SAND, trace fine Gravel; wet. Sand Dusky yellowish brown (10YR2/2) medium to fine SAND; wet. Collected composite sample WC-1 from B-1, collected B-Dusky yellowish brown (10YR2/2) medium to fine SAND; wet. **11GW End of Boring**

at 22 ft. bgs.


AND .	The Louis Berger Group, Inc. 199 Water Street, 23rd Floor							Drilling Log	BORING NO.:	B-12
New York, NY 10038								9	WELL NO.: N/A	
CLIENT	: Ne	w Y	ork City	Eco	nomic	De	evelop	_	ROJECT NO:	KT200A7
PROJEC	T:	Sou	th Brookl	lyn N	/Iarin	е Те	ermina	1 D	DATE STARTED: 4/13/2009	
DRILLI	NG (CON	TRAC 1	ΓOR	: A	Aqui	ifer Dı	illing and Testing, Inc.	ATE FINISHED:	4/13/2009
DRILLI	NG I	MET	THOD:		Н	ollo	ow Ste	\mathcal{E}		Γ. Palomeque
			OLE DA	TA						. Lacanlale
Diameter			4			_			NORTHING (ft): N/A	
Total De		(ft):	22.0			_		• ' '	EASTING (ft): N/A	
Sampler:			Split Sp	oon					ROUND ELEVAT	
Depth to						_		`	OC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/	A		I	Permi	t No.:		
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remark
	2 - 3 - 4 -		CONCRE				N/A	Concrete (Airknife from 0.0 to 6.0 ft bgs).		Concrete
	5 -		FILL			7	<1	Moderate yellowish brown (10YR5/4) med coarse to fine Gravel; moist.	dium to fine SAND, tra	Sand (Fill), collected B- from 6.0 - 6.

10

ft bgs

∀Water Level at
7 ft. bgs.

The Louis Berger Group, Inc. PROJECT NO.: **BORING NO.:** KT200A7 B-12 199 Water Street, 23rd Floor Page 2 of 2 N/AWELL NO.: New York, NY 10038 Depth **NSCS** Interval Blows Rec. PID Description Remarks Sand Dusky yellowish brown (10YR2/2) medium to fine SAND; wet. 3 2 <1 Medium gray (N5) medium to fine SAND; wet. Medium gray (N5) medium to fine SAND; wet. **End of Boring** at 22 ft. bgs.

Table 1 - Summary of TCL Volatile Organic Compounds Detected in Soil

New York City Economic Development Corporation
Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation
South Brooklyn Marine Terminal, Brooklyn, NY

	Subpart 375-6 Unrestricted Use Soil	-	rt 375-6 d Use Soil	TAGM #4046 Recommended Soil			Date Col	lected, Sample	ID and Depth		
TAL Metals	Clean-up Objective	Clean-up	Objective	Clean-up Objective	4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009
	(UUSCO)	(RU	SCO)	(RSCOs)	B2	B-3	B-6	B-7	B-10	B-11	B-12
		(Industrial)	(Protection of GW)		5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5
4-Isopropyltoluene	NS	NS	NS	10	ND	ND	0.023	ND	0.0018	ND	0.021
Chloroform	0.37	700	0.37	0.3	ND	ND	ND	0.01	ND	ND	ND
Methylene chloride	0.05	1000	0.05	0.1	ND	ND	0.0061	ND	ND	ND	0.0084

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

UUSCOs = Unrestricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006)

RUSCOs = Restricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006)

TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

No VOC compounds were detected above UUSCOs and RUSCOs as per 6 NYCRR Subpart 375-6, or TAGM RSCOs

Recommended Soil Cleanup Objectives (RSCOs) (January 24, 1994)

Table 2 - Summary of TCL Semi-Volatile Organic Compounds Detected in Soil

New York City Economic Development Corporation
Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation
South Brooklyn Marine Terminal, Brooklyn, NY

	Subpart 375-6 Unrestricted Use Soil		eart 375-6 ted Use Soil	TAGM #4046 Recommended Soil	Date Collected, Sample ID and Depth										
TCL SVOCs	Clean-up Objective	Clean-u	p Objective	Clean-up Objective	4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009				
	(UUSCO)		USCO)	(RSCOs)	B2	B-3	B-6	B-7	B-10	B-11	B-12				
	·	(Industrial)	(Protection of GW)	(110000)	5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5				
Acenaphthene	20	1000	98	50	ND	ND	ND	0.098	ND	0.3	ND				
Acenaphthylene	100	1000	107	41	ND	ND	ND	0.19	ND	ND	ND				
Anthracene	100	1000	1000	50	ND	ND	ND	0.42	ND	1	ND				
Benzo[a]anthracene	1	11	1	0.224	0.087	ND	ND	<u>2</u>	ND	<u>2.7</u>	0.1				
Benzo[a]pyrene	1	1.1	22	0.061	0.082	ND	ND	<u>1.8</u>	ND	2.2	0.089				
Benzo[b]fluoranthene	1	11	1.7	1.1	0.12	ND	ND	2.2	ND	2.9	0.12				
Benzo[g,h,i]perylene	100	1000	1000	50	ND	ND	ND	1.2	ND	1.4	ND				
Benzo[k]fluoranthene	0.8	110	1.7	1.1	ND	ND	ND	0.76	ND	<u>1</u>	ND				
bis(2-Ethylhexyl)phthalate	NS	NS	NS	50	0.27	ND	ND	0.17	ND	0.57	ND				
Carbazole	NS	NS	NS	50	ND	ND	ND	0.088	ND	ND	ND				
Chrysene	1	110	1	0.4	0.087	ND	ND	<u>2</u>	ND	<u>2.5</u>	0.098				
Dibenzo[a,h]anthracene	0.33	1.1	1000	0.014	ND	ND	ND	0.3	ND	0.43	ND				
Di-n-octylphthalate	NS	NS	NS	8.1	0.21	ND	ND	0.14	ND	0.56	ND				
Fluoranthene	100	1000	1000	50	0.13	ND	ND	3.3	ND	5.6	0.23				
Fluorene	30	1000 386		50	ND	ND	ND	0.12	ND	0.4	ND				
Indeno[1,2,3-cd]pyrene	0.5	11 8.2		3.2	ND	ND	ND	<u>1</u>	ND	<u>1.2</u>	ND				
Phenanthrene	100	1000 1000		50	ND	ND	ND	1.8	ND	4.3	0.13				
Pyrene	100	1000	1000	50	0.14	ND	0.095	4.1	ND	5.3	0.21				

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

UUSCOs = Unrestricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006)

RUSCOs = Restricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006)

TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

BOLD = Detected concentration exceeds NYSDEC TAGM RSCOs

Underlined = Detected concentration exceeds the UUSCO as per 6 NYCRR Subpart 375-6 Refice Beled Scincentration exceeds the CUSCO as per 6 NYCRR Subpart 375-6

Table 3 - Summary of TAL Metals Detected in Soil

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

	Subpart 375-6 Unrestricted Use Soil	<u>-</u>	rt 375-6 d Use Soil	Eastern USA Soil	TAGM #4046 Recommended Soil	Date Collected, Sample ID and Depth									
TAL Metals	Clean-up Objective	Clean-up	Objective	Background	Clean-up Objective	4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009			
	(UUSCO)	(RUS	SCO)	Dackground	(RSCOs)	B2	B-3	B-6	B-7	B-10	B-11	B-12			
		(Industrial)	(Protection of GW)		(110000)	5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5			
Aluminum	NS	NS	NS	33000	SB	10000	7400	4100	7600	11000	6000	3200			
Arsenic	13	16	16	3 - 12	7.5 or SB	5.3	4	4.1	7.8	5	6.2	3.6			
Barium	350	10000	820	15 - 600	300 or SB	52	45	18	180	110	96	ND			
Calcium	NS	NS	NS	130 - 35000	SB	10000	2600	1500	5400	1400	16000	ND			
Chromium	30	6800	NS	1.5 - 40	10 or SB	19	15	11	<u>31</u>	27	16	8.6			
Cobalt	NS	NS	NS	2.5 - 60	30 or SB	7.3	9.6	4.6	8.1	16	6.5	3.5			
Copper	50	10000	1720	1 - 50	25 or SB	20	<u>54</u>	8.8	<u>140</u>	27	<u>96</u>	7.3			
Iron	NS	NS	NS	2000 - 550000	2000 or SB	16000	20000	9600	16000	21000	14000	9800			
Lead	63	3900	450	500*	SB	<u>64</u>	18	11	<u>1400</u>	59	<u>180</u>	6.7			
Magnesium	NS	NS	NS	100 - 5000	SB	3000	3500	2100	2500	6300	3600	1300			
Manganese	1600	10000	2000	50 - 5000	SB	260	460	130	310	<u>1600</u>	260	77			
Mercury	0.18	5.7	0.73	0.001 - 0.2	0.1 or SB	ND	ND	ND	<u>2.6</u>	ND	<u>1.4</u>	ND			
Nickel	30	10000	130	0.5 - 25	13 or SB	24	24	12	25	<u>61</u>	25	8.7			
Potassium	NS	NS	NS	8500 - 43000	SB	1100	1200	1200	920	7100	1000	ND			
Selenium	3.9	6800 4		0.1 - 3.9	2 or SB	2.8	<u>4.1</u>	ND	<u>4.1</u>	ND	ND	ND			
Sodium	NS	NS NS		6000-8000	SB	450	1200	ND	ND	560	ND	ND			
Vanadium	NS	NS	NS	1 - 300	150 or SB	27	28	13	24	32	21	13			
Zinc	109	10000	2480	9 - 50	20 or SB	57	44	34	<u>270</u>	100	<u>240</u>	29			

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

NS = No Standard

SB = Site background concentration

SCOs = Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6

TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

Remedial Program Soil Cleanup Objectives (December 14, 2006)

BOLD = Detected concentration exceeds NYSDEC TAGM RSCOs
Shading = Detected concentration exceeds NYSDEC TAGM RSCOs
Shading = Detected concentration exceeds Eastern Soil Background Concentrations as per TAGM RSCOs

<u>Underlined</u> = Detected concentration exceeeds the UUSCO as per 6 NYCRR Subpart 375-6

Italic = Detected concentration exceeeds the RUSCO as per 6 NYCRR Subpart 375-6

Table 4 - Summary of TCLP Parameters Detected in Composite Soil Sample

New York City Economic Development Corporation
Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation
South Brooklyn Marine Terminal, Brooklyn, NY

	RCRA	Date Colle Sample ID, and	•		ollected, and Boring ID	Date Col Sample ID, an	•		Collected, and Boring ID	Date Col Sample ID, ar	,		ollected, and Boring ID
Parameter	Hazardous Waste	4/13/20	09)/2009	4/10/2			9/2009	4/9/2			3/2009
	Levels	WC-1			/C-2	WC			VC-4	WC			/C-6
		B-1		B-9	& B-10	B-7 &	B-8	B-	5 & B-6	B-3 &	B-4	B-1	& B-2
Ignitability	< 140 °F	> 140	°F	> 140	°F	> 140	°F	> 140	°F	> 140	°F	> 140	°F
рН	> 2 and < 12.5	9.6		9.9		9.5		9.2		8.6		9.2	
Reactive Cyanide	250 mg/kg	ND	mg/kg	ND	mg/kg	ND	mg/kg	ND	mg/kg	ND	mg/kg	ND	mg/kg
Reactive Sulfide	500 mg/kg	ND	mg/kg	ND mg/kg		ND	mg/kg	ND	mg/kg	ND	mg/kg	ND	mg/kg
1,1-Dichloroethene	0.7 mg/L			ND mg/L		ND mg/L		ND mg/L		ND	mg/L	ND	mg/L
1,2-Dichloroethane	0.5 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
1,4-Dichlorobenzene	7.5 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2-Butanone	200 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Benzene	0.5 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Carbon tetrachloride	0.5 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Chlorobenzene	100 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Chloroform	6 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Tetrachloroethene	0.7 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Trichloroethene	0.5 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Vinyl Chloride	0.2 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2,4,5-Trichlorophenol	400 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2,4,6-Trichlorophenol	2 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2,4-Dinitrotoluene	0.13 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2-Methylphenol	200 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
3&4-Methylphenol	200 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Hexachlorobenzene	0.13 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Hexachlorobutadiene	0.5 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Hexachloroethane	3 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Nitrobenzene	2 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Pentachlorophenol	100 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Pyridine	5 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Chlorodane	0.03 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Endrin	0.02 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Gamma-BHC	0.4 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Heptachlor	0.008 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Heptachlor epoxide	0.008 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Methoxychlor	10 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Toxaphene	0.5 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
2,4-D	10 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Silvex	1 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Arsenic	5 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Barium	100 mg/L		mg/L	0.34	mg/L	0.60	mg/L	0.33	mg/L	0.39	mg/L	0.34	mg/L
Cadmium	1 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Chromium	5 mg/L		mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Lead	5 mg/L		mg/L	ND	mg/L	1.2	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Mercury	0.2 mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Nickel	NS mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L
Selenium	1 mg/L	ND mg/L		ND mg/L		ND mg/L		ND	mg/L	ND	mg/L	ND	mg/L
Silver	5 mg/L	ND	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	

Notes

All TCLP concentrations are reported in parts per million (mg/L), unless otherwise indicated.

ND = Compound not detected above method detection limit (see attached lab report for mdl's)

Bold = Positive detection

Table 5 - Summary of TAL Metals Detected in Groundwater

New York City Economic Development Corporation
Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation
South Brooklyn Marine Terminal, Brooklyn, NY

Target Analyte List Metal	NYSDEC Class GA Groundwater	Date Collected, Sample ID and Depth
	Standards and Guidance Values	4/13/2009
		B-11 GW
Aluminum	NS	240000
Arsenic	25	410
Barium	1000	2500
Beryllium	3	28
Cadmium	5	19
Calcium	NS	340000
Chromium	50	770
Cobalt	NS	350
Copper	200	1300
Iron	300	800000
Lead	25	2200
Magnesium	35000	160000
Manganese	300	12000
Mercury	0.7	17
Nickel	100	820
Potassium	NS	65000
Sodium	20000	60000
Vanadium	14	1100
Zinc	2000	4200

Notes:

All concentrations are reported in parts per billion (ppb or ug/l), unless otherwise indicated.

NS = No Standard

Bold = Positive detection

Shading = Concentration exceeds NYSDEC Class GA Groundwater Standards and Guidance Values NYSDEC Class GA Groundwater Standards and Guidance Values as per NYSDEC Technical and Operational Guidance Series (TOGS)

Table 6 - Summary of TCL Semi-Volatile Organic Compounds Detected in Groundwater

New York City Economic Development Corporation
Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation
South Brooklyn Marine Terminal, Brooklyn, NY

Target Analyte List Metal	NYSDEC Class GA Groundwater	Date Collected, Sample ID and Depth
raiget Analyte List Metal	Standards and Guidance Values	4/13/2009
		B-11 GW
bis(2-Ethylhexyl)phthalate	5	7.9
Pyrene	50	2.5

Notes:

All concentrations are reported in parts per billion (ppb or ug/l), unless otherwise indicated.

NS = No Standard

Bold = Positive detection

Shading = Concentration exceeds NYSDEC Class GA Groundwater Standards and Guidance Values NYSDEC Class GA Groundwater Standards and Guidance Values as per NYSDEC Technical and Operational Guidance Series (TOGS)

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 198 ROUTE 46 EAST, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: SBMT

Client PO: KT200A7

Report To: Louis Berger & Associates

412 Mt. Kemble Ave. Morristown, NJ 07960

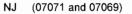
Attn: J.Nelson/Jim V.V

Received Date: 4/13/2009

Report Date: 5/5/2009

Deliverables: NYDOH-CatA

Lab ID: AC43958


Lab Project No: 9041403

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Robyn nold Jeri Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 196

SDG Narrative

Client: Louis Berger & Associates Project: SBMT

Hampton-Clarke/Veritech (HC·V) received the following samples on April 13, 2009:

Client ID	HCV Sample ID	Matrix	Analysis
B-2	AC43958-001	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-3	AC43958-002	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B,
B-6	AC43958-003	Soil	7471A) VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-7	AC43958-004	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-10	AC43958-005	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-11	AC43958-006	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-12	AC43958-007	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-11 GW	AC43958-008	Aqueous	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7470A)
WC-1	AC43958-009	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
WC-2	AC43958-010	Soil	TCLP Metals (6010B, 7470A) RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
WC-3	AC43958-011	Soil	TCLP Metals (6010B, 7470A) RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
WC-4	AC43958-012	Soil	TCLP Metals (6010B, 7470A) RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
WC-5	AC43958-013	Soil	TCLP Metals (6010B, 7470A) RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
WC-6	AC43958-014	Soil	TCLP Metals (6010B, 7470A) RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A),
ТВ	AC43958-015	Aqueous	TCLP Metals (6010B, 7470A) VO (8260B)

Volatile Organic Analysis:

Methylene chloride was recovered in samples AC43958-003 and 007 suggesting possible laboratory contamination.

The recovery of Trichloroethene is biased high, outside QC limits in the Matrix Spike in batch 11916. All QC criteria were met in the Laboratory Control Sample (MBS).

Base Neutral Acid Extractable Analysis:

The surrogate recoveries are outside QC limits in sample AC43958-008 in both extracts.

PCB Analysis:

Data conforms to method requirements.

Pesticide Analysis:

Data conforms to method requirements.

Metals Analysis:

The serial dilution for Beryllium and Calcium is outside QC limits in batch 10131, suggesting matrix interference.

The serial dilution for Potassium is outside QC limits in batch 10136, suggesting matrix interference.

The recovery of Antimony is biased low, outside QC limits in the Matrix Spike and Matrix Spike Duplicate in batch 10131. All QC criteria were met in the LCS and LCS MR.

The recovery of Barium, Magnesium, Potassium and Zinc is biased low, outside QC limits in the Matrix Spike in batch 10131. All QC criteria were met in the LCS and LCS MR.

Wet Chemistry Analysis:

Data conforms to method requirements.

TCLP Volatile Organic Analysis:

Data conforms to method requirements.

TCLP Base Neutral Acid Extractable Analysis:

Data conforms to method requirements.

TCLP Pesticide Analysis:

Data conforms to method requirements.

TCLP Herbicide Analysis:

Data conforms to method requirements.

TCLP Meta	ls Analysis:
-----------	--------------

Data conforms to method requirements.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Jeri Rossi Or

515709

Date

Quality Assurance Director

Stanley Gilewicz Laboratory Director

			tel he	10)Relinquished By:	V -010	-009	-008	-007	-006	-005	-004	-83	-002	-001	Lab Sample#	AC43958	Batch#	ONLY	USE	FOR LAB		1d) Send Report To:	1c) Send Invoice To:	1b) Email/Cell/Fax/Ph:	Address	1a) Customer:		175 US Hwy 46 West, Fairfield, New Jersey 07004 & 1275 Bioomiteld Avenue, Building 3, Unit 50A, Fairfield, New Jersey 07004 LD NELAC/NJ# 07071/07069 CT# PH-0671 MA# NJ386 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353 KY# 90124
			el M	4	wc-Z	WC-1	B-116W	3-12	3-11	D-10	4-8	3-6	B-3	8-2	4) Customer Sample ID	GW-Ground Water WW-Waste Water	٦					SEAN	SEAN	42	MORRISO	MUIS BERGER	Customer Information	airfield, New Jersey 07004 069 CT# PH-0671 MA
			X	Accepted By	1 V 1 1 10 0	5 417	CW 4/13/09	N/11/H V	10/09	4/10/09	4/10/0	11/9/09	4/9/09	5 4/17 G	5) 6) Sample Matrix Date 1	SL-Sludge Ot-Other O-Oil				Chec	C	o McGonigal	J McGonigal	0001	A)IT O	ZINDINCA ZINDINCA	nformation	# NJ386 NY/ELAP# 11
			4/13/09 17:5	Date Time	04 (300 X	10 P.45 X	N 230 人人	X X 000 N	X X 01711 b	$\overline{}$	8 900 X X	1515 X X	4 1010	150 X	Com Grat	posito(G)	te(C)		Sample	Check if Contingent===>		Zu) 'au	3					ue, Building 3, Unit 50A, F 1408/11939 PA# 68-46;
Please note NUMB A fee of \$5/sample will	11) Sampler:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		メ	×				X					1 TY TY	THE WAY	/ A R	AL RA		100		Za) Quote#/FO# (II Applicable).	to#/DO# (If Applicab	2c) Location (City/State):	2b) Project Manager:	Br	Project Information	175 US Hwy 46 West, Fairfield, New Jersey 0/004 & 12/5 Bloomfield Avenue, Building 3, Unit 50A, Fairfield, New Jersey 0/004 NELAC/NJ# 07071/07069 CT# PH-0671 MA# NJ386 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353 K
Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis	J lacally		-/TAL+30 (NO CN)	Comments, Note												\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ / /			() Analysis Request			KT 70047	Drooklyn , NY	Mchanic		ormation	
pleted your analytical wuld sample not be activated it			30 CN), DT	Comments, Notes, Special Requirements, HAZARDS		-7	<u></u>	4						7	None MeOl			<i> </i>		it it	L	Ш		1-Week(25%)	72-Hour (50%) 4 Day (TPH)	24-Hour(100%) 48-Hour(75%)	Turnaround Time	3) Reporti
ork may be delayed. or any analysis	Date: リ/ドろ/のく), DTW 4/15/09	ments, HAZARDS			() -								Encor NaOH HCI H2SO HNO3	Of Bottles	<u>&</u>			// <===Check if Contingent	Expedited IAT NOT always available (Flease Clean With Iab):	7	_	Full/Cat-B	Red-NJ/NY/PA	Data Sum Waste		1g/k
	3.0	Cooler Tmp													Other	Comments	(If applicable)	Bottle Numbers		Contingent	ase clieck with laby:		Other:	Excel-PAActil		Hazsite/Csv Equis	Electronic Deliv	(please circle)

			14 1 19	10)Relipquished By: Accepted By			1-015 TB F	- WC-6	-013 WC-5	WC-4	-011* NC-3 5		#C43958 www.v/aste Water St-Sludge	Ma	ONLY	FOR LAB		1d) Send Report To:		1b) Email/Cell/Fax/Ph:	SEE PAGE 1	〇1a) Customer: (むじら 予む(なお)	Ouoto
> 10			4/13/09 17:54	Date Time			1 (do)	VII) 8 (0%) X X	4/9/09/11/15 X X	4 01/08/12/18/18/18/18/18/18/18/18/18/18/18/18/18/	X Shall bolalh	Date Time C G	posit	te(C)	Sample	Check if Contingent===>			2d) Quote#/Pi	2C) Location (City/state):	2b) Project Manager.	2a) Project:	
Please note NUMBERED items, if not completed your analytical work may be delayed. A fee or \$5/sample will be assessed for storace should sample not be activated for any analysis	11) Sampler: J. Lacalel			Comments, Notes, S										Received /	¥ / / / /		7) Analysis Request		2d) Quote#/PO# (If Applicable): KT なりなく		Som mod	STATE MAN	- I of cost micrimation
your analytical work manager manager manager manager mple not be activated for any	Date:			Notes, Special Requirements,				<			7	None MeOl- Encor	-					Expedited TAT Not always available (Please check with lab)!	Other: 2wask	1-Week(25%) 10 Days(10%)	72-Hour (50%) 4 Day (TPH)	24-Flour(100%) 48-Hour(75%)	24 11(400%)
analysis	4/13/09	-		ts, HAZARDS								NaOH HCI H2SO HNO3	Bottles	<u>&</u>		<===Check if Contingent		ys available (Please c	Oner:	Full/Cat-B Cat-A	CLP	Waste	Data Sim
	3.0%	Cooler Tmp											Comments	(If applicable)	9)Methanol	ntingent		theck with lab)!	Oner	PDF	Excel·Nytagm	Equis	Largin Co.

CONDITION UPON RECEIPT

Batch Number AC43958

Entered By: Frantz

Date	Entered	4/14/2009	8:39:00	ΑM

		Date Entered 4/14/2009 0.33.00 AW
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 3.0
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	NO	Are samples preserved correctly?
12	NA	Are all soils preserved in methanol accompanied by dry soil?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC43958

Entered By: Frantz

Date Entered 4/14/2009 8:39:00 AM

Lab#:	Container Siz	Container Typ	Paramete	Preservative	PH
AC43958-001	NA	NA	NA	NA	NA
AC43958-002	NA	NA	NA	NA	NA
AC43958-003	NA	NA	NA	NA	NA
AC43958-004	NA	NA	NA	NA	NA
AC43958-005	NA	NA	NA	NA	NA
AC43958-006	NA	NA	NA	NA	NA
AC43958-007	NA	NA	NA	NA	NA
AC43958-008	40ml	G	VO+10	HCL	7
AC43958-008	1L	P	METALS	HNO3	1
AC43958-008	1L	G	PEST	NONE	7
AC43958-009	NA	NA	NA	NA	NA
AC43958-010	NA	NA	NA	NA	NA
AC43958-011	NA	NA	NA	NA	NA
AC43958-012	NA	NA	NA	NA	NA
AC43958-013	NA	NA	NA	NA	NA
AC43958-014	NA	NA	NA	NA	NA
AC43958-015	40ml	G	VO+10	HCL	1

												0009
		Loc							Loc			
		or	Bot	A/					or	Bot	A/	
Lab#:	DateTime:	User	Nu	М	Analysis		Lab#:	DateTime:	User	Nu	M	Analysis
AC43958-001	04/13/09 17:45	FRAN	0	М	Received		AC43958-005	04/13/09 17:45	FRAN	0	М	Received
AC43958-001	04/14/09 08:39	FRAN	0	м	Login		AC43958-005	04/14/09 08:39	FRAN	0	м	Login
AC43958-001	04/15/09 08:44	SDL	1	Α	MIXING		AC43958-005	04/14/09 08:49	R12	1	Α	NONE
AC43958-001	04/15/09 10:54	РМ	1	Α	%SOLIDS		AC43958-005	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-001	04/15/09 16:08	R12	1	A	NONE		AC43958-005	04/15/09 10:54	РМ	1	A	%SOLIDS
AC43958-001	04/20/09 11:27	OA	1	A	TDSI/HG		AC43958-005	04/15/09 16:08	R12	1	Α	NONE
AC43958-001	04/20/09 13:12	R12	1	A	NONE		AC43958-005	04/20/09 11:27	OA	1	Α	TDSI/HG
AC43958-001	04/23/09 10:01	JB		Δ	BNA-S		AC43958-005	04/20/09 13:12	R12	1	A	NONE
AC43958-001	04/23/09 10:07	MANS	1	A	S,P/P		AC43958-005	04/22/09 09:07	MANS	1	Δ	S,BNA
AC43958-001	04/23/09 11:43	R12	1.		NONE		AC43958-005	04/22/09 09:48	R12	1	A	NONE
AC43958-001 AC43958-001	04/14/09 09:06	R21	2	A	NONE		AC43958-005	04/23/09 10:07	MANS		A	S,P/P
		i	1		1					1.	^	NONE
AC43958-001	04/15/09 13:50	SG	2		voa		AC43958-005	04/23/09 11:37	R12		^	
AC43958-001	04/15/09 14:22	R21	2	A	NONE		AC43958-005	04/14/09 09:06	R21	2	A	NONE
AC43958-001	04/16/09 08:43	SG	2	A .	VOA		AC43958-005	04/15/09 13:50	SG	2	A .	voa
AC43958-001	04/16/09 08:58	R21	2	Α	NONE		AC43958-005	04/15/09 14:22	R21	2	Α	NONE
AC43958-001	04/15/09 14:22	R21	4	Α	NONE		AC43958-005	04/15/09 14:22	R21	4	A	NONE
AC43958-001	04/15/09 15:21	SG	4	Α	voa		AC43958-005	04/15/09 16:51	R21	4	М	NONE
AC43958-001	04/15/09 16:51	R21	4	М	NONE		AC43958-005	04/16/09 08:23	SG	4	Α	voa
AC43958-002	04/13/09 17:45	FRAN	0	M	Received		AC43958-005	04/16/09 10:53	R21	4	М	NONE
AC43958-002	04/14/09 08:39	FRAN	0	M	Login		AC43958-006	04/13/09 17:45	FRAN	0	М	Received
AC43958-002	04/15/09 08:44	SDL	1	Α	MIXING		AC43958-006	04/14/09 08:39	FRAN	0	М	Login
AC43958-002	04/15/09 10:54	PM	1	Α	%SOLIDS		AC43958-006	04/14/09 08:49	R12	1	Α	NONE
AC43958-002	04/15/09 16:08	R12	1	Α	NONE		AC43958-006	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-002	04/20/09 11:27	OA	1	Α	TDSI/HG		AC43958-006	04/15/09 10:54	PM	1	Α	%SOLIDS
AC43958-002	04/20/09 13:12	R12	1	Α	NONE		AC43958-006	04/15/09 16:08	R12	1	Α	NONE
AC43958-002	04/20/09 16:29	PRITI	1	Α	S-BNA		AC43958-006	04/20/09 11:27	OA	1	Α	TDSI/HG
AC43958-002	04/20/09 19:14	R12	1	A	NONE		AC43958-006	04/20/09 13:12	R12	1	A	NONE
AC43958-002	04/22/09 09:07	MANS	1.	A	S,BNA		AC43958-006	04/23/09 10:01	JB	1	A	BNA-S
AC43958-002	04/22/09 09:48	R12]1	A	NONE		AC43958-006	04/23/09 10:07	MANS	1	A	S,P/P
AC43958-002	04/23/09 10:07	MANS	1.	^	S,P/P		AC43958-006	04/23/09 11:43	R12	1	A	NONE
AC43958-002	04/23/09 11:37	R12	1	A	NONE		AC43958-006	04/14/09 09:06	R21	2	A	NONE
		1							1	1	A	
AC43958-002	04/14/09 09:06	R21	2	A	NONE		AC43958-006	04/15/09 13:50	SG	2	Ι΄.	voa
AC43958-002	04/15/09 13:50	SG	2	Α	voa		AC43958-006	04/15/09 14:22	R21	2	Α	NONE
AC43958-002	04/15/09 14:22	R21	2	Α	NONE		AC43958-006	04/15/09 14:22	R21	4	A	NONE
AC43958-002	04/16/09 08:43	SG	2	Α	VOA		AC43958-006	04/16/09 08:23	SG	4	Α	voa
AC43958-002	04/16/09 08:58	R21	2	Α	NONE		AC43958-006	04/16/09 10:53	R21	4	M	NONE
AC43958-002	04/15/09 14:22	R21	4	A	NONE		AC43958-007	04/13/09 17:45	FRAN	1	M	Received
AC43958-002	04/15/09 15:21	SG	4	Α	voa		AC43958-007	04/14/09 08:39	FRAN	0	М	Login
AC43958-002	04/15/09 16:51	R21	4	M	NONE		AC43958-007	04/14/09 08:49	R12	1	Α	NONE
AC43958-003	04/13/09 17:45	FRAN	0	M	Received		AC43958-007	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-003	04/14/09 08:39	FRAN	0	М	Login		AC43958-007	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-003	04/15/09 08:44	SDL	1	A	MIXING		AC43958-007	04/15/09 16:08	R12	1	Α	NONE
AC43958-003	04/15/09 10:54	PM	1	Α	%SOLIDS		AC43958-007	04/20/09 11:27	OA	1	Α	TDSI/HG
AC43958-003	04/15/09 16:08	R12	1	Α	NONE		AC43958-007	04/20/09 13:12	R12	1	Α	NONE
AC43958-003	04/20/09 11:27	OA	1	A	TDSI/HG		AC43958-007	04/23/09 10:01	JB	1	A	BNA-S
AC43958-003	04/20/09 13:12	R12	1	Α	NONE		AC43958-007	04/23/09 10:07	MANS	1 1	Α	S,P/P
AC43958-003	04/20/09 16:29	PRITI	1	Α	S-BNA		AC43958-007	04/23/09 11:43	R12	1	Α	NONE
AC43958-003	04/20/09 19:14	R12	1	A	NONE		AC43958-007	04/14/09 09:06	R21	2	A	NONE
AC43958-003	04/22/09 09:07	MANS	1	Α	S,BNA		AC43958-007	04/15/09 13:50	SG	2	Α	voa
AC43958-003	04/22/09 09:48	R12	1	Α	NONE		AC43958-007	04/15/09 14:22	R21	2	A	NONE
AC43958-003	04/23/09 10:07	MANS	1 1	A	S,P/P		AC43958-007	04/15/09 14:22	R21	4	A	NONE
AC43958-003	04/23/09 11:37	R12	1	A	NONE		AC43958-007	04/16/09 08:23	SG	4	A	voa
AC43958-003	04/14/09 09:06	R21	2	A	NONE		AC43958-007	04/16/09 10:53	R21	4	м	NONE
AC43958-003 AC43958-003	04/15/09 13:50	SG	2	Â	voa		AC43958-007 AC43958-008	04/13/09 17:45	FRAN	1	M	Received
AC43958-003 AC43958-003	04/15/09 14:22	R21	2	Ā	NONE		AC43958-008	04/14/09 08:39	FRAN		M	Login
		+	4	A			AC43958-008	04/14/09 08:39		1	^	NONE
AC43958-003	04/15/09 14:22	R21	1	Ι.	NONE		AC43958-008 AC43958-008		R12	1	^	1
AC43958-003	04/15/09 15:21	SG	4	A	voa			04/16/09 17:20	KALPE		^	A-P/P
AC43958-003	04/15/09 16:51	R21	4	М	NONE		AC43958-008	04/16/09 19:57	R12	1	A	NONE
AC43958-004	04/13/09 17:45	FRAN	1	M	Received		AC43958-008	04/20/09 17:13	NEHA	1	A	A-BNA
AC43958-004	04/14/09 08:39	FRAN	 	M	Login		AC43958-008	04/20/09 23:56	R12	1	Α	NONE
AC43958-004	04/15/09 08:44	SDL	1	Α	MIXING		AC43958-008	04/14/09 08:49	R12	2	Α	NONE
AC43958-004	04/15/09 10:54	PM	1	Α	%SOLIDS		AC43958-008	04/17/09 05:23	CV	2	Α	BNA-A
AC43958-004	04/15/09 16:08	R12	1	Α	NONE		AC43958-008	04/14/09 08:49	R12	3	Α	NONE
AC43958-004	04/20/09 11:27	OA	1	Α	TDSI/HG		AC43958-008	04/16/09 17:20	KALPE	3	Α	A-P/P
AC43958-004	04/20/09 13:12	R12	1	Α	NONE		AC43958-008	04/14/09 08:49	R12	4	Α	NONE
AC43958-004	04/22/09 09:07	MANS	1	Α	S,BNA		AC43958-008	04/16/09 17:20	KALPE	4	Α	A-P/P
AC43958-004	04/22/09 09:48	R12	1	Α	NONE		AC43958-008	04/14/09 08:49	R12	5	Α	NONE
AC43958-004	04/23/09 10:07	MANS	1 1	Α	S,P/P		AC43958-008	04/22/09 09:32	MR	5	Α	TDSW/HG
AC43958-004	04/23/09 11:37	R12]1	A	NONE		AC43958-008	04/22/09 11:56	R12	5	A	NONE
AC43958-004	04/14/09 09:06	R21	2	A	NONE		AC43958-008	04/14/09 08:52	R22	6	A	NONE
AC43958-004 AC43958-004	04/15/09 13:50	SG	2	A	voa		AC43958-008	04/14/09 08:52	R22	7	A	NONE
		1	2	,			AC43958-008 AC43958-008	04/15/09 10:24	WP	7	^	voa
AC43958-004	04/15/09 14:22	R21		^	NONE					1.	^	!
AC43958-004	04/15/09 14:22	R21	4	A	NONE		AC43958-009	04/13/09 17:45	FRAN	1	М	Received
AC43958-004	04/16/09 08:23	SG	4	A	voa		AC43958-009	04/14/09 08:39	FRAN	_	M	Login
AC43958-004	04/16/09 10:53	R21	4	М	NONE	J	AC43958-009	04/14/09 08:49	R12	1	Α	NONE
Samples ma	rked as received	are st	ored	in c	coolers or refrigerator R12, or R24	4 at 4	4 dea C until l	Loain				

		Loc	Bot	A/	
Lab#:	DateTime:	User	Nu	м	Analysis
AC43958-009	04/15/09 08:44	SDL	1	A	MIXING
AC43958-009	04/15/09 10:54	PM	1	Α	%SOLIDS
AC43958-009	04/15/09 10:55	OA	1	Α	TCLP EXT
AC43958-009	04/15/09 11:34	R12	1	Α	NONE
AC43958-009	04/16/09 09:15	JAD	1	Α	R-CN/R-S
AC43958-009	04/16/09 12:25	JAD	1	M	РН
AC43958-009	04/16/09 13:54	JAD	1	Α	IGNITABILITY
AC43958-009	04/16/09 16:19	R12	1	Α	NONE
AC43958-009	04/14/09 08:49	R12	2	Α	NONE
AC43958-009	04/23/09 09:05	sw	2	Α	zhe
AC43958-009	04/23/09 09:49	R12	2	Α	NONE
AC43958-010	04/13/09 17:45	FRAN	0	М	Received
AC43958-010	04/14/09 08:39	FRAN	0	М	Login
AC43958-010	04/14/09 08:49	R12	1	A	NONE
AC43958-010	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-010	04/15/09 10:54	РМ	1	Α	%SOLIDS
AC43958-010	04/15/09 10:55	OA	1	Α	TCLP EXT
AC43958-010	04/15/09 11:34	R12	1	Α	NONE
AC43958-010	04/16/09 09:15	JAD	1	Α	R-CN/R-S
AC43958-010	04/16/09 12:25	JAD	1	М	РН
AC43958-010	04/16/09 13:54	JAD	1	Α	IGNITABILITY
AC43958-010	04/16/09 16:19	R12	1	Α	NONE
AC43958-010	04/14/09 08:49	R12	2	Α	NONE
AC43958-010	04/21/09 09:06	sw	2	Α	ZHE
AC43958-010	04/21/09 10:04	R12	2	Α	NONE
AC43958-011	04/13/09 17:45	FRAN	0	М	Received
AC43958-011	04/14/09 08:39	FRAN	0	М	Login
AC43958-011	04/14/09 08:49	R12	1	Α	NONE
AC43958-011	04/15/09 08:44	SDL	1	A	MIXING
AC43958-011	04/15/09 10:54	РМ	1	Α	%SOLIDS
AC43958-011	04/15/09 10:55	OA	1	Α	TCLP EXT
AC43958-011	04/15/09 11:34	R12	1	Α	NONE
AC43958-011	04/16/09 09:15	JAD	1	Α	R-CN/R-S
AC43958-011	04/16/09 12:25	JAD	1	м	PH
AC43958-011	04/16/09 13:54	JAD	1	A	IGNITABILITY
AC43958-011	04/16/09 16:19	R12	1	Α	NONE
AC43958-011	04/14/09 08:49	R12	2	Α	NONE
AC43958-011	04/21/09 09:06	sw	2	Α	ZHE
AC43958-011	04/21/09 10:04	R12	2	Α	NONE
AC43958-012	04/13/09 17:45	FRAN	0	м	Received
AC43958-012	04/14/09 08:39	FRAN	0	м	Login
AC43958-012	04/14/09 08:49	R12	1	Α	NONE
AC43958-012	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-012	04/15/09 10:54	РМ	1	Α	%SOLIDS
AC43958-012	04/15/09 10:55	OA	1	Α	TCLP EXT
AC43958-012	04/15/09 11:34	R12	1	Α	NONE
AC43958-012	04/16/09 09:15	JAD	1	A	R-CN/R-S
AC43958-012	04/16/09 12:25	JAD	1	м	PH
AC43958-012	04/16/09 13:54	JAD	1	Α	IGNITABILITY
AC43958-012	04/16/09 16:19	R12	1	Α	NONE
AC43958-012	04/14/09 08:49	R12	2	A	NONE
AC43958-012	04/21/09 09:06	sw	2	A	ZHE
AC43958-012	04/21/09 10:04	R12	2	A	NONE
AC43958-013	04/13/09 17:45	FRAN	0	м	Received
AC43958-013	04/14/09 08:39	FRAN	0	м	Login
AC43958-013	04/14/09 08:49	R12	1	A	NONE
AC43958-013	04/15/09 08:44	SDL	1	A	MIXING
AC43958-013	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-013	04/15/09 10:55	OA	1	Ā	TCLP EXT
AC43958-013	04/15/09 11:34	R12	1	A	NONE
AC43958-013	04/16/09 09:15	JAD	1	A	R-CN/R-S
AC43958-013	04/16/09 12:25	JAD	1	м	PH
AC43958-013	04/16/09 13:54	JAD	1	A	IGNITABILITY
AC43958-013	04/16/09 16:19	R12	1	A	NONE
AC43958-013 AC43958-013	04/14/09 08:49	R12	2	A	NONE
AC43958-013 AC43958-013	04/21/09 09:06	SW	2	A	ZHE
AC43958-013 AC43958-013	04/21/09 09:06	R12	2	Ā	NONE
AC43958-013 AC43958-014	04/13/09 17:45	FRAN	0	м	Received
AC43958-014 AC43958-014		FRAN	0	M	
	04/14/09 08:39		1	A	Login NONE
AC43958-014	04/14/09 08:49	R12	1	1.	NONE
AC43958-014	04/15/09 08:44	SDL		A	MIXING
AC43958-014	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-014	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-014	04/15/09 11:34	R12	1	A	NONE
AC43958-014	04/16/09 09:15	JAD	1	Α	R-CN/R-S

•						OOTO
Lab#:	DateTime:	Loc or User	Bot Nu	A/ M	Analysis	
AC43958-014	04/16/09 12:25	JAD	1	М	PH	
AC43958-014	04/16/09 13:54	JAD	1	Α	IGNITABILITY	
AC43958-014	04/16/09 16:19	R12	1	Α	NONE	
AC43958-014	04/14/09 08:49	R12	2	Α	NONE	
AC43958-014	04/23/09 09:05	sw	2	Α	zhe	
AC43958-014	04/23/09 09:49	R12	2	Α	NONE	
AC43958-015	04/13/09 17:45	FRAN	0	M	Received	
AC43958-015	04/14/09 08:39	FRAN	0	M	Login	
AC43958-015	04/14/09 08:52	R22	3	Α	NONE	
AC43958-015	04/15/09 10:24	WP	3	Α	voa	
AC43958-015	04/14/09 08:52	R22	4	Α	NONE	

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Project #: 9041403 0011

volanta

04/23/09

AHD

Lab#: AC43958-001 Sample ID: B-2

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	p) Analysis	
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

 Analyte
 Prep Date
 Analysis By

 Mercury
 04/20/09 olufemi
 04/22/09 JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

		Analy	/sis	
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	MS
Alpha-BHC	04/23/09	mansip	04/24/09	MS
beta-BHC	04/23/09	mansip	04/24/09	MS
Chlordane	04/23/09	mansip	04/24/09	MS
delta-BHC	04/23/09	mansip	04/24/09	MS
Dieldrin	04/23/09	mansip	04/24/09	MS
Endosulfan I	04/23/09	mansip	04/24/09	MS
Endosulfan II	04/23/09	mansip	04/24/09	MS
Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS
Endrin	04/23/09	mansip	04/24/09	MS
Endrin Aldehyde	04/23/09	mansip	04/24/09	MS
Endrin Ketone	04/23/09	mansip	04/24/09	MS
gamma-BHC	04/23/09	mansip	04/24/09	MS
Heptachlor	04/23/09	mansip	04/24/09	MS
Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS
Methoxychlor	04/23/09	mansip	04/24/09	MS
p,p'-DDD	04/23/09	mansip	04/24/09	MS
p,p'-DDE	04/23/09	mansip	04/24/09	MS
p,p'-DDT	04/23/09	mansip	04/24/09	MS
Toxaphene	04/23/09	mansip	04/24/09	MS

TestGroupName PCB 8082

Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	p	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

_	/ mary troat informed: i		-	A 1.	!_	_
		Prep		Analy		
	Analyte	Date	Ву	Date	Ву	
	1,2,4-Trichlorobenzene	04/23/09	yolanta	04/23/09	AHD	
	1,2-Diphenylhydrazine	04/23/09	yolanta	04/23/09	AHD	
	2,4,5-Trichlorophenol	04/23/09	yolanta	04/23/09	AHD	
	2,4,6-Trichlorophenol	04/23/09	yolanta	04/23/09	AHD	
	2,4-Dichlorophenol	04/23/09	yolanta	04/23/09	AHD	
	2,4-Dimethylphenol	04/23/09	yolanta	04/23/09	AHD	
	2,4-Dinitrophenol	04/23/09	yolanta	04/23/09	AHD	
	2,4-Dinitrotoluene	04/23/09	yolanta	04/23/09	AHD	
	2,6-Dinitrotoluene	04/23/09	yolanta	04/23/09	AHD	
	2-Chloronaphthalene	04/23/09	yolanta	04/23/09	AHD	
	2-Chlorophenol	04/23/09	yolanta	04/23/09	AHD	
	2-Methylnaphthalene	04/23/09	yolanta	04/23/09	AHD	
	2-Methylphenol	04/23/09	yolanta	04/23/09	AHD	
	2-Nitroaniline	04/23/09	yolanta	04/23/09	AHD	
	2-Nitrophenol	04/23/09	yolanta	04/23/09	AHD	
	3&4-Methylphenol	04/23/09	yolanta	04/23/09	AHD	

3,3-Dichiorobenziaine	04/23/09	yolanta	04/23/09	AHD
3-Nitroaniline	04/23/09	yolanta	04/23/09	AHD
4,6-Dinitro-2-methylphenol	04/23/09	yolanta	04/23/09	AHD
4-Bromophenyl-phenylether	04/23/09	yolanta	04/23/09	AHD
4-Chioro-3-methylphenol	04/23/09	yolanta	04/23/09	AHD
4-Chloroaniline	04/23/09	yolanta	04/23/09	AHD
4-Chlorophenyl-phenylether	04/23/09	yolanta	04/23/09	AHD
4-Nitroaniline	04/23/09	yolanta	04/23/09	AHD
4-Nitrophenol	04/23/09	yolanta	04/23/09	AHD
Acenaphthene	04/23/09	yolanta	04/23/09	AHD
Acenaphthylene	04/23/09	yolanta	04/23/09	AHD
Aniline	04/23/09	yolanta	04/23/09	AHD
Anthracene	04/23/09	yolanta	04/23/09	AHD
Benzidine	04/23/09	yolanta	04/23/09	AHD
Benzo[a]anthracene	04/23/09	yolanta	04/23/09	AHD
Benzo[a]pyrene	04/23/09	yolanta	04/23/09	AHD
Benzo[b]fluoranthene	04/23/09	yolanta	04/23/09	AHD
Benzo[g,h,i]perylene	04/23/09	yolanta	04/23/09	AHD
Benzo[k]fluoranthene	04/23/09	yolanta	04/23/09	AHD
Benzoic acid	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroethoxy)methane	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroethyl)ether	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroisopropyl)ether	04/23/09	yolanta	04/23/09	AHD
bis(2-Ethylhexyl)phthalate	04/23/09	yolanta	04/23/09	AHD

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

yolanta

yolanta

yolanta

yolanta

yolanta

yolanta

yolanta

yolanta

yolanta

volanta

yolanta

yolanta yolanta

yolanta

yolanta

yolanta

yolanta

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

AHD

Lab#: AC43958-001 Sample ID: B-2

3 3'-Dichlorobenzidine

Butylbenzylphthalate

Dibenzo(a,h)anthracene

Carbazole

Chrysene

Dibenzofuran

Fluoranthene

Fluorene

Diethylphthalate

Dimethylphthalate

Di-n-butylphthalate

Di-n-octylphthalate

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

N-Nitroso-di-n-propylamine

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Hexachlorocyclopentadiene

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep			/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB

SB

Lab#: AC43958-001 Sample ID: B-2

Zinc olufemi 04/24/09

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035

Analytical Method: EPA 8260B

Analytical Method: EPA		Analysis			
Analyte	Prep Date	Ву	Date	By	
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP	
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP	
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,4-Dioxane	04/16/09	WP	04/16/09	WP	
2-Butanone	04/16/09	WP	04/16/09	WP	
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP	
2-Hexanone	04/16/09	WP	04/16/09	WP	
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP	
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP	
Acetone	04/16/09	WP	04/16/09	WP	
Acrolein	04/16/09	WP	04/16/09	WP	
Acrylonitrile	04/16/09	WP	04/16/09	WP	
Benzene	04/16/09	WP	04/16/09	WP	
Bromodichloromethane	04/16/09	WP	04/16/09	WP	
Bromoform	04/16/09	WP	04/16/09	WP	
Bromomethane	04/16/09	WP	04/16/09	WP	
Carbon disulfide	04/16/09	WP	04/16/09	WP	
Carbon tetrachloride	04/16/09	WP	04/16/09	WP	
Chlorobenzene	04/16/09	WP	04/16/09	WP	
Chloroethane	04/16/09	WP	04/16/09	WP	
Chloroform	04/16/09	WP	04/16/09	WP	
Chloromethane	04/16/09	WP	04/16/09	WP	
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
Dibromochloromethane	04/16/09	WP	04/16/09	WP	
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP	
Ethylbenzene	04/16/09	WP	04/16/09	WP	
Isopropylbenzene	04/16/09	WP	04/16/09	WP	
m&p-Xylenes	04/16/09	WP	04/16/09	WP	
Methylene chloride	04/16/09	WP	04/16/09	WP	
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP	
n-Butylbenzene	04/16/09	WP	04/16/09	WP	
n-Propylbenzene o-Xylene	04/16/09	WP	04/16/09	WP	
	04/16/09 04/16/09	WP	04/16/09	WP	
sec-Butylbenzene Styrene	04/16/09	WP WP	04/16/09	WP WP	
t-Butyl Alcohol		WP	04/16/09	WP	
t-Butylbenzene	04/16/09 04/16/09	WP	04/16/09		
Tetrachloroethene	04/16/09	WP	04/16/09 04/16/09	WP WP	
Toluene	04/16/09	WP	04/16/09	WP	
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
Trichloroethene	04/16/09	WP	04/16/09	WP	
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP	
Vinyl chloride	04/16/09	WP	04/16/09	WP	
Xylenes (Total)	04/16/09	WP	04/16/09	WP	
	5 ,, 10,00		0 11 10100	***	

Lab#: AC43958-002 Sample ID: B-3

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	Analysis		
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

Lab#: AC43958-002 Sample ID: B-3

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A

Analytical Method: EPA 7471A

\neg		Prep	Prep		/sis
	Analyte	Date	Ву	Date	Ву
	Mercury	04/20/09	olufemi	04/22/09	JS

Project #: 9041403 0012

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Prep	Analysis		
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	JP
Alpha-BHC	04/23/09	mansip	04/24/09	JP
beta-BHC	04/23/09	mansip	04/24/09	JP
Chlordane	04/23/09	mansip	04/24/09	JP
delta-BHC	04/23/09	mansip	04/24/09	JP
Dieldrin	04/23/09	mansip	04/24/09	JP
Endosulfan I	04/23/09	mansip	04/24/09	JP
Endosulfan II	04/23/09	mansip	04/24/09	JP
Endosulfan Sulfate	04/23/09	mansip	04/24/09	JP
Endrin	04/23/09	mansip	04/24/09	JP
Endrin Aldehyde	04/23/09	mansip	04/24/09	JP
Endrin Ketone	04/23/09	mansip	04/24/09	JP
gamma-BHC	04/23/09	mansip	04/24/09	JP
Heptachlor	04/23/09	mansip	04/24/09	JP
Heptachlor Epoxide	04/23/09	mansip	04/24/09	JP
Methoxychlor	04/23/09	mansip	04/24/09	JP
p,p'-DDD	04/23/09	mansip	04/24/09	JP
p,p'-DDE	04/23/09	mansip	04/24/09	JP
p,p'-DDT	04/23/09	mansip	04/24/09	JP
Toxaphene	04/23/09	mansip	04/24/09	JP

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

Analytical Metriod. EFA 02700									
		Prep		Analysis					
	Analyte	Date	Ву	Date	Ву				
	1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD	П			
	1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD				
	2,4,5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD				
	2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD				
	2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD				
	2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD				
	2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD				
	2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD				
	2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD				
	2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD				
	2-Chlorophenol	04/22/09	mansip	04/22/09	AHD				
	2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD				
	2-Methylphenol	04/22/09	mansip	04/22/09	AHD				
	2-Nitroaniline	04/22/09	mansip	04/22/09	AHD				
	2-Nitrophenol	04/22/09	mansip	04/22/09	AHD				
	3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD				
	3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD				
	3-Nitroaniline	04/22/09	mansip	04/22/09	AHD				
	4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD				
	4-Bromophenyl-phenylether	04/22/09	mansip	04/22/09	AHD				
	4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD				
	4-Chloroaniline	04/22/09	mansip	04/22/09	AHD				
	4-Chlorophenyl-phenylether	04/22/09	mansip	04/22/09	AHD				
			D	0 - 5 40		_			

L	Lab#: AC43958-002 Sample ID: B-3								
$\neg \top$	4-Nitroaniline	04/22/09	mansip	04/22/09	AHD				
	4-Nitrophenol	04/22/09	mansip	04/22/09	AHD				
	Acenaphthene	04/22/09	mansip	04/22/09	AHD				
	Acenaphthylene	04/22/09	mansip	04/22/09	AHD				
	Aniline	04/22/09	mansip	04/22/09	AHD				
	Anthracene	04/22/09	mansip	04/22/09	AHD				
	Benzidine	04/22/09	mansip	04/22/09	AHD				
	Benzo[a]anthracene	04/22/09	mansip	04/22/09	AHD				
ļ	Benzo[a]pyrene	04/22/09	mansip	04/22/09	AHD				
	Benzo[b]fluoranthene	04/22/09	mansip	04/22/09	AHD				
	Benzo[g,h,i]perylene	04/22/09	mansip	04/22/09	AHD				
	Benzo(k)fluoranthene	04/22/09	mansip	04/22/09	AHD				
	Benzoic acid	04/22/09	mansip	04/22/09	AHD				
-	bis(2-Chloroethoxy)methane	04/22/09	mansip	04/22/09	AHD				
- 1	bis(2-Chloroethyl)ether	04/22/09	mansip	04/22/09	AHD				
	bis(2-Chloroisopropyl)ether	04/22/09	mansip	04/22/09	AHD				
	bis(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD				
	Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD				
-	Carbazole	04/22/09	mansip	04/22/09	AHD				
	Chrysene	04/22/09	mansip	04/22/09	AHD				
	Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD				
	Dibenzofuran	04/22/09	mansip	04/22/09	AHD				
-	Diethylphthalate	04/22/09	mansip	04/22/09	AHD				
	Dimethylphthalate	04/22/09	mansip	04/22/09	AHD				
	Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD				
	Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD				
	Fluoranthene	04/22/09	mansip	04/22/09	AHD				
1	Fluorene	04/22/09	mansip	04/22/09	AHD				
	Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD				
	Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD				
	Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD				
-	Hexachloroethane	04/22/09	mansip	04/22/09	AHD				
	Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD				
	Isophorone	04/22/09	mansip	04/22/09	AHD				
	Naphthalene	04/22/09	mansip	04/22/09	AHD				
	Nitrobenzene	04/22/09	mansip	04/22/09	AHD				
	N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD				
	N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD				
	N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD				
	Pentachlorophenol	04/22/09	mansip	04/22/09	AHD				
-	Phenanthrene	04/22/09	mansip	04/22/09	AHD				
- [Phenol	04/22/09	mansip	04/22/09	AHD				
	Pyrene	04/22/09	mansip	04/22/09	AHD				

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

I. EFA 00 10B					
Prep		Analysis			
Date	Ву	Date	Ву		
04/20/09	olufemi	04/24/09	SB	Т	
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/23/09	SRB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/23/09	SRB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/23/09	SRB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/23/09	SRB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/23/09	SRB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
04/20/09	olufemi	04/24/09	SB		
	Prepare Date 04/20/09	Prep Date By 04/20/09 olufemi	Prep Date By Date 04/20/09 olufemi 04/24/09 04/20/09 olufemi 04/24/09	Prep Date Analysis Date By Date By 04/20/09 olufemi 04/24/09 SB 04/20/09 olufemi 04/23/09 SR 04/20/09 olufemi 04/24/09 SB 04/20/09 olufemi 04/24/09 SB	

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

<u>-</u>	. Р	Prep		alysis
Analyte	Date	Ву	Date	Ву

Lab#: AC43958-002 Samp	le ID: B-3			
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP
2-Butanone	04/16/09	WP	04/16/09	WP
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
2-Hexanone	04/16/09	WP	04/16/09	WP
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP
Acetone	04/16/09	WP	04/16/09	WP
Acrolein	04/16/09	WP	04/16/09	WP
Acrylonitrile	04/16/09	WP	04/16/09	WP
Benzene	04/16/09	WP	04/16/09	WP
Bromodichloromethane	04/16/09	WP	04/16/09	WP
Bromoform	04/16/09	WP	04/16/09	WP
Bromomethane	04/16/09 04/16/09	WP	04/16/09	WP
Carbon disulfide Carbon tetrachloride		WP	04/16/09	WP
	04/16/09 04/16/09	WP WP	04/16/09 04/16/09	WP WP
Chloroptene		WP		WP
Chloroethane	04/16/09 04/16/09	WP	04/16/09 04/16/09	WP
Chloromethane	04/16/09	WP	04/16/09	WP
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Dibromochloromethane	04/16/09	WP	04/16/09	WP
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
Ethylbenzene	04/16/09	WP	04/16/09	WP
Isopropylbenzene	04/16/09	WP	04/16/09	WP
m&p-Xylenes	04/16/09	WP	04/16/09	WP
Methylene chloride	04/16/09	WP	04/16/09	WP
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
n-Butylbenzene	04/16/09	WP	04/16/09	WP
n-Propylbenzene	04/16/09	WP	04/16/09	WP
o-Xylene	04/16/09	WP	04/16/09	WP
sec-Butylbenzene	04/16/09	WP	04/16/09	WP
Styrene	04/16/09	WP	04/16/09	WP
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
t-Butylbenzene	04/16/09	WP	04/16/09	WP
Tetrachloroethene	04/16/09	WP	04/16/09	WP
Toluene	04/16/09	WP	04/16/09	WP
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Trichloroethene	04/16/09	WP	04/16/09	WP
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
Vinyl chloride	04/16/09	WP	04/16/09	WP
Xylenes (Total)	04/16/09	WP	04/16/09	WP

Lab#: AC43958-003 Sample ID: B-6

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A

Analytical Method: EPA 7471A

	Prep		Analysis			
Analyte	Date	Ву	Date	Ву		
Mercury	04/20/09	olufemi	04/22/09	JS		

Lab#: AC43958-003 Sample ID: B-6

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	MS
Alpha-BHC	04/23/09	mansip	04/24/09	MS
beta-BHC	04/23/09	mansip	04/24/09	MS
Chlordane	04/23/09	mansip	04/24/09	MS
delta-BHC	04/23/09	mansip	04/24/09	MS
Dieldrin	04/23/09	mansip	04/24/09	MS
Endosulfan I	04/23/09	mansip	04/24/09	MS
Endosulfan II	04/23/09	mansip	04/24/09	MS
Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS
Endrin	04/23/09	mansip	04/24/09	MS
Endrin Aldehyde	04/23/09	mansip	04/24/09	MS
Endrin Ketone	04/23/09	mansip	04/24/09	MS
gamma-BHC	04/23/09	mansip	04/24/09	MS
Heptachlor	04/23/09	mansip	04/24/09	MS
Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS
Methoxychlor	04/23/09	mansip	04/24/09	MS
p,p'-DDD	04/23/09	mansip	04/24/09	MS
p,p'-DDE	04/23/09	mansip	04/24/09	MS
p,p'-DDT	04/23/09	mansip	04/24/09	MS
Toxaphene	04/23/09	mansip	04/24/09	MS

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Prep		Analysis			
Analyte	Date	Ву	Date	Ву		
Aroclor (Total)	04/23/09	mansip	04/23/09	MS		
Aroclor-1016	04/23/09	mansip	04/23/09	MS		
Aroclor-1221	04/23/09	mansip	04/23/09	MS		
Aroclor-1232	04/23/09	mansip	04/23/09	MS		
Aroclor-1242	04/23/09	mansip	04/23/09	MS		
Aroclor-1248	04/23/09	mansip	04/23/09	MS		
Aroclor-1254	04/23/09	mansip	04/23/09	MS		
Aroclor-1260	04/23/09	mansip	04/23/09	MS		
Aroclor-1262	04/23/09	mansip	04/23/09	MS		
Aroclor-1268	04/23/09	mansip	04/23/09	MS		

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

Analytical Wethod: E	Prej	0	Analysis		
Analyte	Date	Ву	Date	Ву	
1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD	
1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD	
2,4,5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD	
2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD	
2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD	
2-Chlorophenol	04/22/09	mansip	04/22/09	AHD	
2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD	
2-Methylphenol	04/22/09	mansip	04/22/09	AHD	
2-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
2-Nitrophenol	04/22/09	mansip	04/22/09	AHD	
3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD	
3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD	
3-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD	
4-Bromophenyl-phenylether	04/22/09	mansip	04/22/09	AHD	
4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD	
4-Chloroaniline	04/22/09	mansip	04/22/09	AHD	
4-Chlorophenyl-phenylether	04/22/09	mansip	04/22/09	AHD	
4-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
4-Nitrophenol	04/22/09	mansip	04/22/09	AHD	
Acenaphthene	04/22/09	mansip	04/22/09	AHD	
Acenaphthylene	04/22/09	mansip	04/22/09	AHD	
Aniline	04/22/09	mansip	04/22/09	AHD	
Anthracene	04/22/09	mansip	04/22/09	AHD	
Benzidine	04/22/09	mansip	04/22/09	AHD	

Lab#: AC43958-003 Sample ID: B-6

L	-au#. Ao+3330-003 Sample	ID. D-0			
	Benzo[a]anthracene	04/22/09	mansip	04/22/09	AHD
	Benzo[a]pyrene	04/22/09	mansip	04/22/09	AHD
	Benzo[b]fluoranthene	04/22/09	mansip	04/22/09	AHD
	Benzo[g,h,i]perylene	04/22/09	mansip	04/22/09	AHD
	Benzo[k]fluoranthene	04/22/09	mansip	04/22/09	AHD
	Benzoic acid	04/22/09	mansip	04/22/09	AHD
	bis(2-Chloroethoxy)methane	04/22/09	mansip	04/22/09	AHD
	bis(2-Chloroethyl)ether	04/22/09	mansip	04/22/09	AHD
	bis(2-Chloroisopropyl)ether	04/22/09	mansip	04/22/09	AHD
	bis(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD
	Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD
	Carbazole	04/22/09	mansip	04/22/09	AHD
	Chrysene	04/22/09	mansip	04/22/09	AHD
	Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD
	Dibenzofuran	04/22/09	mansip	04/22/09	AHD
	Diethylphthalate	04/22/09	mansip	04/22/09	AHD
	Dimethylphthalate	04/22/09	mansip	04/22/09	AHD
	Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD
	Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD
	Fluoranthene	04/22/09	mansip	04/22/09	AHD
	Fluorene	04/22/09	mansip	04/22/09	AHD
	Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD
	Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD
	Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD
	Hexachloroethane	04/22/09	mansip	04/22/09	AHD
	Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD
	Isophorone	04/22/09	mansip	04/22/09	AHD
	Naphthalene	04/22/09	mansip	04/22/09	AHD
	Nitrobenzene	04/22/09	mansip	04/22/09	AHD
	N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD
	N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD
	N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD
	Pentachlorophenol	04/22/09	mansip	04/22/09	AHD
	Phenanthrene	04/22/09	mansip	04/22/09	AHD
	Phenol	04/22/09	mansip	04/22/09	AHD
	Pyrene	04/22/09	mansip	04/22/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

Analytical Method	1: EPA 6010B				
	Prep)	Analy	ysis	_
Analyte	Date	Ву	Date	Ву	
Aluminum	04/20/09	olufemi	04/24/09	SB	-
Antimony	04/20/09	olufemi	04/24/09	SB	
Arsenic	04/20/09	olufemi	04/24/09	SB	
Barium	04/20/09	olufemi	04/24/09	SB	
Beryllium	04/20/09	olufemi	04/24/09	SB	
Cadmium	04/20/09	olufemi	04/24/09	SB	
Calcium	04/20/09	olufemi	04/23/09	SRB	
Chromium	04/20/09	olufemi	04/24/09	SB	
Cobalt	04/20/09	olufemi	04/24/09	SB	
Copper	04/20/09	olufemi	04/24/09	SB	
Iron	04/20/09	olufemi	04/23/09	SRB	
Lead	04/20/09	olufemi	04/24/09	SB	
Magnesium	04/20/09	olufemi	04/23/09	SRB	
Manganese	04/20/09	olufemi	04/24/09	SB	
Nickel	04/20/09	olufemi	04/24/09	SB	
Potassium	04/20/09	olufemi	04/23/09	SRB	
Selenium	04/20/09	olufemi	04/24/09	SB	
Silver	04/20/09	olufemi	04/24/09	SB	
Sodium	04/20/09	olufemi	04/23/09	SRB	
Thallium	04/20/09	olufemi	04/24/09	SB	
Vanadium	04/20/09	olufemi	04/24/09	SB	
Zinc	04/20/09	olufemi	04/24/09	SB	

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP

Lab#: AC43958-003 San	nple ID: B-6			
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP
2-Butanone	04/16/09	WP	04/16/09	WP
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
2-Hexanone	04/16/09	WP	04/16/09	WP
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP
Acetone	04/16/09	WP	04/16/09	WP
Acrolein	04/16/09	WP	04/16/09	WP
Acrylonitrile	04/16/09	WP	04/16/09	WP
Benzene	04/16/09	WP	04/16/09	WP
Bromodichloromethane	04/16/09	WP	04/16/09	WP
Bromoform	04/16/09	WP	04/16/09	WP
Bromomethane	04/16/09	WP	04/16/09	WP
Carbon disulfide	04/16/09	WP	04/16/09	WP
Carbon tetrachloride	04/16/09	WP	04/16/09	WP
Chlorobenzene	04/16/09	WP	04/16/09	WP
Chloroethane	04/16/09	WP	04/16/09	WP
Chloroform	04/16/09	WP	04/16/09	WP
Chloromethane	04/16/09	WP	04/16/09	WP
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Dibromochloromethane	04/16/09	WP	04/16/09	WP
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
Ethylbenzene	04/16/09	WP	04/16/09	WP
Isopropyibenzene	04/16/09	WP	04/16/09	WP
m&p-Xylenes	04/16/09	WP	04/16/09	WP
Methylene chloride	04/16/09	WP	04/16/09	WP
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
n-Butylbenzene	04/16/09	WP	04/16/09	WP
n-Propylbenzene	04/16/09	WP	04/16/09	WP
o-Xylene	04/16/09	WP	04/16/09	WP
sec-Butylbenzene	04/16/09	WP	04/16/09	WP
Styrene	04/16/09	WP	04/16/09	WP
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
t-Butylbenzene	04/16/09	WP	04/16/09	WP
Tetrachloroethene	04/16/09	WP	04/16/09	WP
Toluene	04/16/09	WP	04/16/09	WP
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Trichloroethene	04/16/09	WP	04/16/09	WP
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
Vinyl chloride	04/16/09	WP	04/16/09	WP
Xylenes (Total)	04/16/09	WP	04/16/09	WP

Lab#: AC43958-004 Sample ID: B-7

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

-		Prep			
	Analyte	Date	Ву	Date	ılysis By
	% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A

Analytical Method: EPA 7471A Prep **Analysis** Date **Analyte** Date Ву Ву Mercury 04/20/09 04/22/09 olufemi JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550

Analytical Method: EPA 8081A

	Prep Ar			nalysis	
Analyte	Date	Ву	Date	Ву	
Aldrin	04/23/09	mansip	04/24/09	MS	•
Alpha-BHC	04/23/09	mansip	04/24/09	MS	
beta-BHC	04/23/09	mansip	04/24/09	MS	
Chlordane	04/23/09	mansip	04/24/09	MS	

Lab#: AC43958-004 Sample ID: B-7 delta-BHC 04/23/09 mansip 04/24/09 MS Dieldrin 04/23/09 mansip 04/24/09 MS 04/23/09 04/24/09 MS Endosulfan I mansip Endosulfan II 04/23/09 mansip 04/24/09 MS Endosulfan Sulfate 04/23/09 04/24/09 MS mansip Endrin 04/23/09 mansip 04/24/09 MS Endrin Aldehyde 04/23/09 mansip 04/24/09 MS Endrin Ketone 04/23/09 04/24/09 MS mansip gamma-BHC 04/23/09 04/24/09 MS 04/24/09 MS Heptachlor 04/23/09 mansip

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

04/23/09

mansip

mansip

mansip

mansip

mansip

mansip

04/24/09

04/24/09

04/24/09

04/24/09

04/24/09

04/24/09

MS

MS

MS

MS

MS

MS

TestGroupName PCB 8082

Heptachlor Epoxide

Methoxychlor

p,p'-DDD

p,p'-DDE

p,p'-DDT

Toxaphen

Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

_						_	
		Prep)	Analy	/sis		
	Analyte	Date	Ву	Date	Ву		
	Aroclor (Total)	04/23/09	mansip	04/23/09	MS		
	Aroclor-1016	04/23/09	mansip	04/23/09	MS		
	Aroclor-1221	04/23/09	mansip	04/23/09	MS		
	Aroclor-1232	04/23/09	mansip	04/23/09	MS		
	Aroclor-1242	04/23/09	mansip	04/23/09	MS		
	Aroclor-1248	04/23/09	mansip	04/23/09	MS		
	Aroclor-1254	04/23/09	mansip	04/23/09	MS		
	Aroclor-1260	04/23/09	mansip	04/23/09	MS		
	Arocior-1262	04/23/09	mansip	04/23/09	MS		
	Aroclor-1268	04/23/09	mansip	04/23/09	MS		

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B

Analytical Method: EPA 8270C

 Analytical Metrod. El A 627	Prep		Analys	is
Analyte	Date	Ву	Date	Ву
1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD
1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD
2.4.5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD
2-Chlorophenol	04/22/09	mansip	04/22/09	AHD
2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD
2-Methylphenol	04/22/09	mansip	04/22/09	AHD
2-Nitroaniline	04/22/09	mansip	04/22/09	AHD
2-Nitrophenol	04/22/09	mansip	04/22/09	AHD
3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD
3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD
3-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Bromophenyl-phenylether	04/22/09	mansip	04/22/09	AHD
4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Chloroaniline	04/22/09	mansip	04/22/09	AHD
4-Chlorophenyl-phenylether	04/22/09	mansip	04/22/09	AHD
4-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4-Nitrophenol	04/22/09	mansip	04/22/09	AHD
Acenaphthene	04/22/09	mansip	04/22/09	AHD
Acenaphthylene	04/22/09	mansip	04/22/09	AHD
Aniline	04/22/09	mansip	04/22/09	AHD
Anthracene	04/22/09	mansip	04/22/09	AHD
Benzidine	04/22/09	mansip	04/22/09	AHD
Benzo[a]anthracene	04/22/09	mansip	04/22/09	AHD
Benzo(a)pyrene	04/22/09	mansip	04/22/09	AHD
Benzo[b]fluoranthene	04/22/09	mansip	04/22/09	AHD
Benzo[g,h,i]perylene	04/22/09	mansip	04/22/09	AHD
Benzo[k]fluoranthene	04/22/09	mansip	04/22/09	AHD
Benzoic acid	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroethoxy)methane	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroethyl)ether	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroisopropyl)ether	04/22/09	mansip	04/22/09	AHD

L	.ab#: AC43958-004 S	ample ID: B-7			
П	bis(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD
	Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD
	Carbazole	04/22/09	mansip	04/22/09	AHD
	Chrysene	04/22/09	mansip	04/22/09	AHD
	Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD
	Dibenzofuran	04/22/09	mansip	04/22/09	AHD
1	Diethylphthalate	04/22/09	mansip	04/22/09	AHD
	Dimethylphthalate	04/22/09	mansip	04/22/09	AHD
	Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD
	Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD
	Fluoranthene	04/22/09	mansip	04/22/09	AHD
	Fluorene	04/22/09	mansip	04/22/09	AHD
1	Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD
	Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD
	Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD
	Hexachloroethane	04/22/09	mansip	04/22/09	AHD
1	Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD
- 1	Isophorone	04/22/09	mansip	04/22/09	AHD
	Naphthalene	04/22/09	mansip	04/22/09	AHD
	Nitrobenzene	04/22/09	mansip	04/22/09	AHD
- 1	N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD
j	N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD
	N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD
	Pentachlorophenol	04/22/09	mansip	04/22/09	AHD
	Phenanthrene	04/22/09	mansip	04/22/09	AHD
	Phenol	04/22/09	mansip	04/22/09	AHD
Į	Pyrene	04/22/09	mansip	04/22/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Pre	3	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

Analytical Method: EPA			A I-	-1-
	Prep		Analy	/SIS
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP

_ab#: AC43958-004 Sample ID: B-7							
2-Butanone	04/16/09	WP	04/16/09	WP			
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP			
2-Hexanone	04/16/09	WP	04/16/09	WP			
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP			
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP			
Acetone	04/16/09	WP	04/16/09	WP			
Acrolein	04/16/09	WP	04/16/09	WP			
Acrylonitrile	04/16/09	WP	04/16/09	WP			
Benzene	04/16/09	WP	04/16/09	WP			
Bromodichloromethane	04/16/09	WP	04/16/09	WP			
Bromoform	04/16/09	WP	04/16/09	WP			
Bromomethane	04/16/09	WP	04/16/09	WP			
Carbon disulfide	04/16/09	WP	04/16/09	WP			
Carbon tetrachloride	04/16/09	WP	04/16/09	WP			
Chlorobenzene	04/16/09	WP	04/16/09	WP			
Chloroethane	04/16/09	WP	04/16/09	WP			
Chloroform	04/16/09	WP	04/16/09	WP			
Chloromethane	04/16/09	WP	04/16/09	WP			
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
Dibromochtoromethane	04/16/09	WP	04/16/09	WP			
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP			
Ethylbenzene	04/16/09	WP	04/16/09	WP			
Isopropylbenzene	04/16/09	WP	04/16/09	WP			
m&p-Xylenes	04/16/09	WP	04/16/09	WP			
Methylene chloride	04/16/09	WP	04/16/09	WP			
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP			
n-Butylbenzene	04/16/09	WP	04/16/09	WP			
n-Propylbenzene	04/16/09	WP	04/16/09	WP			
o-Xylene	04/16/09	WP	04/16/09	WP			
sec-Butylbenzene	04/16/09	WP	04/16/09	WP			
Styrene	04/16/09	WP	04/16/09	WP			
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP			
t-Butylbenzene	04/16/09	WP	04/16/09	WP			
Tetrachloroethene	04/16/09	WP	04/16/09	WP			
Toluene	04/16/09	WP	04/16/09	WP			
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
Trichloroethene	04/16/09	WP	04/16/09	WP			
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP			
Vinyl chloride	04/16/09	WP	04/16/09	WP			
Xylenes (Total)	04/16/09	WP	04/16/09	WP			

Lab#: AC43958-005 Sample ID: B-10

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	Prep		llysis
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

	Pre	Analysis			
Analyte	Date	Ву	Date	Ву	
Mercury	04/20/09	olufemi	04/22/09	JS	

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Pre)	Analysis	
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	JP
Alpha-BHC	04/23/09	mansip	04/24/09	JP
beta-BHC	04/23/09	mansip	04/24/09	JP
Chlordane	04/23/09	mansip	04/24/09	JP
delta-BHC	04/23/09	mansip	04/24/09	JP
Dieldrin	04/23/09	mansip	04/24/09	JP
Endosulfan I	04/23/09	mansip	04/24/09	JP
Endosulfan II	04/23/09	mansip	04/24/09	JP
Endosulfan Sulfate	04/23/09	mansip	04/24/09	JP
Endrin	04/23/09	mansip	04/24/09	JP
Endrin Aldehyde	04/23/09	mansip	04/24/09	JP
Endrin Ketone	04/23/09	mansip	04/24/09	JP
gamma-BHC	04/23/09	mansip	04/24/09	JP

ı	Lab#: AC43958-005 Sample ID: B-10								
	Heptachlor	04/23/09	mansip	04/24/09	JP				
	Heptachlor Epoxide	04/23/09	mansip	04/24/09	JP				
	Methoxychior	04/23/09	mansip	04/24/09	JP				
	p,p'-DDD	04/23/09	mansip	04/24/09	JP				
	p,p'-DDE	04/23/09	mansip	04/24/09	JP				
	p,p'-DDT	04/23/09	mansip	04/24/09	JP				
	Toxaphene	04/23/09	mansip	04/24/09	JP				

TestGroupName PCB 8082
Preparation Method: EPA3510/3550
Analytical Method: EPA 8082

A 1-4-	Pres	Prep		/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270)
Preparation Method: 3510C/3550B
Analytical Method: EPA 8270C

Analytical Method: EPA 82/0C Prep Analysis					
Analyte	Date	By	Date	By	
1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD	
1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD	
2,4,5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD	
2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD	
2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD	
2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD	
2-Chlorophenol	04/22/09	mansip	04/22/09	AHD	
2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD	
2-Methylphenol	04/22/09	mansip	04/22/09	AHD	
2-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
2-Nitrophenol	04/22/09	mansip	04/22/09	AHD	
3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD	
3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD	
3-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD	
4-Bromophenyl-phenylether	04/22/09		04/22/09	AHD	
4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD	
4-Chloroaniline	04/22/09	mansip	04/22/09	AHD	
4-Chlorophenyi-phenylether	04/22/09	mansip	04/22/09	AHD	
4-Ontorophenyi-phenyiether 4-Nitroaniline	04/22/09	mansip	04/22/09	AHD	
4-Nitrophenol	04/22/09	mansip	04/22/09		
Acenaphthene	04/22/09	mansip		AHD	
Acenaphthylene		mansip	04/22/09	AHD	
	04/22/09	mansip	04/22/09	AHD	
Aniline Anthracene	04/22/09	mansip	04/22/09	AHD	
	04/22/09	mansip	04/22/09	AHD	
Benzidine	04/22/09	mansip	04/22/09	AHD	
Benzo[a]anthracene	04/22/09	mansip	04/22/09	AHD	
Benzo[a]pyrene	04/22/09	mansip	04/22/09	AHD	
Benzo[b]fluoranthene	04/22/09	mansip	04/22/09	AHD	
Benzo[g,h,i]perylene	04/22/09	mansip	04/22/09	AHD	
Benzo[k]fluoranthene	04/22/09	mansip	04/22/09	AHD	
Benzoic acid	04/22/09	mansip	04/22/09	AHD	
ois(2-Chloroethoxy)methane	04/22/09	mansip	04/22/09	AHD	
ois(2-Chloroethyl)ether	04/22/09	mansip	04/22/09	AHD	
ois(2-Chloroisopropyl)ether	04/22/09	mansip	04/22/09	AHD	
ois(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD	
Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD	
Carbazole	04/22/09	mansip	04/22/09	AHD	
Chrysene	04/22/09	mansip	04/22/09	AHD	
Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD	
Dibenzofuran	04/22/09	mansip	04/22/09	AHD	
Diethylphthalate	04/22/09	mansip	04/22/09	AHD	
Dimethylphthalate	04/22/09	mansip	04/22/09	AHD	
Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD	

Lab#: AC43958-005 Sample ID: B-10							
Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD			
Fluoranthene	04/22/09	mansip	04/22/09	AHD			
Fluorene	04/22/09	mansip	04/22/09	AHD			
Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD			
Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD			
Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD			
Hexachloroethane	04/22/09	mansip	04/22/09	AHD			
Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD			
Isophorone	04/22/09	mansip	04/22/09	AHD			
Naphthalene	04/22/09	mansip	04/22/09	AHD			
Nitrobenzene	04/22/09	mansip	04/22/09	AHD			
N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD			
N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD			
N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD			
Pentachlorophenol	04/22/09	mansip	04/22/09	AHD			
Phenanthrene	04/22/09	mansip	04/22/09	AHD			
Phenol	04/22/09	mansip	04/22/09	AHD			
Pyrene	04/22/09	mansip	04/22/09	AHD			

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

Analytical Metrica: 2.77	Prep Analysis					
Analyte	Date	Ву	Date	By		
Aluminum	04/20/09	olufemi	04/24/09	SB		
Antimony	04/20/09	olufemi	04/24/09	SB		
Arsenic	04/20/09	olufemi	04/24/09	SB		
Barium	04/20/09	olufemi	04/24/09	SB		
Beryllium	04/20/09	olufemi	04/24/09	SB		
Cadmium	04/20/09	olufemi	04/24/09	SB		
Calcium	04/20/09	olufemi	04/23/09	SRB		
Chromium	04/20/09	olufemi	04/24/09	SB		
Cobalt	04/20/09	olufemi	04/24/09	SB		
Copper	04/20/09	olufemi	04/24/09	SB		
Iron	04/20/09	olufemi	04/23/09	SRB		
Lead	04/20/09	olufemi	04/24/09	SB		
Magnesium	04/20/09	olufemi	04/23/09	SRB		
Manganese	04/20/09	olufemi	04/24/09	SB		
Nickel	04/20/09	olufemi	04/24/09	SB		
Potassium	04/20/09	olufemi	04/23/09	SRB		
Selenium	04/20/09	olufemi	04/24/09	SB		
Silver	04/20/09	olufemi	04/24/09	SB		
Sodium	04/20/09	olufemi	04/23/09	SRB		
Thallium	04/20/09	olufemi	04/24/09	SB		
Vanadium	04/20/09	olufemi	04/24/09	SB		
Zinc	04/20/09	olufemi	04/24/09	SB		

TestGroupName Volatile Organics + 10 (8260)
Preparation Method: EPA5030/5035
Analytical Method: EPA 8260B

Analytical Method: EFA 0200B								
	Prep)	Analy	/sis				
Analyte	Date	Ву	Date	Ву				
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP				
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP				
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP				
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP				
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP				
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP				
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP				
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP				
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP				
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP				
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP				
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP				
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
1,4-Dioxane	04/16/09	WP	04/16/09	WP				
2-Butanone	04/16/09	WP	04/16/09	WP				
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP				
2-Hexanone	04/16/09	WP	04/16/09	WP				
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP				
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP				
Acetone	04/16/09	WP	04/16/09	WP				
Acrolein	04/16/09	WP	04/16/09	WP				
Acrylonitrile	04/16/09	WP	04/16/09	WP				
Benzene	04/16/09	WP	04/16/09	WP				

Analysis

Laboratory Chronicle

L	Lab#: AC43958-005 Sample ID: B-10							
	Bromodichloromethane	04/16/09	WP	04/16/09	WP			
	Bromoform	04/16/09	WP	04/16/09	WP			
	Bromomethane	04/16/09	WP	04/16/09	WP			
	Carbon disulfide	04/16/09	WP	04/16/09	WP			
	Carbon tetrachloride	04/16/09	WP	04/16/09	WP			
	Chlorobenzene	04/16/09	WP	04/16/09	WP			
	Chloroethane	04/16/09	WP	04/16/09	WP			
	Chloroform	04/16/09	WP	04/16/09	WP			
	Chloromethane	04/16/09	WP	04/16/09	WP			
	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
	cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
	Dibromochloromethane	04/16/09	WP	04/16/09	WP			
	Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP			
	Ethylbenzene	04/16/09	WP	04/16/09	WP			
	Isopropylbenzene	04/16/09	WP	04/16/09	WP			
	m&p-Xylenes	04/16/09	WP	04/16/09	WP			
	Methylene chloride	04/16/09	WP	04/16/09	WP			
	Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP			
	n-Butylbenzene	04/16/09	WP	04/16/09	WP			
	n-Propylbenzene	04/16/09	WP	04/16/09	WP			
	o-Xylene	04/16/09	WP	04/16/09	WP			
	sec-Butylbenzene	04/16/09	WP	04/16/09	WP			
	Styrene	04/16/09	WP	04/16/09	WP			
	t-Butyl Alcohol	04/16/09	WP	04/16/09	WP			
	t-Butylbenzene	04/16/09	WP	04/16/09	WP			
	Tetrachloroethene	04/16/09	WP	04/16/09	WP			
	Toluene	04/16/09	WP	04/16/09	WP			
	trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
	trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
	Trichloroethene	04/16/09	WP	04/16/09	WP			
	Trichlorofluoromethane	04/16/09	WP	04/16/09	WP			
	Vinyl chloride	04/16/09	WP	04/16/09	WP			
	Xylenes (Total)	04/16/09	WP	04/16/09	WP			

Lab#: AC43958-006 Sample ID: B-11

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	p	Analysis		
Analyte	Date	Ву	Date	Ву	
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT	

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

Allaly Goal Motilo	u. =. / \ / -/ / / / / / / / / / / / / / / /					
	Prep					
Analyte	Date .	Ву	Date	Ву		
Mercury	04/20/09	olufemi	04/22/09	JS	-	

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

A 800 IA			
Prep	3	Analy	/sis
Date	Ву	Date	Ву
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
04/23/09	mansip	04/24/09	MS
	Prepage Date 04/23/09	Prep Date By 04/23/09 mansip	Prep Date By Date 04/23/09 mansip 04/24/09

Lab#: AC43958-006 Sample ID: B-11

TestGroupName PCB 8082 Preparation Method: EPA3510/3550

Analytical Method: EPA 8082

Prei)	Analy	/sis
Date	Ву	Date	Ву
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
04/23/09	mansip	04/23/09	MS
	04/23/09 04/23/09 04/23/09 04/23/09 04/23/09 04/23/09 04/23/09 04/23/09	04/23/09 mansip	Date By Date 04/23/09 mansip 04/23/09 04/23/09 mansip 04/23/09

Prep

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Prep		Analys	15
Analyte	Date	Ву	Date	Ву
1,2,4-Trichlorobenzene	04/23/09	yolanta	04/24/09	AHD
1,2-Diphenylhydrazine	04/23/09	yolanta	04/24/09	AHD
2,4,5-Trichlorophenol	04/23/09	yolanta	04/24/09	AHD
2,4,6-Trichlorophenol	04/23/09	yolanta	04/24/09	AHD
2,4-Dichlorophenol	04/23/09	yolanta	04/24/09	AHD
2,4-Dimethylphenol	04/23/09	yolanta	04/24/09	AHD
2,4-Dinitrophenol	04/23/09	yolanta	04/24/09	AHD
2,4-Dinitrotoluene	04/23/09	yolanta	04/24/09	AHD
2,6-Dinitrotoluene	04/23/09	yolanta	04/24/09	AHD
2-Chloronaphthalene	04/23/09	yolanta	04/24/09	AHD
2-Chlorophenol	04/23/09	yolanta	04/24/09	AHD
2-Methylnaphthalene	04/23/09	yolanta	04/24/09	AHD
2-Methylphenol	04/23/09	yolanta	04/24/09	AHD
2-Nitroaniline	04/23/09	yolanta	04/24/09	AHD
2-Nitrophenol	04/23/09	yolanta	04/24/09	AHD
3&4-Methylphenol	04/23/09	yolanta	04/24/09	AHD
3,3'-Dichlorobenzidine	04/23/09	yolanta	04/24/09	AHD
3-Nitroaniline	04/23/09	yolanta	04/24/09	AHD
4,6-Dinitro-2-methylphenol	04/23/09	yolanta	04/24/09	AHD
4-Bromophenyl-phenylether	04/23/09	yolanta	04/24/09	AHD
4-Chloro-3-methylphenol	04/23/09	yolanta	04/24/09	AHD
4-Chloroaniline	04/23/09	yolanta	04/24/09	AHD
4-Chlorophenyl-phenylether	04/23/09	yolanta	04/24/09	AHD
4-Nitroaniline	04/23/09	yolanta	04/24/09	AHD
4-Nitrophenol	04/23/09	yolanta	04/24/09	AHD
Acenaphthene	04/23/09	yolanta	04/24/09	AHD
Acenaphthylene	04/23/09	yolanta	04/24/09	AHD
Aniline	04/23/09	yolanta	04/24/09	AHD
Anthracene	04/23/09	yolanta	04/24/09	AHD
Benzidine	04/23/09	yolanta	04/24/09	AHD
Benzo[a]anthracene	04/23/09	yolanta	04/24/09	AHD
Benzo[a]pyrene	04/23/09	yolanta	04/24/09	AHD
Benzo[b]fluoranthene	04/23/09	yolanta	04/24/09	AHD
Benzo[g,h,i]perylene	04/23/09	yolanta	04/24/09	AHD
Benzo[k]fluoranthene	04/23/09	yolanta	04/24/09	AHD
Benzoic acid	04/23/09	yolanta	04/24/09	AHD
bis(2-Chloroethoxy)methane	04/23/09	yolanta	04/24/09	AHD
bis(2-Chloroethyl)ether	04/23/09	yolanta	04/24/09	AHD
bis(2-Chloroisopropyl)ether	04/23/09	yolanta	04/24/09	AHD
bis(2-Ethylhexyl)phthalate	04/23/09	yolanta	04/24/09	AHD
Butylbenzylphthalate	04/23/09	yolanta	04/24/09	AHD
Carbazole	04/23/09	yolanta	04/24/09	AHD
Chrysene	04/23/09	yolanta	04/24/09	AHD
Dibenzo[a,h]anthracene	04/23/09	yolanta	04/24/09	AHD
Dibenzofuran	04/23/09	yolanta	04/24/09	AHD
Diethylphthalate	04/23/09	yolanta	04/24/09	AHD
Dimethylphthalate	04/23/09	yolanta	04/24/09	AHD
Di-n-butylphthalate	04/23/09	yolanta	04/24/09	AHD
Di-n-octylphthalate	04/23/09	yolanta	04/24/09	AHD
Fluoranthene	04/23/09	yolanta	04/24/09	AHD
Fluorene	04/23/09	yolanta	04/24/09	AHD
Hexachlorobenzene	04/23/09	yolanta	04/24/09	AHD
Hexachlorobutadiene	04/23/09	yolanta	04/24/09	AHD
Hexachlorocyclopentadiene	04/23/09	yolanta	04/24/09	AHD
Hexachloroethane	04/23/09	yolanta	04/24/09	AHD
Indeno[1,2,3-cd]pyrene	04/23/09	yolanta	04/24/09	AHD

Lab#: AC43958-006 Sample ID: B-11								
Isophorone	04/23/09	yolanta	04/24/09	AHD				
Naphthalene	04/23/09	yolanta	04/24/09	AHD				
Nitrobenzene	04/23/09	yolanta	04/24/09	AHD				
N-Nitrosodimethylamine	04/23/09	yolanta	04/24/09	AHD				
N-Nitroso-di-n-propylamine	04/23/09	yolanta	04/24/09	AHD				
N-Nitrosodiphenylamine	04/23/09	yolanta	04/24/09	AHD				
Pentachlorophenol	04/23/09	yolanta	04/24/09	AHD				
Phenanthrene	04/23/09	yolanta	04/24/09	AHD				
Phenol	04/23/09	yolanta	04/24/09	AHD				
Pyrene	04/23/09	yolanta	04/24/09	AHD				

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035

Analytical Method: EPA 8260B

	Prep)	Analysis		
Analyte	Date	Ву	Date	Ву	
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP	
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP	
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,4-Dioxane	04/16/09	WP	04/16/09	WP	
2-Butanone	04/16/09	WP	04/16/09	WP	
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP	
2-Hexanone	04/16/09	WP	04/16/09	WP	
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP	
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP	
Acetone	04/16/09	WP	04/16/09	WP	
Acrolein	04/16/09	WP	04/16/09	WP	
Acrylonitrile	04/16/09	WP	04/16/09	WP	
Benzene	04/16/09	WP	04/16/09	WP	
Bromodichloromethane	04/16/09	WP	04/16/09	WP	
Bromoform	04/16/09	WP	04/16/09	WP	
Bromomethane	04/16/09	WP	04/16/09	WP	
Carbon disulfide	04/16/09	WP	04/16/09	WP	
Carbon tetrachloride	04/16/09	WP	04/16/09	WP	
Chlorobenzene	04/16/09	WP	04/16/09	WP	
Chloroethane	04/16/09	WP	04/16/09	WP	

ı	Lab#: AC43958-006 Sample ID: B-11							
_	Chloromethane	04/16/09	WP	04/16/09	WP	-		
	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
	cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
	Dibromochloromethane	04/16/09	WP	04/16/09	WP			
	Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP			
	Ethylbenzene	04/16/09	WP	04/16/09	WP			
	Isopropylbenzene	04/16/09	WP	04/16/09	WP			
	m&p-Xylenes	04/16/09	WP	04/16/09	WP			
	Methylene chloride	04/16/09	WP	04/16/09	WP			
	Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP			
	n-Butylbenzene	04/16/09	WP	04/16/09	WP			
	n-Propylbenzene	04/16/09	WP	04/16/09	WP			
	o-Xylene	04/16/09	WP	04/16/09	WP			
	sec-Butylbenzene	04/16/09	WP	04/16/09	WP			
	Styrene	04/16/09	WP	04/16/09	WP			
	t-Butyl Alcohol	04/16/09	WP	04/16/09	WP			
	t-Butylbenzene	04/16/09	WP	04/16/09	WP			
	Tetrachloroethene	04/16/09	WP	04/16/09	WP			
	Toluene	04/16/09	WP	04/16/09	WP			
	trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP			
	trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP			
	Trichloroethene	04/16/09	WP	04/16/09	WP			
	Trichlorofluoromethane	04/16/09	WP	04/16/09	WP			
	Vinyl chloride	04/16/09	WP	04/16/09	WP			
	Xylenes (Total)	04/16/09	WP	04/16/09	WP			

Lab#: AC43958-007 Sample ID: B-12

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

_		Prep		Analysis	
	Analyte	Date	Ву	Date	Ву
	% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A

Analytical Method: EPA 7471A
Prep

	Prep		Anaiysis		
Analyte	Date	Ву	Date	Ву	
Mercury	04/20/09	olufemi	04/22/09	JS	

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

T	arytical metrica		ер	Ana	lysis
Analyte		Date	Ву	Date	Ву
Aldrin		04/23/09	mansip	04/24/09	JP
Alpha-BHC	;	04/23/09	mansip	04/24/09	JP
beta-BHC		04/23/09	mansip	04/24/09	JP
Chlordane		04/23/09	mansip	04/24/09	JP
delta-BHC		04/23/09	mansip	04/24/09	JP
Dieldrin		04/23/09	mansip	04/24/09	JP
Endosulfar	n I	04/23/09	mansip	04/24/09	JP
Endosulfar	ı II	04/23/09	mansip	04/24/09	JP
Endosulfar	Sulfate	04/23/09	mansip	04/24/09	JP
Endrin		04/23/09	mansip	04/24/09	JP
Endrin Alde	ehyde	04/23/09	mansip	04/24/09	JP
Endrin Ket	one	04/23/09	mansip	04/24/09	JP
gamma-BH	IC	04/23/09	mansip	04/24/09	JP
Heptachlor		04/23/09	mansip	04/24/09	JP
Heptachlor	Epoxide	04/23/09	mansip	04/24/09	JP
Methoxych	lor	04/23/09	mansip	04/24/09	JP
p,p'-DDD		04/23/09	mansip	04/24/09	JP
p,p'-DDE		04/23/09	mansip	04/24/09	JP
p,p'-DDT		04/23/09	mansip	04/24/09	JP
Toxaphene)	04/23/09	mansip	04/24/09	JP

TestGroupName PCB 8082 Preparation Method: EPA3510/3550

Analytical Method: EPA 8082

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS

AHD

04/24/09

L	Lab#: AC43958-007 Sample ID: B-12								
	Aroclor-1242	04/23/09	mansip	04/23/09	MS	_			
	Aroclor-1248	04/23/09	mansip	04/23/09	MS				
	Aroclor-1254	04/23/09	mansip	04/23/09	MS				
	Aroclor-1260	04/23/09	mansip	04/23/09	MS				
	Aroclor-1262	04/23/09	mansip	04/23/09	MS				
	Aroclor-1268	04/23/09	mansip	04/23/09	MS				

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Analytical Method: EPA 827	Prep	В.,	Analys	
_	1,2,4-Trichlorobenzene	04/23/09	By yolanta	Date 04/24/09	By AHD
- i	1,2-Diphenylhydrazine	04/23/09	yolanta	04/24/09	AHD
- i	2,4,5-Trichlorophenol	04/23/09	yolanta	04/24/09	AHD
	2,4,6-Trichlorophenol	04/23/09	yolanta	04/24/09	AHD
- 1	2,4-Dichlorophenol	04/23/09	yolanta	04/24/09	AHD
:	2,4-Dimethylphenol	04/23/09	yolanta	04/24/09	AHD
2	2,4-Dinitrophenol	04/23/09	yolanta	04/24/09	AHD
	2,4-Dinitrotoluene	04/23/09	yolanta	04/24/09	AHD
- 1	2,6-Dinitrotoluene	04/23/09	yolanta	04/24/09	AHD
- 1	2-Chloronaphthalene	04/23/09	yolanta	04/24/09	AHD
- 1	2-Chlorophenol	04/23/09	yolanta	04/24/09	AHD
i	2-Methylnaphthalene 2-Methylphenol	04/23/09 04/23/09	yolanta yolanta	04/24/09 04/24/09	AHD AHD
- 1	2-Nitroanitine	04/23/09	yolanta	04/24/09	AHD
- 1	2-Nitrophenol	04/23/09	yolanta	04/24/09	AHD
- 1	3&4-Methylphenol	04/23/09	yolanta	04/24/09	AHD
:	3,3'-Dichlorobenzidine	04/23/09	yolanta	04/24/09	AHD
;	3-Nitroaniline	04/23/09	yolanta	04/24/09	AHD
4	4,6-Dinitro-2-methylphenol	04/23/09	yolanta	04/24/09	AHD
i	4-Bromophenyl-phenylether	04/23/09	yolanta	04/24/09	AHD
- 1	4-Chloro-3-methylphenol	04/23/09	yolanta	04/24/09	AHD
- 1	4-Chloroaniline	04/23/09	yolanta	04/24/09	AHD
i	4-Chlorophenyl-phenylether 4-Nitroaniline	04/23/09 04/23/09	yolanta	04/24/09 04/24/09	AHD AHD
- 1	4-Nitrophenol	04/23/09	yolanta yolanta	04/24/09	AHD
- 1	Acenaphthene	04/23/09	yolanta	04/24/09	AHD
- 1	Acenaphthylene	04/23/09	yolanta	04/24/09	AHD
1	Aniline	04/23/09	yolanta	04/24/09	AHD
1	Anthracene	04/23/09	yolanta	04/24/09	AHD
	Benzidine	04/23/09	yolanta	04/24/09	AHD
i	Benzo[a]anthracene	04/23/09	yolanta	04/24/09	AHD
- 1	Benzo[a]pyrene	04/23/09	yolanta	04/24/09	AHD
- 1	Benzo[b]fluoranthene	04/23/09	yolanta	04/24/09	AHD
i i	Benzo[g,h,i]perylene Benzo[k]fluoranthene	04/23/09 04/23/09	yolanta yolanta	04/24/09 04/24/09	AHD AHD
	Benzoic acid	04/23/09	yolanta	04/24/09	AHD
- 1	pis(2-Chloroethoxy)methane	04/23/09	yolanta	04/24/09	AHD
i i	ois(2-Chloroethyl)ether	04/23/09	yolanta	04/24/09	AHD
t	ois(2-Chloroisopropyl)ether	04/23/09	yolanta	04/24/09	AHD
t	ois(2-Ethylhexyl)phthalate	04/23/09	yolanta	04/24/09	AHD
i i	Butylbenzylphthalate	04/23/09	yolanta	04/24/09	AHD
	Carbazole	04/23/09	yolanta	04/24/09	AHD
i	Chrysene	04/23/09	yolanta	04/24/09	AHD
- 1	Dibenzo[a,h]anthracene	04/23/09	yolanta	04/24/09	AHD AHD
- i -	Dibenzofuran Diethylphthalate	04/23/09 04/23/09	yolanta yolanta	04/24/09 04/24/09	AHD
- i	Dimethylphthalate	04/23/09	volanta	04/24/09	AHD
- 1	Di-n-butylphthalate	04/23/09	yolanta	04/24/09	AHD
i	Di-n-octylphthalate	04/23/09	yolanta	04/24/09	AHD
F	luoranthene	04/23/09	yolanta	04/24/09	AHD
F	luorene	04/23/09	yolanta	04/24/09	AHD
- 1	Hexachlorobenzene	04/23/09	yolanta	04/24/09	AHD
- 1	Hexachlorobutadiene	04/23/09	yolanta	04/24/09	AHD
i i	Hexachlorocyclopentadiene	04/23/09	yolanta	04/24/09	AHD
- 1	Hexachloroethane	04/23/09	yolanta	04/24/09	AHD AHD
1	ndeno[1,2,3-cd]pyrene sophorone	04/23/09 04/23/09	yolanta yolanta	04/24/09 04/24/09	AHD
- 1	Naphthalene	04/23/09	yolanta	04/24/09	AHD
i	Nitrobenzene	04/23/09	yolanta	04/24/09	AHD
	N-Nitrosodimethylamine	04/23/09	yolanta	04/24/09	AHD
i	N-Nitroso-di-n-propylamine	04/23/09	yolanta	04/24/09	AHD
i	N-Nitrosodiphenylamine	04/23/09	yolanta	04/24/09	AHD
F	Pentachlorophenol	04/23/09	yolanta	04/24/09	AHD
- 1	Phenanthrene	04/23/09	yolanta	04/24/09	AHD
F	Phenol	04/23/09	yolanta	04/24/09	AHD

Lab#: AC43958-007 Sample ID: B-12

Pyrene yolanta

04/23/09

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	oluferni	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	oluferni	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Analytical Method: EPA					
_		Prep)	Analysis		
	Analyte	Date	Ву	Date	Ву	
	1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP	
	1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP	
	1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP	
	1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP	
	1,1-Dichloroethane	04/16/09	WP	04/16/09	WP	
	1,1-Dichloroethene	04/16/09	WP	04/16/09	WP	
	1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP	
	1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
	1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
	1,2-Dichloroethane	04/16/09	WP	04/16/09	WP	
	1,2-Dichloropropane	04/16/09	WP	04/16/09	WP	
	1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
	1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
	1,3-Dichloropropane	04/16/09	WP	04/16/09	WP	
	1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
	1,4-Dioxane	04/16/09	WP	04/16/09	WP	
	2-Butanone	04/16/09	WP	04/16/09	WP	
	2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP	
	2-Hexanone	04/16/09	WP	04/16/09	WP	
	4-Isopropyltoluene	04/16/09	WP	04/16/09	WP	
	4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP	
	Acetone	04/16/09	WP	04/16/09	WP	
	Acrolein	04/16/09	WP	04/16/09	WP	
	Acrylonitrile	04/16/09	WP	04/16/09	WP	
	Benzene	04/16/09	WP	04/16/09	WP	
	Bromodichloromethane	04/16/09	WP	04/16/09	WP	
	Bromoform	04/16/09	WP	04/16/09	WP	
	Bromomethane	04/16/09	WP	04/16/09	WP	
	Carbon disulfide	04/16/09	WP	04/16/09	WP	
	Carbon tetrachloride	04/16/09	WP	04/16/09	WP	
	Chlorobenzene	04/16/09	WP	04/16/09	WP	
	Chloroethane	04/16/09	WP	04/16/09	WP	
	Chloroform	04/16/09	WP	04/16/09	WP	
	Chloromethane	04/16/09	WP	04/16/09	WP	
	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
	cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
	Dibromochloromethane	04/16/09	WP	04/16/09	WP	
	Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP	
	Ethylbenzene	04/16/09	WP	04/16/09	WP	
	Isopropylbenzene	04/16/09	WP	04/16/09	WP	
	m&p-Xylenes	04/16/09	WP	04/16/09	WP	
	Methylene chloride	04/16/09	WP	04/16/09	WP	

İ	Lab#: AC43958-007 Sar	nple ID: B-12				
_	Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP	-
	n-Butylbenzene	04/16/09	WP	04/16/09	WP	
	n-Propylbenzene	04/16/09	WP	04/16/09	WP	
	o-Xylene	04/16/09	WP	04/16/09	WP	
	sec-Butylbenzene	04/16/09	WP	04/16/09	WP	
	Styrene	04/16/09	WP	04/16/09	WP	
	t-Butyl Alcohol	04/16/09	WP	04/16/09	WP	
	t-Butylbenzene	04/16/09	WP	04/16/09	WP	
	Tetrachloroethene	04/16/09	WP	04/16/09	WP	
	Toluene	04/16/09	WP	04/16/09	WP	
	trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
	trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
	Trichloroethene	04/16/09	WP	04/16/09	WP	
	Trichlorofluoromethane	04/16/09	WP	04/16/09	WP	
	Vinyl chloride	04/16/09	WP	04/16/09	WP	
	Xylenes (Total)	04/16/09	WP	04/16/09	WP	

Lab#: AC43958-008 Sample ID: B-11 GW

TestGroupName Mercury (Water) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A

Prep Analysis Analyte Date Ву Date Ву Mercury 04/22/09 04/22/09 JS maxine

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550

Analytical Method: EPA 8081A

Anaiyucai wetnod: i	-FA 000 IA			
	Pre)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aldrin	04/16/09	kalpesh	04/17/09	MS
Alpha-BHC	04/16/09	kalpesh	04/17/09	MS
beta-BHC	04/16/09	kalpesh	04/17/09	MS
Chlordane	04/16/09	kalpesh	04/17/09	MS
delta-BHC	04/16/09	kalpesh	04/17/09	MS
Dieldrin	04/16/09	kalpesh	04/17/09	MS
Endosulfan I	04/16/09	kalpesh	04/17/09	MS
Endosulfan II	04/16/09	kalpesh	04/17/09	MS
Endosulfan Sulfate	04/16/09	kalpesh	04/17/09	MS
Endrin	04/16/09	kalpesh	04/17/09	MS
Endrin Aldehyde	04/16/09	kalpesh	04/17/09	MS
Endrin Ketone	04/16/09	kalpesh	04/17/09	MS
gamma-BHC	04/16/09	kalpesh	04/17/09	MS
Heptachlor	04/16/09	kalpesh	04/17/09	MS
Heptachlor Epoxide	04/16/09	kalpesh	04/17/09	MS
Methoxychlor	04/16/09	kalpesh	04/17/09	MS
p,p'-DDD	04/16/09	kalpesh	04/17/09	MS
p,p'-DDE	04/16/09	kalpesh	04/17/09	MS
p,p'-DDT	04/16/09	kalpesh	04/17/09	MS
Toxaphene	04/16/09	kalpesh	04/17/09	MS

TestGroupName PCB 8082 Preparation Method: EPA3510/3550

Analytical Method: EPA 8082

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/16/09	kalpesh	04/17/09	MS
Aroclor-1016	04/16/09	kalpesh	04/17/09	MS
Aroclor-1221	04/16/09	kalpesh	04/17/09	MS
Aroclor-1232	04/16/09	kalpesh	04/17/09	MS
Aroclor-1242	04/16/09	kalpesh	04/17/09	MS
Aroclor-1248	04/16/09	kalpesh	04/17/09	MS
Aroclor-1254	04/16/09	kalpesh	04/17/09	MS
Aroclor-1260	04/16/09	kalpesh	04/17/09	MS
Aroclor-1262	04/16/09	kalpesh	04/17/09	MS
Aroclor-1268	04/16/09	kalpesh	04/17/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B

Analytical Method: EPA 8270C

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
1,2,4-Trichlorobenzene	04/20/09	CV	04/21/09	AHD
1,2-Diphenylhydrazine	04/20/09	CV	04/21/09	AHD
2,4,5-Trichlorophenol	04/20/09	cv	04/21/09	AHD
2,4,6-Trichlorophenol	04/20/09	CV	04/21/09	AHD

2.4-Directlyophenol 04/2009 cv 04/2109 AHD 2.4-Dinitrophenol 04/2009 cv 04/2109 AHD 2.4-Dinitrofoluene 04/2009 cv 04/2109 AHD 2.4-Dinitrofoluene 04/2009 cv 04/2109 AHD 2.6-Dinitrofoluene 04/2009 cv 04/2109 AHD 2.Chiorophenol 04/2009 cv 04/2109 AHD 2-Methylinaphthalene 04/2009 cv 04/2109 AHD 2-Methylinaphthalene 04/2009 cv 04/2109 AHD 2-Methylinaphthalene 04/2009 cv 04/2109 AHD 2-Mitrophenol 04/2009 cv 04/2109 AHD 2-Nitrophenol 04/2009 cv 04/2109 AHD 3-Nitritaphinylene 04/2009 cv 04/2109 AHD 3-Nitritaphinylene 04/2009 cv 04/2109 AHD 4-Chorosamphylephenyl-phenylether 04/2009 cv 04/2109 AHD	L	.ab#: AC43958-008 Sample	ID: B-11	GW		
2.4-Dinitrophenol 04/2009 cv 04/21/09 AHD 2.4-Dinitrotoluene 04/2009 cv 04/21/09 AHD 2.C-Dinitrotoluene 04/2009 cv 04/21/09 AHD 2.C-Dintoraphthalene 04/2009 cv 04/21/09 AHD 2.Chlorophenol 04/2009 cv 04/21/09 AHD 2.Methylphenol 04/2009 cv 04/21/09 AHD 2.Mitrophenol 04/2009 cv 04/21/09 AHD 2.Nitrophenol 04/2009 cv 04/21/09 AHD 3.8-Dichlorobenzidine 04/2009 cv 04/21/09 AHD 3.4-G-Dinitro-2-methylphenol 04/2009 cv 04/21/09 AHD 4-Bromophenyl-phenylether 04/2009 cv 04/21/09 AHD 4-Chloroa-3-methylphenol 04/2009 cv 04/21/09 AHD 4-Chloroa-S-methylphenol 04/2009 cv 04/21/09 AHD 4-Nitrophenol 04/2009 cv 04/21/09		2,4-Dichlorophenol	04/20/09	cv	04/21/09	AHD
2.4-Dinitrotoluene	ļ	2,4-Dimethylphenol	04/20/09	cv	04/21/09	AHD
2,6-Dinitrotoluene 04/2009 cv 04/21/09 AHD 2-Chioronaphthalene 04/2009 cv 04/21/09 AHD 2-Chiorophenol 04/2009 cv 04/21/09 AHD 2-Methyliphenol 04/2009 cv 04/21/09 AHD 2-Nitroaniline 04/2009 cv 04/21/09 AHD 2-Nitrophenol 04/2009 cv 04/21/09 AHD 3,3-Dichlorobenzidine 04/2009 cv 04/21/09 AHD 3,6-Bintro-2-methylphenol 04/2009 cv 04/21/09 AHD 4,6-Bintro-2-methylphenol 04/2009 cv 04/21/09 AHD 4-Broncaphity-phenyl-phenylether 04/2009 cv 04/21/09 AHD 4-Chloro-3-methylphenol 04/2009 cv		2,4-Dinitrophenol	04/20/09	cv	04/21/09	AHD
2-Chlorophenol 04/20/09 cv 04/21/09 AHD 2-Chlorophenol 04/20/09 cv 04/21/09 AHD 2-Methylphenol 04/20/09 cv 04/21/09 AHD 2-Methylphenol 04/20/09 cv 04/21/09 AHD 2-Methylphenol 04/20/09 cv 04/21/09 AHD 3-Methylphenol 04/20/09 cv 04/21/09 AHD 3-Mitroaniline 04/20/09 cv 04/21/09 AHD 3-Mitroaniline 04/20/09 cv 04/21/09 AHD 4-Bromophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Bromophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chlorop-henyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Benzo(alganthracene 04/20/09 cv	ļ	2,4-Dinitrotoluene	04/20/09	CV	04/21/09	AHD
2-Chlorophenol 04/20/09 cv 04/21/09 AHD 2-Methylphenol 04/20/09 cv 04/21/09 AHD 2-Methylphenol 04/20/09 cv 04/21/09 AHD 2-Nitroaniline 04/20/09 cv 04/21/09 AHD 3-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-C-Dirocamethylphenol 04/20/09 cv 04/21/09 AHD 4-Dirocamethylphenol 04/20/09 cv 04/21/09 AHD 4-Dirocamethylphenol 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Amthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzo(a)-Iniperviene 04/20/09 cv 04/21/09 AHD Dibenzo(a-Chioroethyl)-Ether 04/20/09 cv 04/21/09 AHD Dibenzo(a-Chioroethyl)-Ether 04/20/09 cv 04/21/09 AHD Dibenzo(a-Chioroethyl)-Ether 04/20/09 cv 04/21/09	ļ	•	04/20/09	CV	04/21/09	AHD
2-Methylphenol 04/20/09 cv 04/21/09 AHD 2-Mitrophenol 04/20/09 cv 04/21/09 AHD 2-Nitrophenol 04/20/09 cv 04/21/09 AHD 384-Methylphenol 04/20/09 cv 04/21/09 AHD 3,3-Dichlorobenzidine 04/20/09 cv 04/21/09 AHD 3,4-Britroaniline 04/20/09 cv 04/21/09 AHD 4,6-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4-Bromophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chloro-3-methylphenol 04/20/09 cv 04/21/09 AHD 4-Chloro-Methylphenol 04/20/09 cv	ļ	2-Chloronaphthalene	04/20/09	CV	04/21/09	AHD
2-Mitrylphenol		2-Chlorophenol	04/20/09	CV	04/21/09	AHD
2-Nitrophenol 04/20/09 cv 04/21/09 AHD 3.41-Chlorophenol 04/20/09 cv 04/21/09 AHD 4.6-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4.6-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4.Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Benzcidine 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Benzcidine 04/20/09 cv 04/21/09 AHD	-]	2-Methylnaphthalene	04/20/09	CV	04/21/09	
2-Nitrophenol 04/20/09 cv 04/21/09 AHD 384-Methylphenol 04/20/09 cv 04/21/09 AHD 384-Methylphenol 04/20/09 cv 04/21/09 AHD 3-Nitroaniline 04/20/09 cv 04/21/09 AHD 3-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-6-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4-Bromphenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chloroaniline 04/20/09 cv 04/21/09 AHD 4-Chloroaniline 04/20/09 cv 04/21/09 AHD 4-Chloroaniline 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Berzidjane 04/20/09	Į	2-Methylphenol	04/20/09	CV	04/21/09	AHD
384-Methylphenol 04/20/09 cv 04/21/09 AHD 3,3*-Dichlorobenzidine 04/20/09 cv 04/21/09 AHD 3,3*-Dichlorobenzidine 04/20/09 cv 04/21/09 AHD 4,6*-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4,6*-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4.4*-Chloro-3-methylphenol 04/20/09 cv 04/21/09 AHD 4.4*-Ditrophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4.4*-Ditrophenol 04/20/09 cv 04/21/09 AHD 4.4*-Ditrophenol 04/20/09 cv 04/21/09 AHD Acanaphthene 04/20/09 cv 04/21/09 AHD Acanaphthylene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzo(alganthracene 04/20/09 cv 04/21/09 AHD	ļ			CV		
3,3'-Dichlorobenzidine	ļ	•		cv		
3-Nitroaniline	١					
4,6-Dinitro-2-methylphenol 04/20/09 cv 04/21/09 AHD 4-Bromophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chloro-3-methylphenol 04/20/09 cv 04/21/09 AHD 4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD A-Nitroaniline 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Antiracene 04/20/09 cv 04/21/09 AHD Antiracene 04/20/09 cv 04/21/09 AHD Benzo(ajanthracene 04/20/09 cv 04/21/09 AHD Benzo(ajhyrene 04/20/09 cv 04/21/09	ļ					
4-Bromophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chloro-a-methylphenol 04/20/09 cv 04/21/09 AHD 4-Chloroanilline 04/20/09 cv 04/21/09 AHD 4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Anline 04/20/09 cv 04/21/09 AHD Anline 04/20/09 cv 04/21/09 AHD Benziclaine 04/20/09 cv 04/21/09 AHD Benziclaine 04/20/09 cv 04/21/09 AHD Benziclajlyprene 04/20/09 cv 04/21/09 AHD Benziclajlyprome 04/20/09 cv 04/21/09 AHD	-					
4-Chloros-Imethylphenol 04/20/09 cv 04/21/09 AHD 4-Chloroaniline 04/20/09 cv 04/21/09 AHD 4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Aniline 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzo(ajanthracene 04/20/09 cv 04/21/09 AHD	-					
4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Aniline 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzidine 04/20/09 cv 04/21/09 AHD Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(b)fluoranthene 04/20/09 cv 04/21/09 AHD	1					
4-Chlorophenyl-phenylether 04/20/09 cv 04/21/09 AHD 4-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Aniline 04/20/09 cv 04/21/09 AHD Aniline 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzolajapyrene 04/20/09 cv 04/21/09 AHD Benzolajapyrene 04/20/09 cv 04/21/09 AHD Benzolajituranthene 04/20/09 cv 04/21/09 AHD	ŀ					
4-Nitroaniline 04/20/09 cv 04/21/09 AHD 4-Nitrophenol 04/20/09 cv 04/21/09 AHD Acenaphthene 04/20/09 cv 04/21/09 AHD Acenaphthylene 04/20/09 cv 04/21/09 AHD Aniline 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzolajpyrene 04/20/09 cv 04/21/09 AHD Benzolajnicaranthene 04/20/09 cv 04/21/09 AHD Benzolajnicaranthene 04/20/09 cv 04/21/09 AHD bis(2-Chlorosthoxy)methane 04/20/09 cv 04/21/09 AHD <	ŀ					
4-Nitrophenol 04/20/09 cv 04/21/09 AHD						
Acenaphthene	ł					
Acenaphthylene	ŀ	-				
Aniline 04/20/09 cv 04/21/09 AHD Anthracene 04/20/09 cv 04/21/09 AHD Benzidine 04/20/09 cv 04/21/09 AHD Benzidine 04/20/09 cv 04/21/09 AHD Benzo(a)anthracene 04/20/09 cv 04/21/09 AHD Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(b)fluoranthene 04/20/09 cv 04/21/09 AHD Benzo(c)cid 04/20/09 cv 04/21/09 AHD Benzocic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chlynbexyl)phthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzo(a,b)anthracene 04/20/09 cv 04/21/09 AHD Dibenzo(a,b)anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Dientylphthalate 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Indeno(1,2,3-cd)pyrene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09	ł					
Anthracene 04/20/09 cv 04/21/09 AHD Benzidine 04/20/09 cv 04/21/09 AHD Benzo(a)anthracene 04/20/09 cv 04/21/09 AHD Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(b)filuoranthene 04/20/09 cv 04/21/09 AHD Benzo(g,h,i)perylene 04/20/09 cv 04/21/09 AHD Benzo(g,h,i)perylene 04/20/09 cv 04/21/09 AHD Benzo(a)cid 04/20/09 cv 04/21/09 AHD Benzoic acid 04/20/09 cv 04/21/09 AHD Benzoic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Dibenzo(a,h)anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Hexachloroebutadiene 04/20/09 cv 04/21/09 AHD Indeno(1,2,3-cd)pyrene 04/20/09 cv 04/21/09 AHD Naphthalene 0	ļ					
Benzidine	ì					
Benzo(a)anthracene 04/20/09 cv 04/21/09 AHD Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(b)filuoranthene 04/20/09 cv 04/21/09 AHD Benzo(g,h,i)perylene 04/20/09 cv 04/21/09 AHD Benzoic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroethalethexity) 04/20/09	ŀ					
Benzo(a)pyrene 04/20/09 cv 04/21/09 AHD Benzo(b)fluoranthene 04/20/09 cv 04/21/09 AHD Benzo(k)filoranthene 04/20/09 cv 04/21/09 AHD Benzo(k)fluoranthene 04/20/09 cv 04/21/09 AHD Benzoic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether	ł					
Benzolpifiloranthene 04/20/09 cv 04/21/09 AHD Benzolg,h,i]perylene 04/20/09 cv 04/21/09 AHD Benzolkjfluoranthene 04/20/09 cv 04/21/09 AHD Benzolc acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diebnzofuran 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09						
Benzolg,h,ijperylene 04/20/09 cv 04/21/09 AHD Benzolkjfluoranthene 04/20/09 cv 04/21/09 AHD Benzolc acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofa,hjanthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diebnzofuran 04/20/09 cv 04/21/09 <t< td=""><td>ì</td><td></td><td></td><td></td><td></td><td></td></t<>	ì					
Benzo[k]fluoranthene 04/20/09 cv 04/21/09 AHD Benzoic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofa,hjanthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09	ľ	• •				
Benzoic acid 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethoxy)tether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofa,hjanthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09	ì					
bis(2-Chloroethoxy)methane 04/20/09 cv 04/21/09 AHD bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09	1					
bis(2-Chloroethyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzo[a,h]anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09		=				
bis(2-Chloroisopropyl)ether 04/20/09 cv 04/21/09 AHD bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzyiphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzo[a,h]anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 <t< td=""><td>i</td><td></td><td></td><td></td><td></td><td></td></t<>	i					
bis(2-Ethylhexyl)phthalate 04/20/09 cv 04/21/09 AHD Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Di-n-otylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ı					
Butylbenzylphthalate 04/20/09 cv 04/21/09 AHD Carbazole 04/20/09 cv 04/21/09 AHD Chrysene 04/20/09 cv 04/21/09 AHD Dibenzo[a,h]anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD			04/20/09	cv	04/21/09	AHD
Chrysene 04/20/09 cv 04/21/09 AHD Dibenzo[a,h]anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Dimoctylphthalate 04/20/09 cv 04/21/09 AHD Dimoctylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indencf 1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD <			04/20/09	cv	04/21/09	AHD
Dibenzo[a,h]anthracene 04/20/09 cv 04/21/09 AHD Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Din-butylphthalate 04/20/09 cv 04/21/09 AHD Din-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 <td< td=""><td>ĺ</td><td>Carbazole</td><td>04/20/09</td><td>cv</td><td>04/21/09</td><td>AHD</td></td<>	ĺ	Carbazole	04/20/09	cv	04/21/09	AHD
Dibenzofuran 04/20/09 cv 04/21/09 AHD Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Isophorone 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD		Chrysene	04/20/09	cv	04/21/09	AHD
Diethylphthalate 04/20/09 cv 04/21/09 AHD Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 A		Dibenzo[a,h]anthracene	04/20/09	cv	04/21/09	AHD
Dimethylphthalate 04/20/09 cv 04/21/09 AHD Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Isophorone 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09		Dibenzofuran	04/20/09	cv	04/21/09	AHD
Di-n-butylphthalate 04/20/09 cv 04/21/09 AHD Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09 AHD N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09		Diethylphthalate	04/20/09	cv	04/21/09	AHD
Di-n-octylphthalate 04/20/09 cv 04/21/09 AHD Fluoranthene 04/20/09 cv 04/21/09 AHD Fluorene 04/20/09 cv 04/21/09 AHD Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 A		Dimethylphthalate	04/20/09	cv	04/21/09	AHD
Fluoranthene		Di-n-butylphthalate	04/20/09	cv	04/21/09	AHD
Fluorene		Di-n-octylphthalate	04/20/09	cv	04/21/09	AHD '
Hexachlorobenzene 04/20/09 cv 04/21/09 AHD Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Isophorone 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD N-Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD		Fluoranthene	04/20/09	cv	04/21/09	AHD
Hexachlorobutadiene 04/20/09 cv 04/21/09 AHD Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Isophorone 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD		Fluorene	04/20/09	cv	04/21/09	AHD
Hexachlorocyclopentadiene 04/20/09 cv 04/21/09 AHD Hexachloroethane 04/20/09 cv 04/21/09 AHD Indeno[1,2,3-cd]pyrene 04/20/09 cv 04/21/09 AHD Isophorone 04/20/09 cv 04/21/09 AHD Naphthalene 04/20/09 cv 04/21/09 AHD Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD	Į	Hexachlorobenzene	04/20/09	cv	04/21/09	AHD
Hexachloroethane		Hexachlorobutadiene		cv	04/21/09	AHD
Indeno[1,2,3-cd]pyrene	Į	Hexachlorocyclopentadiene	04/20/09	cv	04/21/09	AHD
Isophorone	ļ	Hexachloroethane	04/20/09	cv	04/21/09	AHD
Naphthalene 04/20/09 cv 04/21/09 AHD Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodip-nopolamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD	ļ	Indeno[1,2,3-cd]pyrene	04/20/09	CV	04/21/09	AHD
Nitrobenzene 04/20/09 cv 04/21/09 AHD N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodin-propylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD		-		cv		
N-Nitrosodimethylamine 04/20/09 cv 04/21/09 AHD N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD	ļ	-		CV		
N-Nitroso-di-n-propylamine 04/20/09 cv 04/21/09 AHD N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD				CV		
N-Nitrosodiphenylamine 04/20/09 cv 04/21/09 AHD Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD	ļ	_		CV		
Pentachlorophenol 04/20/09 cv 04/21/09 AHD Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD						
Phenanthrene 04/20/09 cv 04/21/09 AHD Phenol 04/20/09 cv 04/21/09 AHD						
Phenol 04/20/09 cv 04/21/09 AHD						
Pyrene 04/20/09 cv 04/21/09 AHD						
	_ [Pyrene	04/20/09	CV	04/21/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prei)	Analy	/sis
Analyte	Date .	Ву	Date	Ву
Aluminum	04/22/09	maxine	04/23/09	SRB
Antimony	04/22/09	maxine	04/24/09	SRB
Arsenic	04/22/09	maxine	04/24/09	SRB
Barium	04/22/09	maxine	04/24/09	SRB
Beryllium	04/22/09	maxine	04/23/09	SRB
Cadmium	04/22/09	maxine	04/24/09	SRB
Calcium	04/22/09	maxine	04/24/09	SRB
Chromium	04/22/09	maxine	04/24/09	SRB
Cobalt	04/22/09	maxine	04/24/09	SRB

Lab#: AC43958-008 Sample ID: B-11 GW							
Copper	04/22/09	maxine	04/24/09	SRB			
Iron	04/22/09	maxine	04/23/09	SRB			
Lead	04/22/09	maxine	04/24/09	SRB			
Magnesium	04/22/09	maxine	04/24/09	SRB			
Manganese	04/22/09	maxine	04/24/09	SRB			
Nickel	04/22/09	maxine	04/24/09	SRB			
Potassium	04/22/09	maxine	04/25/09	SRB			
Selenium	04/22/09	maxine	04/23/09	SRB			
Silver	04/22/09	maxine	04/24/09	SRB			
Sodium	04/22/09	maxine	04/25/09	SRB			
Thallium	04/22/09	maxine	04/23/09	SRB			
Vanadium	04/22/09	maxine	04/24/09	SRB			
Zinc	04/22/09	maxine	04/24/09	SRB			

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	B
1,1,1-Trichloroethane	04/15/09	WP	04/15/09	W
1,1,2,2-Tetrachloroethane	04/15/09	WP	04/15/09	W
1,1,2-Trichloro-1,2,2-trifluoroethane	04/15/09	WP	04/15/09	W
1,1,2-Trichloroethane	04/15/09	WP	04/15/09	W
1,1-Dichloroethane	04/15/09	WP	04/15/09	W
1,1-Dichloroethene	04/15/09	WP	04/15/09	W
1,2,3-Trichloropropane	04/15/09	WP	04/15/09	W
1,2,4-Trimethylbenzene	04/15/09	WP	04/15/09	W
1,2-Dichlorobenzene	04/15/09	WP	04/15/09	W
1,2-Dichloroethane	04/15/09	WP	04/15/09	W
1,2-Dichloropropane	04/15/09	WP	04/15/09	W
1,3,5-Trimethylbenzene	04/15/09	WP	04/15/09	W
1,3-Dichlorobenzene	04/15/09	WP	04/15/09	W
1,3-Dichloropropane	04/15/09	WP	04/15/09	W
1,4-Dichlorobenzene	04/15/09	WP	04/15/09	W
1,4-Dioxane 2-Butanone	04/15/09 04/15/09	WP WP	04/15/09 04/15/09	w
2-Butanone 2-Chloroethylvinylether	04/15/09	WP	04/15/09	W
2-Chloroeinylvinylether 2-Hexanone	04/15/09	WP	04/15/09	W
4-Isopropyltoluene	04/15/09	WP	04/15/09	w
4-Methyl-2-pentanone	04/15/09	WP	04/15/09	w
Acetone	04/15/09	WP	04/15/09	w
Acrolein	04/15/09	WP	04/15/09	w
Acrylonitrile	04/15/09	WP	04/15/09	w
Benzene	04/15/09	WP	04/15/09	w
Bromodichloromethane	04/15/09	WP	04/15/09	W
Bromoform	04/15/09	WP	04/15/09	W
Bromomethane	04/15/09	WP	04/15/09	W
Carbon disulfide	04/15/09	WP	04/15/09	W
Carbon tetrachloride	04/15/09	WP	04/15/09	W
Chlorobenzene	04/15/09	WP	04/15/09	W
Chloroethane	04/15/09	WP	04/15/09	W
Chloroform	04/15/09	WP	04/15/09	W
Chloromethane	04/15/09	WP	04/15/09	W
cis-1,2-Dichloroethene	04/15/09	WP	04/15/09	W
cis-1,3-Dichloropropene	04/15/09	WP	04/15/09	W
Dibromochloromethane	04/15/09	WP	04/15/09	W
Dichlorodifluoromethane	04/15/09	WP	04/15/09	W
Ethylbenzene	04/15/09	WP	04/15/09	W
Isopropylbenzene	04/15/09	WP	04/15/09	W
m&p-Xylenes	04/15/09	WP	04/15/09	W
Methylene chloride	04/15/09	WP	04/15/09	W
Methyl-t-butyl ether	04/15/09	WP	04/15/09	W
n-Butylbenzene	04/15/09	WP	04/15/09	W
n-Propylbenzene	04/15/09	WP	04/15/09	W
o-Xylene	04/15/09	WP	04/15/09	W
sec-Butylbenzene	04/15/09	WP	04/15/09	W
Styrene	04/15/09	WP	04/15/09	W
t-Butyl Alcohol	04/15/09	WP	04/15/09	W
t-Butylbenzene	04/15/09	WP	04/15/09	W
Tetrachloroethene	04/15/09	WP	04/15/09	W
Toluene	04/15/09	WP	04/15/09	W
trans-1,2-Dichloroethene	04/15/09	WP	04/15/09	W
trans-1,3-Dichloropropene	. 04/15/09	WP	04/15/09	W
Trichloroethene	04/15/09	WP	04/15/09	W
Trichlorofluoromethane	04/15/09	WP	04/15/09	W
Vinyl chloride	04/15/09	WP	04/15/09	W
Xylenes (Total)	04/15/09	WP	04/15/09	W

Lab#: AC43958-009 Sample ID: WC-1	
TestGroupName % Solids SM2540G Preparation Method: SM 2540G	
Analytical Method: SM 2540G	

	Analytical motiloc	. 0 20400			
		Pre	Prep		lysis
	Analyte	Date	Ву	Date	Ву
	% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

		Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
Ignitability	04/16/09	jad	04/16/09	jad	

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A

	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
Mercury	04/17/09	olufemi	04/20/09	JS	_

TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

	Prep		ilysis		
Analyte	Date	Ву	Date	Ву	
pH	04/16/09	SDL	04/16/09	SDL	

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3

	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
Cyanide (Reactive)	04/16/09	jad	04/16/09	jad	

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4

		Prep		/sis		
Analyte	Date	Ву	Date	Ву		
Sulfide (Reactive)	04/16/09	iad	04/16/09	iad		

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A

1	Dron		Analy	reie	_
	Prep			_	
Analyte	Date	Ву	Date	Ву	
2,4-D	04/21/09	CV	04/22/09	JP	
Silvex	04/21/09	cv	04/22/09	JP	

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
Arsenic	04/17/09	olufemi	04/17/09	SB
Barium	04/17/09	olufemi	04/17/09	SB
Cadmium	04/17/09	olufemi	04/17/09	SB
Chromium	04/17/09	olufemi	04/17/09	SB
Lead	04/17/09	olufemi	04/17/09	SB
Nickel	04/17/09	olufemi	04/17/09	SB
Selenium	04/17/09	olufemi	04/17/09	SB
Silver	04/17/09	olufemi	04/17/09	SB

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311 **Analytical Method:**

	Prep		Anaiysis	
Analyte	Date	Ву	Date	Ву
TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311
Preparation Method: EPA 1311 Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву

Lab#: AC43958-009 Sample ID: WC-1 TCLP Organics Extraction 04/15/09 NA TestGroupName TCLP Pesticides 8081

Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Chlordane	04/20/09	neha	04/21/09	MS
Endrin	04/20/09	neha	04/21/09	MS
gamma-BHC	04/20/09	neha	04/21/09	MS
Heptachlor	04/20/09	neha	04/21/09	MS
Heptachlor Epoxide	04/20/09	neha	04/21/09	MS
Methoxychlor	04/20/09	neha	04/21/09	MS
Toxaphene	04/20/09	neha	04/21/09	MS

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

1	Pre)	Analy	/sis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachiorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

Allalytical Metricu.	LI A 0200D			
	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/27/09	WP	04/27/09	WP
1,2-Dichloroethane	04/27/09	WP	04/27/09	WP
1,4-Dichlorobenzene	04/27/09	WP	04/27/09	WP
2-Butanone	04/27/09	WP	04/27/09	WP
Benzene	04/27/09	WP	04/27/09	WP
Carbon tetrachloride	04/27/09	WP	04/27/09	WP
Chlorobenzene	04/27/09	WP	04/27/09	WP
Chloroform	04/27/09	WP	04/27/09	WP
Tetrachloroethene	04/27/09	WP	04/27/09	WP
Trichloroethene	04/27/09	WP	04/27/09	WP
Vinyl chloride	04/27/09	WP	04/27/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 **Analytical Method:**

	Prep)	Ana	lysis
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/23/09	sw	NA	

Lab#: AC43958-010 Sample ID: WC-2

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	Prep		llysis
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

	Prep	Prep		ysis
Analyte	Date	Ву	Date	Ву
Ignitability	04/16/09	iad	04/16/09	iad

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A

Analytical Wethou: t	EPA /4/UA			
	Prep		Analysis	
Analyte	Date	Ву	Date	Ву

Lab#: AC43958-010 Sample ID: WC-2

Mercury	04/1//0	9 olulenii	04/20/09	Jo	
					-
TestGroupName	nH 9040B/9045C				

Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
pH	04/16/09	SDL	04/16/09	SDL

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3

Analytical Method: SW846 7.3.3

1	Prep)	Analy	ysis
Analyte	Date	Ву	Date	Ву
Cyanide (Reactive)	04/16/09	iad	04/16/09	iad

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3

Sulfide (Reactive)

Analytical Method: SW846 7.3.4				
	Prep	Prep		/sis
Analyte	Date	Ву	Date	Ву
Sulfide (Reactive)	04/16/09	jad	04/16/09	jad

TestGroupName TCLP Herbicides 8151

Method: EPA Method: EPA	
	 _

		Prep		Analysis	
	Analyte	Date	Ву	Date	Ву
	2,4-D	04/21/09	cv	04/22/09	JP
	Silvex	04/21/09	cv	04/22/09	JP

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

Prep		Analysis	
Date .	Ву	Date	Ву
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
04/17/09	olufemi	04/17/09	SB
	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	Prep Date By 04/17/09 olufemi	Prep Date By Date 04/17/09 olufemi 04/17/09

TestGroupName TCLP Metals Extraction 1311

Preparation Method: EPA 1311 **Analytical Method:**

	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
TCLP Metals Extraction	04/15/09	OA	NA		

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311 **Analytical Method:**

		Prep		Analysis	
	Analyte	Date	Ву	Date	Ву
	TCLP Organics Extraction	04/15/09	oa	NA	

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510

Analytical Method: EPA 8081A							
	1	Prep)	Analy	/sis	_	
	Analyte	Date	Ву	Date	Ву		
	Chlordane	04/20/09	neha	04/21/09	MS	_	
	Endrin	04/20/09	neha	04/21/09	MS		
	gamma-BHC	04/20/09	neha	04/21/09	MS		
	Heptachlor	04/20/09	neha	04/21/09	MS		
	Heptachlor Epoxide	04/20/09	neha	04/21/09	MS		
	Methoxychlor	04/20/09	neha	04/21/09	MS		

04/20/09

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510

Toxaphene

Analytical Method: EP	A 8270C			
	Pre	p	Ana	lysis
Analyte	Date	Ву	Date	Ву

04/21/09

MS

Lab#: AC43958-010 Sample ID: WC-2						
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD		
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD		
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD		
2-Methylphenol	04/19/09	mansip	04/20/09	AHD		
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD		
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD		
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD		
Hexachloroethane	04/19/09	mansip	04/20/09	AHD		
Nitrobenzene	04/19/09	mansip	04/20/09	AHD		
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD		
Pyridine	04/19/09	mansip	04/20/09	AHD		

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep	Prep		/sis
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP
1,4-Dichtorobenzene	04/22/09	WP	04/22/09	WP
2-Butanone	04/22/09	WP	04/22/09	WP
Benzene	04/22/09	WP	04/22/09	WP
Carbon tetrachloride	04/22/09	WP	04/22/09	WP
Chlorobenzene	04/22/09	WP	04/22/09	WP
Chloroform	04/22/09	WP	04/22/09	WP
Tetrachloroethene	04/22/09	WP	04/22/09	WP
Trichloroethene	04/22/09	WP	04/22/09	WP
Vinyl chloride	04/22/09	WP	04/22/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/21/09	sw	NA	

Lab#: AC43958-011 Sample ID: WC-3

TestGroupName % Solids SM2540G Preparation Method: SM 2540G

Analytical Method: SM 2540G							
		Prep		Analysis			
Analyt	e Da	ite	Ву	Date	Ву		
% Solids	04/	15/09	PRASHANT	04/15/09	PRASHANT		

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

Prep		Analysis		
Analyte	Date	Ву	Date	Ву
Ignitability	04/16/09	jad	04/16/09	jad

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A

_		Prep	Prep		/sis
	Analyte	Date	Ву	Date	Ву
	Mercury	04/17/09	olufemi	04/20/09	JS

TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

Analytical metric	a. 3040D/30430				
	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
рН	04/16/09	SDL	04/16/09	SDL	Т

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3

Analytical Method:	SVV846 7.3.3				
	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
Cyanide (Reactive)	04/16/09	iad	04/16/09	iad	Т

Lab#: AC43958-011 Sample ID: WC-3

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4

Analytical metrica	. 0000-0 1.0				
	Prep	Analysis		_	
Analyte	Date	Ву	Date	Ву	
Sulfide (Reactive)	04/16/09	jad	04/16/09	jad	

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A

Analytical Method: EPA 8151A

Ī		Prep		Analysis	
	Analyte	Date	Ву	Date	Ву
	2,4-D	04/21/09	cv	04/22/09	JP
	Silvex	04/21/09	CV	04/22/09	JP

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	/\li\u\	/sis
Ву	Date	Ву
olufemi	04/17/09	SB

TestGroupName TCLP Metals Extraction 1311
Preparation Method: EPA 1311

Analytical Method:

		Prep		Analysis	
	Analyte	Date	Ву	Date	Ву
	TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311
Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
TCLP Organics Extraction	04/15/09	oa	NA	

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
Chlordane	04/20/09	neha	04/21/09	MS
Endrin	04/20/09	neha	04/21/09	MS
gamma-BHC	04/20/09	neha	04/21/09	MS
Heptachlor	04/20/09	neha	04/21/09	MS
Heptachlor Epoxide	04/20/09	neha	04/21/09	MS
Methoxychlor	04/20/09	neha	04/21/09	MS
Toxaphene	04/20/09	neha	04/21/09	MS

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510

Analytical Method: EPA 8270C

	Pre	9	Analysis	
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

Project #: 9041403

Lab#: AC43958-011 Sample ID: WC-3

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B

Analytical Method: EPA 8260B

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP
2-Butanone	04/22/09	WP	04/22/09	WP
Benzene	04/22/09	WP	04/22/09	WP
Carbon tetrachloride	04/22/09	WP	04/22/09	WP
Chlorobenzene	04/22/09	WP	04/22/09	WP
Chloroform	04/22/09	WP	04/22/09	WP
Tetrachloroethene	04/22/09	WP	04/22/09	WP
Trichloroethene	04/22/09	WP	04/22/09	WP
Vinyl chloride	04/22/09	WP	04/22/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/21/09	sw	NA	

Lab#: AC43958-012 Sample ID: WC-4

TestGroupName % Solids SM2540G

Preparation Method: SM 2540G Analytical Method: SM 2540G

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

	Prep		Analysis		
Analyte	Date	Ву	Date	Ву	
Ignitability	04/16/09	jad	04/16/09	jad	

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Mercury	04/17/09	olufemi	04/20/09	JS

TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

_		Prep		Analysis		_
	Analyte	Date	Ву	Date	Ву	
	pH	04/16/09	SDL	04/16/09	SDL	_

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Cyanide (Reactive)	04/16/09	jad	04/16/09	jad

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4

_	7 many trout mourious	Prep			/sis
	Analyte	Date	Ву	Date	Ву
	Sulfide (Reactive)	04/16/09	jad	04/16/09	jad

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A

Preparation Method: EPA 8151A Analytical Method: EPA 8151A

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
2,4-D	04/21/09	cv	04/22/09	JP
Silvex	04/21/09	CV	04/22/09	JP

Lab#: AC43958-012 Sample ID: WC-4

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

1	Prep		Analy	/sis	_	
Analyte	Date	Ву	Date	Ву		
Arsenic	04/17/09	olufemi	04/17/09	SB		
Barium	04/17/09	olufemi	04/17/09	SB		
Cadmium	04/17/09	olufemi	04/17/09	SB		
Chromium	04/17/09	olufemi	04/17/09	SB		
Lead	04/17/09	olufemi	04/17/09	SB		
Nickel	04/17/09	olufemi	04/17/09	SB		
Selenium	04/17/09	olufemi	04/17/09	SB		
Silver	04/17/09	olufemi	04/17/09	SB		

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

	Prep	Prep		lysis
Analyte	Date	Ву	Date	Ву
TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysi		
Analyte	Date	Ву	Date	Ву	
TCLP Organics Extraction	04/15/09	oa	NA		Т

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Chlordane	04/20/09	neha	04/21/09	JP
Endrin	04/20/09	neha	04/21/09	JP
gamma-BHC	04/20/09	neha	04/21/09	JP
Heptachlor	04/20/09	neha	04/21/09	JP
Heptachlor Epoxide	04/20/09	neha	04/21/09	JP
Methoxychlor	04/20/09	neha	04/21/09	JP
Toxaphene	04/20/09	neha	04/21/09	JP

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

	Prep)	Anal	ysis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenoi	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep		Analysis		s	
Analyte	Date	Ву	Date	Ву		
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP		
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP		
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP		
2-Butanone	04/22/09	WP	04/22/09	WP		
Benzene	04/22/09	WP	04/22/09	WP		
Carbon tetrachloride	04/22/09	WP	04/22/09	WP		
Chlorobenzene	04/22/09	WP	04/22/09	WP		
Chloroform	04/22/09	WP	04/22/09	WP		
Tetrachloroethene	04/22/09	WP	04/22/09	WP		
Trichloroethene	04/22/09	WP	04/22/09	WP		
Vinyl chloride	04/22/09	WP	04/22/09	WP		

Lab#: AC43958-012 Sample ID: WC-4

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 **Analytical Method:**

Analyte Zero Headspace Extraction	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/21/09	sw	NA	

Lab#: AC43958-013 Sample ID: WC-5

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

1	Prep Analysis		lysis	
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

Analyte	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Ignitability	04/16/09	jad	04/16/09	jad

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A

Analytical Method: EPA 7470A

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Mercury	04/17/09	olufemi	04/20/09	JS

TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

7 many areas in currous contraction									
	Prep		Analysis						
Analyte	Date	Ву	Date	Ву					
pH	04/16/09	SDL	04/16/09	SDL					

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3

Analytical Metrica. Ovvovo 1.0.0							
Prep			Analy	Analysis			
Analyte	Date	Ву	Date	Ву			
Cyanide (Reactive)	04/16/09	jad	04/16/09	jad			

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3

Analytical Method: SW846 7.3.4

		Prep	Prep		
Ana	alyte	Date	Ву	Date	Ву
Sulfie	de (Reactive)	04/16/09	jad	04/16/09	jad

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A

Analytical Method: EPA 8151A

	Prep)	Analy	/sis	_
Analyte	Date	Ву	Date	Ву	
2,4-D	04/21/09	cv	04/22/09	JP	
Silvex	04/21/09	cv	04/22/09	JP	

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050

Analytical Method: EPA 6010B Prep Analysis Analyte Date By Date By					
	Prei	0	Anal	/sis	
Analyte	Date	Ву	Date	Ву	
Arsenic	04/17/09	olufemi	04/17/09	SB	
Barium	04/17/09	olufemi	04/17/09	SB	
Cadmium	04/17/09	olufemi	04/17/09	SB	
Chromium	04/17/09	olufemi	04/17/09	SB	
Lead	04/17/09	olufemi	04/17/09	SB	
Nickel	04/17/09	olufemi	04/17/09	SB	
Selenium	04/17/09	olufemi	04/17/09	SB	
Silver	04/17/09	olufemi	04/17/09	SB	

Lab#: AC43958-013 Sample ID: WC-5

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

	Prep	,	Analysis			
	Analyte	Date	Ву	Date	Ву	
	TCLP Metals Extraction	04/15/09	OA	NA		

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

Analyte TCLP Organics Extraction	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
TCLP Organics Extraction	04/15/09	oa	NA	

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510

Analytical Method: EPA 8081A

1	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Chlordane	04/20/09	neha	04/21/09	JP
Endrin	04/20/09	neha	04/21/09	JP
gamma-BHC	04/20/09	neha	04/21/09	JP
Heptachlor	04/20/09	neha	04/21/09	JP
Heptachlor Epoxide	04/20/09	neha	04/21/09	JP
Methoxychlor	04/20/09	neha	04/21/09	JP
Toxaphene	04/20/09	neha	04/21/09	JP

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510

Analytical Method: EPA 8270C

	Prep	3	Anal	ysis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B

Analytical Method: EPA 8260B

	Prep)	Anal	/sis	
Analyte	Date	Ву	Date	Ву	
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP	_
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP	
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP	
2-Butanone	04/22/09	WP	04/22/09	WP	
Benzene	04/22/09	WP	04/22/09	WP	
Carbon tetrachloride	04/22/09	WP	04/22/09	WP	
Chlorobenzene	04/22/09	WP	04/22/09	WP	
Chloroform	04/22/09	WP	04/22/09	WP	
Tetrachloroethene	04/22/09	WP	04/22/09	WP	
Trichloroethene	04/22/09	WP	04/22/09	WP	
Vinyl chloride	04/22/09	WP	04/22/09	WP	

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311

Analytical Method:

	Prep	1	Ana	lysis
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/21/09	sw	NA	

Lab#: AC43958-014 Sample ID: WC-6

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Prep			lysis
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

Lab#: AC43958-014	Sample	ID: WC-6
-------------------	--------	----------

TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030

Allaiyucal methol	u. LFA 1030			
	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Ignitability	04/16/09	jad	04/16/09	jad

TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A

Analytical Method: EPA 7470A

12-23-	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Mercury	04/17/09	olufemi	04/20/09	JS

TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C

	Prep		Analy	/sis	_
Analyte	Date	Ву	Date	Ву	
pH	04/16/09	SDL	04/16/09	SDL	

TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3

	Prep)	Analysis		
Analyte	Date	Ву	Date	Ву	
Cyanide (Reactive)	04/16/09	jad	04/16/09	jad	

TestGroupName Reactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4

/ indigition inclined. Of					
	Prep		Analy	/sis	
Analyte	Date	Ву	Date	Ву	
Sulfide (Reactive)	04/16/09	jad	04/16/09	jad	

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A

1	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
2,4-D	04/21/09	cv	04/22/09	JP
Silvex	04/21/09	cv	04/22/09	JP

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Arsenic	04/17/09	olufemi	04/17/09	SB
Barium	04/17/09	olufemi	04/17/09	SB
Cadmium	04/17/09	olufemi	04/17/09	SB
Chromium	04/17/09	olufemi	04/17/09	SB
Lead	04/17/09	olufemi	04/17/09	SB
Nickel	04/17/09	olufemi	04/17/09	SB
Selenium	04/17/09	olufemi	04/17/09	SB
Silver	04/17/09	olufemi	04/17/09	SB

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysis		
	Analyte	Date	Ву	Date	Ву
	TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311 **Analytical Method:**

	Prep		Analysis		
	Analyte	Date	Ву	Date	Ву
	TCLP Organics Extraction	04/15/09	oa	NA	

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510

Analytical Method: EPA	8081A			
	Prep		Analysis	
Analyte	Date	Ву	Date	Ву

١	Lab#: AC43958-014 Sample ID: WC-6						
	Chlordane	04/20/09	neha	04/21/09	JP		
	Endrin	04/20/09	neha	04/21/09	JP		
	gamma-BHC	04/20/09	neha	04/21/09	JP		
	Heptachlor	04/20/09	neha	04/21/09	JP		
	Heptachlor Epoxide	04/20/09	neha	04/21/09	JP		
	Methoxychior	04/20/09	neha	04/21/09	JP		
	Toyanhene	04/20/09	neha	04/21/09	.IP		

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510

Analytical Method: EPA 8270C

1	Pre	5	Anal	ysis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B

Analytical Method: EPA 8260B

	Prep Anal		ysis 💮	
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/27/09	WP	04/27/09	WP
1,2-Dichloroethane	04/27/09	WP	04/27/09	WP
1,4-Dichlorobenzene	04/27/09	WP	04/27/09	WP
2-Butanone	04/27/09	WP	04/27/09	WP
Benzene	04/27/09	WP	04/27/09	WP
Carbon tetrachloride	04/27/09	WP	04/27/09	WP
Chlorobenzene	04/27/09	WP	04/27/09	WP
Chloroform	04/27/09	WP	04/27/09	WP
Tetrachloroethene	04/27/09	WP	04/27/09	WP
Trichloroethene	04/27/09	WP	04/27/09	WP
Vinyl chloride	04/27/09	WP	04/27/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 **Analytical Method:**

Amabuta	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Zero Headspace Extraction	04/23/09	sw	NA	

Lab#: AC43958-015 Sample ID: TRIP BLANK

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/15/09	WP	04/15/09	WP
1,1,2,2-Tetrachloroethane	04/15/09	WP	04/15/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/15/09	WP	04/15/09	WP
1,1,2-Trichloroethane	04/15/09	WP	04/15/09	WP
1,1-Dichloroethane	04/15/09	WP	04/15/09	WP
1,1-Dichloroethene	04/15/09	WP	04/15/09	WP
1,2,3-Trichloropropane	04/15/09	WP	04/15/09	WP
1,2,4-Trimethylbenzene	04/15/09	WP	04/15/09	WP
1,2-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,2-Dichloroethane	04/15/09	WP	04/15/09	WP
1,2-Dichloropropane	04/15/09	WP	04/15/09	WP
1,3,5-Trimethylbenzene	04/15/09	WP	04/15/09	WP
1,3-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,3-Dichloropropane	04/15/09	WP	04/15/09	WP
1,4-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,4-Dioxane	04/15/09	WP	04/15/09	WP
2-Butanone	04/15/09	WP	04/15/09	WP
2-Chloroethylvinylether	04/15/09	WP	04/15/09	WP
2-Hexanone	04/15/09	WP	04/15/09	WP
4-Isopropyltoluene	04/15/09	WP	04/15/09	WP
4-Methyl-2-pentanone	04/15/09	WP	04/15/09	WP

Lab#: AC43958-015 Sample ID: TRIP BLANK					
Acetone	04/15/09	WP	04/15/09	WP	
Acrolein	04/15/09	WP	04/15/09	WP	
Acrylonitrile	04/15/09	WP	04/15/09	WP	
Benzene	04/15/09	WP	04/15/09	WP	
Bromodichloromethane	04/15/09	WP	04/15/09	WP	
Bromoform	04/15/09	WP	04/15/09	WP	
Bromomethane	04/15/09	WP	04/15/09	WP	
Carbon disulfide	04/15/09	WP	04/15/09	WP	
Carbon tetrachloride	04/15/09	WP	04/15/09	WP	
Chlorobenzene	04/15/09	WP	04/15/09	WP	
Chloroethane	04/15/09	WP	04/15/09	WP	
Chloroform	04/15/09	WP	04/15/09	WP	
Chloromethane	04/15/09	WP	04/15/09	WP	
cis-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP	
cis-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP	
Dibromochloromethane	04/15/09	WP	04/15/09	WP	
Dichlorodifluoromethane	04/15/09	WP	04/15/09	WP	
Ethylbenzene	04/15/09	WP	04/15/09	WP	
Isopropylbenzene	04/15/09	WP	04/15/09	WP	
m&p-Xylenes	04/15/09	WP	04/15/09	WP	
Methylene chloride	04/15/09	WP	04/15/09	WP	
Methyl-t-butyl ether	04/15/09	WP	04/15/09	WP	
n-Butylbenzene	04/15/09	WP	04/15/09	WP	
n-Propylbenzene	04/15/09	WP	04/15/09	WP	
o-Xylene	04/15/09	WP	04/15/09	WP	
sec-Butylbenzene	04/15/09	WP	04/15/09	WP	
Styrene	04/15/09	WP	04/15/09	WP	
t-Butyl Alcohol	04/15/09	WP	04/15/09	WP	
t-Butylbenzene	04/15/09	WP	04/15/09	WP	
Tetrachioroethene	04/15/09	WP	04/15/09	WP	
Toluene	04/15/09	WP	04/15/09	WP	
trans-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP	
trans-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP	
Trichloroethene	04/15/09	WP	04/15/09	WP	
Trichlorofluoromethane	04/15/09	WP	04/15/09	WP	
Vinyl chloride	04/15/09	WP	04/15/09	WP	
Xylenes (Total)	04/15/09	WP	04/15/09	WP	

Method References

PARAMETER	METHOD	TECHNIQUE	PARAMETER	METHOD	TECHNIQUE
DRINKING WATER P	ARAMETERS	1	SOLID HAZARDOUS W	ASTE PARAMETERS	
Total coliform	SM 9221D + E	Presence/Absence	Specific Cond.	SW-846 9050A	Wheatstone Bridge
Total coli/E. coli	SM 9222 B/G	Membrane Filtration/Enumeration	Phenols	SW-846 9065	Colorimetric
Cyanide	SM 4500-CN-E	Dist/Spectrophotometric (man.)	Cyanide	SW-846 9014	Titrimetric/Spectrophotometric
Cyanide	EPA 335.4	Dist/Spectrophotometric (auto)	Chromium VI	SW-846 7196A	Colorimetric
VOA	EPA 524.2	GC/MS	Metals	SW-846 6010B	ICP
Metals	EPA 200.8	ICP/MS	Mercury (liquid)	SW-846 7470A	Manual Cold Vapor
Mercury	EPA 245.1	Manual, Cold Vapor	Mercury (solid)	SW-846 7471A	Manual Cold Vapor
Turbidity	EPA 180.1	Nephelometric	EDB/DBCP	SW-846 8011	Microextraction, GC, ECD
WATER POLLUTION			Alcohols/Glycols	SW-846 8015B	GC, FID
Fecal Coliform	SM 9222 D	Membrane Filtration	Petroleum Organics	OQA QAM 25 rev7	Extraction, GC, FID
Total Coliform	SM 9222 B	Membrane Filtration	DRO	SW-846 8015B	Extraction, GC, FID
Heterotrophic PC	SM 9215 B	Pour Plate	GRO	SW8468015B m	GC/MS, Purge & Trap
Acidity	SM 2310 B (4a)	Electrometric	PCB	SW-846 8082	Extraction,GC, ECD
Alkalinity	SM 2320 B	Electrometric	Pesticides	SW-846 8081A	Extraction,GC, ECD
Ammonia	SM4500NH3B-18	Distillation (prep)	Herbicides	SW-846 8151A	Extraction,GC, ECD
Ammonia	SM4500NH3C-18	Nesslerization (analysis)	VOA	SW-846 8260B	GC/MS
BOD	SM 5210 B	DO Depletion	Semi-VOA	SW-846 8270C	Extraction, GC/MS
Bromide	EPA 300.0	Ion Chromatography	Cvanide (T)	SW-846 9012A	Colorimetric (auto)
Calcium	EPA 200.7	Digestion, ICP	Cyanide (T)	SW-846 9010C	Distillation
CBOD	SM 5210 B	DO Depletion, N Inhib.	Cyanide (1)	SW-846 9010C	Distillation
COD	HACH 8000	Spectrophotometric, manual	Sulfides	SW-846 9030B	Redox Titration
Chloride	EPA 300.0	Ion Chromatography	Sulfides		Titration
				SW-846 9034 SW-846 9056	
Cyanide (T)	EPA 335.4	Dist/Spectrophotometric (auto)	Sulfate		Ion Chromatography
Cyanide (T)	SM4500-CN C/E	Dist/Spectrophotometric (man.)	pH	SW-846 9040B	Elect, waste, >20% water
Cyanide (Am)	SM4500-CN C/G	Distillation, Spectrophotometric	TOC	SW-846 9060	Infrared Spectrometry
Cyanide (Am)	EPA 1677	Flow Injection/Ligand Exchange	TOC (sediment)	Lloyd Kahn Meth.	Infrared Spectrometry
Fluoride	EPA 300.0	Ion Chromatography	Oil & Grease hem	SW-846 1664A	Extraction and Gravimetric
Hardness	EPA 200.7	Ca + Mg Carbonates, ICP	Nitrite	SW-846 9056	Ion Chromatography
Hex Chrom	SM 3500-Cr D	Spectrophotometric	Nitrate	SW-846 9056	Ion Chromatography
Magnesium	EPA 200.7	Digestion, ICP	Bromide	SW-846 9056	Ion Chromatography
Metals	EPA 200.7	Digestion, ICP	Chloride	SW-846 9056	Ion Chromatography
Mercury	EPA 245.1	Manual, Cold Vapor	Fluoride	SW-846 9056	Ion Chromatography
Metals	EPA 200.8	ICP/MS	Ortho Phosphate	SW-846 9056	Ion Chromatography
Nitrate	EPA 300.0	Ion Chromatography	SOLID HAZARDOUS W		
Nitrite	EPA 300.0	Ion Chromatography	Metals, Total& Diss	SW-846 3005A	Acid Dig/Surface & GW, ICP
O & G HEM	EPA 1664A	Grav., Hexane Extractable	Metals, Total	SW-846 3010A	Acid Dig/Aq Samples, ICP
Oil & Grease SGT	EPA 1664A	Grav., Silica Gel Treated, HEM	Metals	SW-846 3050B	Acid Dig, Soil Sediment, Sludge
Sulfate	EPA 300.0	Ion Chromatography	Metals	SW-846 3060A	Chromium VI Digestion
TOC	SM 5310 B	Combustion	Semi-VO	SW-846 3510C	Separatory Funnel Extraction
Ortho Phosphate	EPA 300.0	ion Chromatography	Semi-VO	SW-846 3550B	Ultrasonic Extraction
Phenols	EPA 420.1	Distillation, Colorimetric	Semi-VO	SW-846 3520C	Liquid-Liquid Extraction
Total Phosphorus	SM 4500-P B5+E	Persulfate Digestion	Semi-VO	SW-846 3545	Pressurized Fluid Extraction
Potassium	EPA 200.7	Digestion, ICP	VO	SW-846 5030B	Purge & Trap Aqueous
Total Residue	SM 2540 B	Gravimetric, 103-105° C	Organics	SW-846 3580A	Waste Dilution
TDS	SM 2540 C	Gravimetric, 180° C	Organics	SW-846 3585	Waste Dilution, Volatile Organics
TSS	SM 2540 D	Gravimetric, 103-105° C	VO-low/high conc.	SW-8465035I/h	Closed System Purge & Trap
Settleable Solids	SM 2540 F	Volumetric, Imhoff Cone	Semi-VO	SW-846 3611B	Petroleum Waste, Cleanup Alumina
Volatile Solids	EPA 160.4	Gravimetric, 550° C	Semi-VO	SW-846 3620B	Cleanup-Florisil
Total, Fix, Vol Sol.	SM 2540 G	Gravimetric, 550° C	Semi-VO	SW-846 3640A	Cleanup-Gel Permeation
Salinity	SM 2520 B	Electrical Conductivity	Semi-VO	SW-846 3650B	Cleanup-Acid/Base Partition
Sodium	EPA 200.7	Digestion, ICP	Semi-VO	SW-846 3660B	Cleanup-Sulfur Removal
Specific Cond.	SM 2510 B	Wheatstone Bridge	Semi-VO	SW-846 3665A	Cleanup-Sulfuric Acid/KMnO ₄
Sulfides	SM 4500-S ² F	Titrimetric, lodine	CHARACTERISTICS O		
Turbidity	SM 2130 B	Nephelometric	Corrosivity	SW-846 9040B	Aqueous Waste, Potentiometric
PCB	EPA 608	Extraction, GC, ECD	Volatile Organics	SW-846 1311	TCLP, Toxicity Procedure, ZHE
Pesticides	EPA 608	Extraction, GC, ECD	Metals-Semi VOA	SW-846 1311	TCLP, Toxicity Procedure, Shaker
Petroleum Org.	OQ QAM 25 rev. 7	Extraction, GC, FID	Metals-Organics	SW-846 1310A	EP Toxicity Test
VOA	EPA 624	GC/MS	Metals-Organics		Synthetic PPT Leachate Procedure
Semi-VOA		Extraction, GC/MS		SW-846 1312	
Semi-VOA	EPA 625	EXTRACTION, GO/IVIO	Metals-Organics	SW-846 1320	Multiple Extraction

11/10/08 1 of 2

Method References cont'd

PARAMETER	METHOD	TECHNIQUE	PARAMETER	METHOD	TECHNIQUE
ANALYZE IMMEDIATELY PARAMETERS		SOLID AND CHEMICA	SOLID AND CHEMICAL MATERIALS		
D.O.	SM 4500-O G	Electrode	Ignitability of Solids	SW-846 1030	Burn Rate
pH	SM 4500-H+B	Electrometric	Reactivity	SW-846 7.3	HCN, HS Release
Temperature	SM 2550 B	Thermometric	Cyanide	SW-846 9013	Extraction, Oils and Solids
рН	SW-846 9040B	Aqueous, Electrometric	EOX	SW-846 9023	Extraction
ORP	SM-2580 B	Electrode	Sulfides-extractable	SW-846 9031	Water extraction, Distillation
ASTM			O & G Sludge HEM	SW-846 9071	Extraction and Gravimetric
Specific Gravity	ASTM D-1429	Erlenmeyer Flask	Free Liquid	SW-846 9095	Flow-through Paint Filtration (obs)
Sulfur Analysis	ASTM D-1552	Infrared Spectrometry	Fingerprint Analysis	SW-846 8015B	GC/FID
Total Organic Matter	ASTM D-2974	Organic Content	pH	SW-846 9045C	pH, soil and waste

2 of 2

REPORTING LIMIT DEFINITIONS

RL = Reporting Limit

PQL = Practical Quantitation Limit

MDL = Method Detection Limit

CRQL= Contract Required Quantitation Limit

For Clean Water Act and SW846 Organic methods, the RL = PQL. The PQL is determined by the concentration of the lowest standard in the calibration curve.

For Clean Water Act Metals method, the RL = PQL. The PQL is determined by the concentration of the lowest standard in the calibration curve.

For Clean Water Act and SW846 Wet Chemistry methods, the RL = PQL. The PQL is defined as a value 3 to 5 times the MDL.

CLP Organics and Inorganics reported to CRQL.

Veritech Report Of Analysis

0.029

0.029

0.029

0.029

0.029

0.029

0.029

0.029

0.029

0.029

mg/kg

ND

Lab#: AC43958-001 Collection Date: 4/13/2009 Sample ID: B-2 DF TestGroup/Analyte Units RL % Solids SM2540G

Result

% Solids percent 85 Mercury (Soil/Waste) 7471A Mercury 167 mg/kg 0.098 ND Organochlorine Pesticides 8081 mg/kg 0.0059 ND Alpha-BHC mg/kg 0.0012 ND beta-BHC 0.0012 mg/kg ND Chlordane 0.012 ND mg/kg delta-BHC mg/kg 0.0059 ND Dieldrin 0.0012 mg/kg ND 0.0059 Endosulfan I mg/kg ND Endosulfan II 0.0059 ND mg/kg Endosulfan Sulfate ma/ka 0.0059 ND Endrin mg/kg 0.0059 ND Endrin Aldehyde 0.0059 mg/kg ND 0.0059 Endrin Ketone ND mg/kg gamma-BHC 0.0012 ND mg/kg Heptachlor 0.0059 ND mg/kg Heptachlor Epoxide mg/kg 0.0059 ND Methoxychlor 0.0059 ND mg/kg p,p'-DDD 0.0029 ND ma/ka p,p'-DDE mg/kg 0.0029 ND p,p'-DDT mg/kg 0.0029 ND Toxaphene 0.029 ND mg/kg

Lab#: AC43958-001 Sample ID: B-2

Collection Date: 4/13/2009

TestGroup/Analyte DF Units RL Result Semivolatile Organics + 25 (8270) :TotalSemiVolatileTic mg/kg NΑ 95J 0.078 1.2.4-Trichlorobenzene mg/kg ND 0.078 ND 1,2-Diphenylhydrazine mg/kg 0.078 2.4.5-Trichlorophenol ND mg/kg 2,4,6-Trichlorophenol mg/kg 0.078 ND 2,4-Dichlorophenol 0.078 ND mg/kg 2,4-Dimethylphenol mg/kg 0.078 ND 2,4-Dinitrophenol ND mg/kg 0.39 2.4-Dinitrotoluene 0.078 ND mg/kg 2,6-Dinitrotoluene 0.078 ND mg/kg 2-Chloronaphthalene mg/kg 0.078 ND ND 2-Chlorophenol mg/kg 0.078 2-Methylnaphthalene 0.078 ND mg/kg 2-Methylphenol 0.078 ND ma/ka 2-Nitroaniline mg/kg 0.078 ND 2-Nitrophenol mg/kg 0.078 ND 3&4-Methylphenol 0.078 ND mg/kg 3,3'-Dichlorobenzidine 0.078 ND mg/kg 3-Nitroaniline 0.078 ND mg/kg 4.6-Dinitro-2-methylphenol mg/kg 0.39 ND 4-Bromophenyl-phenylether 0.078 ND mg/kg 4-Chloro-3-methylphenol 0.078 ND ma/ka 4-Chloroaniline mg/kg 0.078 ND 4-Chlorophenyl-phenylether mg/kg 0.078 ND 4-Nitroaniline 0.078 ND mg/kg 4-Nitrophenol 0.078 ND mg/kg Acenaphthene 0.078 ND mg/kg Acenaphthylene mg/kg 0.078 ND mg/kg 0.078 ND Anthracene 0.078 ND mg/kg Benzidine 0.39 ND mg/kg Benzo[a]anthracene 0.078 0.087 mg/kg Benzo[a]pyrene mg/kg 0.078 0.082 Benzo[b]fluoranthene mg/kg 0.078 0.12 Benzo[g,h,i]perylene mg/kg 0.078 ND Benzo[k]fluoranthene mg/kg 0.078 ND Benzoic acid 0.39 ND mg/kg bis(2-Chloroethoxy)methane mg/kg 0.078 ND bis(2-Chloroethyl)ether mg/kg 0.078 ND 0.078 ND bis(2-Chloroisopropyl)ether mg/kg bis(2-Ethylhexyl)phthalate 0.078 0.27 mg/kg Butylbenzylphthalate 0.078 ND mg/kg Carbazole mg/kg 0.078 ND Chrysene 0.078 0.087 mg/kg 0.078 Dibenzo[a,h]anthracene mg/kg ND Dibenzofuran 0.078 ND mg/kg Diethylphthalate ma/ka 0.078 ND Dimethylphthalate mg/kg 0.078 ND Di-n-butylphthalate 0.078 ND mg/kg Di-n-octylphthalate mg/kg 0.078 0.21 0.078 Fluoranthene mg/kg 0.13 0.078 ND Fluorene mg/kg Hexachlorobenzene 0.078 ND Hexachlorobutadiene 0.078 ND mg/kg Hexachlorocyclopentadiene mg/kg 0.39 ND 0.078 ND mg/kg Indeno[1,2,3-cd]pyrene 0.078 ND mg/kg Isophorone mg/kg 0.078 ND Naphthalene 0.078 ND mg/kg Nitrobenzene mg/kg 0.078 ND N-Nitrosodimethylamine mg/kg 0.078 ND N-Nitroso-di-n-propylamine 0.078 ND mg/kg N-Nitrosodiphenylamine 0.078 ND mg/kg Pentachiorophenol 0.39 ND mg/kg Phenanthrene mg/kg 0.078 ND Phenol mg/kg 0.078 ND 0.078 Pyrene mg/kg 0.14

PCB 8082

Aroclor (Total)

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

Aroclor-1262

Aroclor-1268

.0033

Lab#: AC43958-001 Collection Date: 4/13/2009 Sample ID: B-2

TestGroup/Analyte DF Units RL Result **TAL Metals 6010** 240 Aluminum 100 10000 mg/kg Antimony 100 mg/kg 2.4 ND 100 mg/kg 2.4 5.3 Arsenic Barium 100 mg/kg 12 52 0.71 ND Beryllium 100 mg/kg 0.71 ND Cadmium 100 mg/kg Calcium 100 mg/kg 1200 10000 5.9 19 Chromium 100 mg/kg 100 mg/kg 2.9 7.3 Cobalt 5.9 20 Copper 100 mg/kg 100 mg/kg 240 16000 Iron 5.9 Lead 100 mg/kg 64 100 590 3000 Magnesium mg/kg 260 Manganese 100 mg/kg 12 Nickel 100 mg/kg 5.9 24 590 1100 Potassium 100 mg/kg Selenium 100 mg/kg 2.1 2.8

100

100

100

100

100

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Lab#: AC43958-001 Collection Date: 4/13/2009

Sample ID: B-2

ND

450 ND

27

57

1.8

290

1.4

12

12

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.986	mg/kg	NA	ND
1,1,1-Trichloroethane	0.986	mg/kg	0.0058	ND
1,1,2,2-Tetrachloroethane	0.986	mg/kg	0.0058	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.986	mg/kg	0.0058	ND
1,1,2-Trichloroethane	0.986	mg/kg	0.0058	ND
1,1-Dichloroethane	0.986	mg/kg	0.0058	ND
1,1-Dichloroethene	0.986	mg/kg	0.0058	ND
1,2,3-Trichloropropane	0.986	mg/kg	0.0058	ND
1,2,4-Trimethylbenzene	0.986	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.986	mg/kg	0.0058	ND
1,2-Dichloroethane	0.986	mg/kg	0.0058	ND ND
1,2-Dichloropropane	0.986 0.986	mg/kg	0.0058 0.0012	ND ND
1,3,5-Trimethylbenzene	0.986	mg/kg mg/kg	0.0012	ND
1,3-Dichlorobenzene 1,3-Dichloropropane	0.986	mg/kg	0.0058	ND
1,4-Dichlorobenzene	0.986	mg/kg	0.0058	ND
1,4-Dioxane	0.986	mg/kg	0.29	ND
2-Butanone	0.986	mg/kg	0.0058	ND
2-Chloroethylvinylether	0.986	mg/kg	0.0058	ND
2-Hexanone	0.986	mg/kg	0.0058	ND
4-Isopropyltoluene	0.986	mg/kg	0.0012	ND
4-Methyl-2-pentanone	0.986	mg/kg	0.0058	ND
Acetone	0.986	mg/kg	0.029	ND
Acrolein	0.986	mg/kg	0.029	ND
Acrylonitrile	0.986	mg/kg	0.0058	ND
Benzene	0.986	mg/kg	0.0012	ND
Bromodichloromethane	0.986	mg/kg	0.0058	ND
Bromoform	0.986	mg/kg	0.0058	ND
Bromomethane	0.986	mg/kg	0.0058	ND
Carbon disulfide	0.986	mg/kg	0.0058	ND
Carbon tetrachloride	0.986	mg/kg	0.0058	ND
Chlorobenzene	0.986	mg/kg	0.0058	ND
Chloroethane	0.986	mg/kg	0.0058	ND
Chloroform	0.986	mg/kg	0.0058 0.0058	ND ND
Chloromethane	0.986 0.986	mg/kg mg/kg	0.0058	ND
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.986	mg/kg	0.0058	ND
Dibromochloromethane	0.986	mg/kg	0.0058	ND
Dichlorodifluoromethane	0.986	mg/kg	0.0058	ND
Ethylbenzene	0.986	mg/kg	0.0012	ND
Isopropylbenzene	0.986	mg/kg	0.0012	ND
m&p-Xylenes	0.986	mg/kg	0.0012	ND
Methylene chloride	0.986	mg/kg	0.0058	ND
Methyl-t-butyl ether	0.986	mg/kg	0.0012	ND
n-Butylbenzene	0.986	mg/kg	0.0012	ND
n-Propylbenzene	0.986	mg/kg	0.0012	ND
o-Xylene	0.986	mg/kg	0.0012	ND
sec-Butylbenzene	0.986	mg/kg	0.0012	ND
Styrene	0.986	mg/kg	0.0058	ND
t-Butyl Alcohol	0.986	mg/kg	0.029	ND
t-Butylbenzene	0.986	mg/kg	0.0012	ND
Tetrachloroethene	0.986 0.986	mg/kg	0.0058 0.0012	ND ND
Toluene	0.986	mg/kg mg/kg	0.0012	ND
trans-1,2-Dichloropethene	0.986	mg/kg mg/kg	0.0058	ND
trans-1,3-Dichloropropene Trichloroethene	0.986	mg/kg	0.0058	ND
Trichlorofluoromethane	0.986	mg/kg	0.0058	ND
Vinyl chloride	0.986	mg/kg	0.0058	ND
Xylenes (Total)	0.986	mg/kg	0.0012	ND

Silver

Zinc

Sodium

Thallium

Vanadium

Lab#: AC43958-002 Collection Date: 4/9/2009

Sample ID: B-3

Organochlorine Pesticides 8081 Aldrin 1 mg/kg 0.0 Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	
Mercury (Soil/Waste) 7471A Mercury 167 mg/kg 0.0 Organochlorine Pesticides 8081 Aldrin 1 mg/kg 0.0 Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	
Mercury 167 mg/kg 0.0 Organochlorine Pesticides 8081 Aldrin 1 mg/kg 0.0 Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	87
Organochlorine Pesticides 8081 Aldrin 1 mg/kg 0.0 Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	
Aldrin 1 mg/kg 0.0 Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	096 ND
Alpha-BHC 1 mg/kg 0.0 beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	
beta-BHC 1 mg/kg 0.0 Chlordane 1 mg/kg 0.0	0057 ND
Chlordane 1 mg/kg 0.0	0011 ND
	0011 ND
delta-BHC 1 mg/kg 0.0	011 ND
	0057 ND
Dieldrin 1 mg/kg 0.0	0011 ND
Endosulfan I 1 mg/kg 0.0	0057 ND
Endosulfan II 1 mg/kg 0.0	0057 ND
Endosulfan Sulfate 1 mg/kg 0.0	0057 ND
Endrin 1 mg/kg 0.0	0057 ND
Endrin Aldehyde 1 mg/kg 0.0	0057 ND
Endnn Ketone 1 mg/kg 0.0	0057 ND
gamma-BHC 1 mg/kg 0.0	0011 ND
Heptachlor 1 mg/kg 0.0	0057 ND
Heptachlor Epoxide 1 mg/kg 0.0	0057 ND
Methoxychlor 1 mg/kg 0.0	0057 ND
p,p'-DDD 1 mg/kg 0.0	0029 ND
p,p'-DDE 1 mg/kg 0.6	0029 ND
p,p'-DDT 1 mg/kg 0.0	0029 ND
Toxaphene 1 mg/kg 0.0	029 ND
PCB 8082	
Aroclor (Total) 1 mg/kg 0.6	029 ND
Aroclor-1016 1 mg/kg 0.6	029 ND
Aroclor-1221 1 mg/kg 0.6	029 ND
Aroclor-1232 1 mg/kg 0.6	029 ND
Aroclor-1242 1 mg/kg 0.6	029 ND
Aroclor-1248 1 mg/kg 0.	029 ND
Aroclor-1254 1 mg/kg 0.	029 ND
Aroclor-1260 1 mg/kg 0.	029 ND
Aroclor-1262 1 mg/kg 0.	029 ND
Aroclor-1268 1 mg/kg 0.	029 ND

Collection Date: 4/9/2009 Lab#: AC43958-002

TestGroup/Analyte	DF	Units	RL	Result
	E (9270)			
Semivolatile Organics + 2 :TotalSemiVolatileTic	.5 (0270) 1	mg/kg	NA	53J
1,2,4-Trichlorobenzene	1	mg/kg	0.077	ND
1,2-Diphenylhydrazine	1	mg/kg	0.077	ND
2,4,5-Trichlorophenol	1	mg/kg	0.077	ND
2,4,6-Trichlorophenol	1	mg/kg	0.077	ND ND
2,4-Dichlorophenol 2,4-Dimethylphenol	1	mg/kg mg/kg	0.077 0.077	ND
2,4-Dinitrophenol	1	mg/kg	0.38	ND
2,4-Dinitrotoluene	1	mg/kg	0.077	ND
2,6-Dinitrotoluene	1	mg/kg	0.077	ND
2-Chloronaphthalene	1	mg/kg	0.077	ND
2-Chlorophenol	1 1	mg/kg	0.077 0.077	ND ND
2-Methylnaphthalene 2-Methylphenol	1	mg/kg mg/kg	0.077	ND
2-Nitroaniline	1	mg/kg	0.077	ND
2-Nitrophenol	1	mg/kg	0.077	ND
3&4-Methylphenol	1	mg/kg	0.077	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.077	ND
3-Nitroaniline	1	mg/kg	0.077	ND
4,6-Dinitro-2-methylphenol	1 1	mg/kg	0.3 8 0.077	ND ND
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	1	mg/kg mg/kg	0.077	ND
4-Chloroaniline	1	mg/kg	0.077	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.077	ND
4-Nitroaniline	1	mg/kg	0.077	ND
4-Nitrophenol	1	mg/kg	0.077	ND
Acenaphthene	1	mg/kg	0.077	ND
Acenaphthylene	1 1	mg/kg	0.077	ND ND
Aniline Anthracene	1	mg/kg mg/kg	0.077 0.077	ND
Benzidine	1	mg/kg	0.38	ND
Benzo[a]anthracene	1	mg/kg	0.077	ND
Benzo[a]pyrene	1	mg/kg	0.077	ND
Benzo[b]fluoranthene	1	mg/kg	0.077	ND
Benzo[g,h,i]perylene	1	mg/kg	0.077	ND
Benzo[k]fluoranthene	1 1	mg/kg mg/kg	0.077 0.38	ND ND
Benzoic acid bis(2-Chloroethoxy)methane	1	mg/kg	0.38	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.077	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.077	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.077	ND
Butylbenzylphthalate	1	mg/kg	0.077	ND
Carbazole	1	mg/kg	0.077 0.077	ND ND
Chrysene Dibearels bloothrasens	1 1	mg/kg mg/kg	0.077	ND
Dibenzo[a,h]anthracene Dibenzofuran	1	mg/kg	0.077	ND
Diethylphthalate	1	mg/kg	0.077	ND
Dimethylphthalate	1	mg/kg	0.077	ND
Di-n-butylphthalate	1	mg/kg	0.077	ND
Di-n-octylphthalate	1	mg/kg	0.077	ND
Fluoranthene	1 1	mg/kg	0.077	ND ND
Fluorene Hexachlorobenzene	1	mg/kg mg/kg	0.077 0.077	ND
Hexachlorobutadiene	1	mg/kg	0.077	ND
Hexachlorocyclopentadiene	1	mg/kg	0.38	ND
Hexachloroethane	1	mg/kg	0.077	ND
Indeno[1,2,3-cd]pyrene	1	mg/kg	0.077	ND
Isophorone	1	mg/kg	0.077	ND
Naphthalene	1 1	mg/kg	0.077	ND ND
Nitrobenzene N-Nitrosodimethylamine	1	mg/kg mg/kg	0.077 0.077	ND
N-Nitroso-di-n-propylamine	1	mg/kg	0.077	ND
N-Nitrosodiphenylamine	1	mg/kg	0.077	ND
Pentachlorophenol	1	mg/kg	0.38	ND
Phenanthrene	1	mg/kg	0.077	ND
Phenol	1	mg/kg	0.077	ND
Pyrene	1	mg/kg	0.077	ND

Lab#: AC43958-002 Collection Date: 4/9/2009

Sample ID: B-3

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	230	7400
Antimony	100	mg/kg	2.3	ND
Arsenic	100	mg/kg	2.3	4.0
Barium	100	mg/kg	11	45
Beryllium	100	mg/kg	0.69	ND
Cadmium	100	mg/kg	0.69	ND
Calcium	100	mg/kg	1100	2600
Chromium	100	mg/kg	5.7	15
Cobalt	100	mg/kg	2.9	9.6
Copper	100	mg/kg	5.7	54
Iron	100	mg/kg	230	20000
Lead	100	mg/kg	5.7	18
Magnesium	100	mg/kg	570	3500
Manganese	100	mg/kg	11	460
Nickel	100	mg/kg	5.7	24
Potassium	100	mg/kg	570	1200
Selenium	100	mg/kg	2.1	4.1
Silver	100	mg/kg	1.7	ND
Sodium	100	mg/kg	290	1200
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	11	28
Zinc	100	mg/kg	11	44

Collection Date: 4/9/2009 Lab#: AC43958-002

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.984	mg/kg	NA	ND
1,1,1-Trichloroethane	0.984	mg/kg	0.0057	ND
1,1,2,2-Tetrachloroethane	0.984	mg/kg	0.0057	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.984	mg/kg	0.0057	ND
1,1,2-Trichloroethane	0.984	mg/kg	0.0057	ND
1,1-Dichloroethane	0.984	mg/kg	0.0057	ND
1,1-Dichloroethene	0.984	mg/kg	0.0057	ND
1,2,3-Trichloropropane	0.984	mg/kg	0.0057	ND
1,2,4-Trimethylbenzene	0.984	mg/kg	0.0011	ND
1,2-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,2-Dichloroethane	0.984	mg/kg	0.0057	ND
1,2-Dichloropropane	0.984	mg/kg	0.0057	ND
1,3,5-Trimethylbenzene	0.984	mg/kg	0.0011	ND
1,3-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,3-Dichloropropane	0.984	mg/kg	0.0057	ND
1,4-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,4-Dioxane	0.984	mg/kg	0.28	ND
2-Butanone	0.984	mg/kg	0.0057	ND
2-Chloroethylvinylether	0.984	mg/kg	0.0057	ND
2-Hexanone	0.984	mg/kg	0.0057	ND
4-Isopropyltoluene	0.984	mg/kg	0.0011	ND
4-Methyl-2-pentanone	0.984	mg/kg	0.0057	ND
Acetone	0.984	mg/kg	0.028	ND
Acrolein	0.984	mg/kg	0.028	ND
Acrylonitrile	0.984	mg/kg	0.0057	ND
Benzene	0.984	mg/kg	0.0011	ND
Bromodichloromethane	0.984	mg/kg	0.0057	ND
Bromoform	0.984	mg/kg	0.0057	ND
Bromomethane	0.984	mg/kg	0.0057	ND
Carbon disulfide	0.984	mg/kg	0.0057	ND ND
Carbon tetrachloride	0.984	mg/kg	0.0057	ND
Chlorobenzene	0.984	mg/kg	0.0057	ND ND
Chloroethane	0.984	mg/kg	0.0057 0.0057	ND ND
Chloroform	0.984 0.984	mg/kg mg/kg	0.0057	ND
Chloromethane	0.984	mg/kg	0.0057	ND
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.984	mg/kg	0.0057	ND
Dibromochloromethane	0.984	mg/kg	0.0057	ND
Dichlorodifluoromethane	0.984	mg/kg	0.0057	ND
Ethylbenzene	0.984	mg/kg	0.0011	ND
Isopropylbenzene	0.984	mg/kg	0.0011	ND
m&p-Xylenes	0.984	mg/kg	0.0011	ND
Methylene chloride	0.984	mg/kg	0.0057	ND
Methyl-t-butyl ether	0.984	mg/kg	0.0011	ND
n-Butylbenzene	0.984	mg/kg	0.0011	ND
n-Propylbenzene	0.984	mg/kg	0.0011	ND
o-Xylene	0.984	mg/kg	0.0011	ND
sec-Butylbenzene	0.984	mg/kg	0.0011	ND
Styrene	0.984	mg/kg	0.0057	ND
t-Butyl Alcohol	0.984	mg/kg	0.028	ND
t-Butylbenzene	0.984	mg/kg	0.0011	ND
Tetrachloroethene	0.984	mg/kg	0.0057	ND
Toluene	0.984	mg/kg	0.0011	ND
trans-1,2-Dichloroethene	0.984	mg/kg	0.0057	ND
trans-1,3-Dichloropropene	0.984	mg/kg	0.0057	ND
Trichloroethene	0.984	mg/kg	0.0057	ND
Trichlorofluoromethane	0.984	mg/kg	0.0057	ND
Vinyl chloride	0.984	mg/kg	0.0057	ND
Xylenes (Total)	0.984	mg/kg	0.0011	ND
,				

.0036

Lab#: AC43958-003 Collection Date: 4/9/2009

Sample ID: B-6

TestGroup/Analyte DF Units RL Result % Solids SM2540G % Solids 1 percent 82 Mercury (Soil/Waste) 7471A 167 0.10 Mercury ND mg/kg Organochlorine Pesticides 8081 Aldrin mg/kg 0.0061 ND Alpha-BHC 0.0012 ND mg/kg beta-BHC 0.0012 mg/kg ND Chlordane 0.012 ND mg/kg delta-BHC 0.0061 ND mg/kg Dieldrin mg/kg 0.0012 ND Endosulfan I 0.0061 ND mg/kg Endosulfan II 0.0061 ND mg/kg Endosulfan Sulfate 0.0061 ND mg/kg 0.0061 ND Endrin mg/kg Endrin Aldehyde mg/kg 0.0061 ND Endrin Ketone 0.0061 ND mg/kg gamma-BHC 0.0012 ND mg/kg Heptachlor 0.0061 ND mg/kg Heptachlor Epoxide 0.0061 ND mg/kg 0.0061 Methoxychlor mg/kg ND p,p'-DDD 0.0030 ND mg/kg p.p'-DDE 0.0030 mg/kg ND p,p'-DDT mg/kg 0.0030 ND Toxaphene mg/kg 0.030 ND **PCB 8082** 0.03 ND Arocior (Total) mg/kg Aroclor-1016 mg/kg 0.030 ND Aroclor-1221 mg/kg 0.030 ND Aroclor-1232 mg/kg 0.030 ND Aroclor-1242 0.030 ND mg/kg Aroclor-1248 0.030 ND mg/kg Aroclor-1254 mg/kg 0.030 ND Aroclor-1260 0.030 ND mg/kg Aroclor-1262 0.030 mg/kg ND Aroclor-1268 mg/kg 0.030 ND

Lab#: AC43958-003 Collection Date: 4/9/2009

Sample ID: B-6					
TestGroup/Analyte	DF	Units	RL	Result	
Semivolatile Organics + 2	25 (8270)				
:TotalSemiVolatileTic	1	mg/kg	NA	89J	
1,2,4-Trichlorobenzene	1	mg/kg	0.081	ND	
1,2-Diphenylhydrazine	1	mg/kg	0.081	ND	
2,4,5-Trichlorophenol	1	mg/kg	0.081	ND	
2,4,6-Trichlorophenol	1	mg/kg	0.081	ND	
2,4-Dichlorophenol 2,4-Dimethylphenol	1 1	mg/kg mg/kg	0.081 0.081	ND ND	
2,4-Dinitrophenol	1	mg/kg	0.41	ND	
2.4-Dinitrotoluene	1	mg/kg	0.081	ND	
2,6-Dinitrotoluene	1	mg/kg	0.081	ND	
2-Chloronaphthalene	1	mg/kg	0.081	ND	
2-Chlorophenol	1	mg/kg	0.081	ND	
2-Methylnaphthalene	1	mg/kg	0.081	ND	
2-Methylphenol	1	mg/kg	0.081	ND	
2-Nitroaniline	1 1	mg/kg	0.081	ND	
2-Nitrophenol 3&4-Methylphenol	1	mg/kg mg/kg	0.081 0.081	ND ND	
3,3'-Dichlorobenzidine	1	mg/kg	0.081	ND	
3-Nitroaniline	1	mg/kg	0.081	ND	
4,6-Dinitro-2-methylphenol	1	mg/kg	0.41	ND	
4-Bromophenyl-phenylether	1	mg/kg	0.081	ND	
4-Chloro-3-methylphenol	1	mg/kg	0.081	ND	
4-Chloroaniline	1	mg/kg	0.081	ND	
4-Chlorophenyl-phenylether	1	mg/kg	0.081	ND	
4-Nitroaniline	1	mg/kg	0.081	ND	
4-Nitrophenol	1	mg/kg	0.081	ND	
Acenaphthene Acenaphthylene	1	mg/kg mg/kg	0.081 0.081	ND ND	
Aniline	1	mg/kg	0.081	ND	
Anthracene	1	mg/kg	0.081	ND	
Benzidine	1	mg/kg	0.41	ND	
Benzo(a)anthracene	1	mg/kg	0.081	ND	
Benzo[a]pyrene	1	mg/kg	0.081	ND	
Benzo[b]fluoranthene	1	mg/kg	0.081	ND	
Benzo[g,h,i]perylene	1	mg/kg	0.081	ND	
Benzo[k]fluoranthene	1	mg/kg	0.081	ND	
Benzoic acid bis(2-Chloroethoxy)methane	1 1	mg/kg mg/kg	0.41 0.081	ND ND	
bis(2-Chloroethyl)ether	1	mg/kg	0.081	ND	
bis(2-Chloroisopropyl)ether	1	mg/kg	0.081	ND	
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.081	ND	
Butylbenzylphthalate	1	mg/kg	0.081	ND	
Carbazole	1	mg/kg	0.081	ND	
Chrysene	1	mg/kg	0.081	ND	
Dibenzo[a,h]anthracene	1	mg/kg	0.081	ND	
Dibenzofuran	1	mg/kg	0.081	ND	
Diethylphthalate Dimethylphthalate	1 1	mg/kg mg/kg	0.081 0.081	ND ND	
Di-n-butylphthalate	1	mg/kg	0.081	ND	
Di-n-octylphthalate	1	mg/kg	0.081	ND	
Fluoranthene	1	mg/kg	0.081	ND	
Fluorene	1	mg/kg	0.081	ND	
Hexachlorobenzene	1	mg/kg	0.081	ND	
Hexachlorobutadiene	1	mg/kg	0.081	ND	
Hexachlorocyclopentadiene	1	mg/kg	0.41	ND	
Hexachloroethane	1	mg/kg	0.081	ND	
Indeno[1,2,3-cd]pyrene Isophorone	1 1	mg/kg	0.081 0.081	ND ND	
Naphthalene	1	mg/kg mg/kg	0.081	ND	
Nitrobenzene	1	mg/kg	0.081	ND	
N-Nitrosodimethylamine	1	mg/kg	0.081	ND	
N-Nitroso-di-n-propylamine	1	mg/kg	0.081	ND	
N-Nitrosodiphenylamine	1	mg/kg	0.081	ND	
Pentachlorophenol	1	mg/kg	0.41	ND	
Phenanthrene	1	mg/kg	0.081	ND	
Phenol	1	mg/kg	0.081	ND	
Py ren e	1	mg/kg	0.081	0.095	

-0037

Lab#: AC43958-003 Collection Date: 4/9/2009

Sample ID: B-6

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	4100
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	4.1
Barium	100	mg/kg	12	18
Beryllium	100	mg/kg	0.73	ND
Cadmium	100	mg/kg	0.73	ND
Calcium	100	mg/kg	1200	1500
Chromium	100	mg/kg	6.1	11
Cobalt	100	mg/kg	3.0	4.6
Copper	100	mg/kg	6.1	8.8
Iron	100	mg/kg	240	9600
Lead	100	mg/kg	6.1	11
Magnesium	100	mg/kg	610	2100
Manganese	100	mg/kg	12	130
Nickel	100	mg/kg	6.1	12
Potassium	100	mg/kg	610	1200
Selenium	100	mg/kg	2.2	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	ND
Thallium	100	mg/kg	1.5	ND
Vanadium	100	mg/kg	12	13
Zinc	100	mg/kg	12	34

Lab#: AC43958-003 Collection Date: 4/9/2009

Sample ID. B-0				
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.98	mg/kg	NA	0.22J
1,1,1-Trichloroethane	0.98	mg/kg	0.0060	ND
1,1,2,2-Tetrachloroethane	0.98	mg/kg	0.0060	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.98	mg/kg	0.0060	ND
1,1,2-Trichloroethane	0.98	mg/kg	0.0060	ND
1,1-Dichloroethane	0.98	mg/kg	0.0060	ND
1,1-Dichloroethene	0.98	mg/kg	0.0060	ND
1,2,3-Trichloropropane	0.98	mg/kg	0.0060	ND
1,2,4-Trimethylbenzene	0.98	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.98	mg/kg	0.0060	ND
1,2-Dichloroethane	0.98	mg/kg	0.0060	ND
1,2-Dichloropropane	0.98	mg/kg	0.0060	ND
1,3,5-Trimethylbenzene	0.98	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.98	mg/kg	0.0060	ND ND
1,3-Dichloropropane	0.98 0.98	mg/kg	0.0060 0.0060	ND
1,4-Dichlorobenzene 1,4-Dioxane	0.98	mg/kg	0.30	ND
2-Butanone	0.98	mg/kg mg/kg	0.0060	ND
2-Chloroethylvinylether	0.98	mg/kg	0.0060	ND
2-Hexanone	0.98	mg/kg	0.0060	ND
4-Isopropyltoluene	0.98	mg/kg	0.0012	0.023
4-Methyl-2-pentanone	0.98	mg/kg	0.0060	ND
Acetone	0.98	mg/kg	0.030	ND
Acrolein	0.98	mg/kg	0.030	ND
Acrylonitrile	0.98	mg/kg	0.0060	ND
Benzene	0.98	mg/kg	0.0012	ND
Bromodichloromethane	0.98	mg/kg	0.0060	ND
Bromoform	0.98	mg/kg	0.0060	ND
Bromomethane	0.98	mg/kg	0.0060	ND
Carbon disulfide	0.98	mg/kg	0.0060	ND
Carbon tetrachloride	0.98	mg/kg	0.0060	ND
Chlorobenzene	0.98	mg/kg	0.0060	ND
Chloroethane	0.98	mg/kg	0.0060	ND
Chloroform	0.98	mg/kg	0.0060	ND
Chloromethane	0.98	mg/kg	0.0060	ND
cis-1,2-Dichloroethene	0.98	mg/kg	0.0060	ND
cis-1,3-Dichloropropene	0.98	mg/kg	0.0060	ND ND
Dibromochloromethane Dichlorodifluoromethane	0.98 0.98	mg/kg	0.0060 0.0060	ND
Ethylbenzene	0.98	mg/kg mg/kg	0.0000	ND
Isopropylbenzene	0.98	mg/kg	0.0012	ND
m&p-Xylenes	0.98	mg/kg	0.0012	ND
Methylene chloride	0.98	mg/kg	0.0060	0.0061
Methyl-t-butyl ether	0.98	mg/kg	0.0012	ND
n-Butylbenzene	0.98	mg/kg	0.0012	ND
n-Propylbenzene	0.98	mg/kg	0.0012	ND
o-Xylene	0.98	mg/kg	0.0012	ND
sec-Butylbenzene	0.98	mg/kg	0.0012	ND
Styrene	0.98	mg/kg	0.0060	ND
t-Butyl Alcohol	0.98	mg/kg	0.030	ND
t-Butylbenzene	0.98	mg/kg	0.0012	ND
Tetrachloroethene	0.98	mg/kg	0.0060	ND
Toluene	0.98	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.98	mg/kg	0.0060	ND
trans-1,3-Dichloropropene	0.98	mg/kg	0.0060	ND
Trichloroethene	0.98	mg/kg	0.0060	ND
Trichlorofluoromethane	0.98	mg/kg	0.0060	ND
Vinyl chloride Xylenes (Total)	0.98 0.98	mg/kg mg/kg	0.0060 0.0012	ND ND
Affector (Total)	0.50	mg/kg	0.0012	110

.0038

Lab#: AC43958-004 Collection Date: 4/10/2009 Sample ID: B-7

TestGroup/Analyte DF Units RL Result % Solids SM2540G % Solids 1 percent 76 Mercury (Soil/Waste) 7471A 167 Mercury 0.11 mg/kg 2.6 **Organochlorine Pesticides 8081** mg/kg 0.0066 ND Alpha-BHC 0.0013 ND mg/kg beta-BHC mg/kg 0.0013 ND Chlordane 0.013 ND mg/kg delta-BHC 0.0066 ND mg/kg Dieldrin mg/kg 0.0013 ND Endosulfan I 0.0066 ND mg/kg Endosulfan II mg/kg 0.0066 ND Endosulfan Sulfate 0.0066 ND mg/kg Endrin mg/kg 0.0066 ND Endrin Aldehyde mg/kg 0.0066 ND Endrin Ketone 0.0066 ND mg/kg gamma-BHC 0.0013 ND mg/kg Heptachlor 0.0066 ND mg/kg Heptachlor Epoxide 0.0066 ND mg/kg Methoxychlor mg/kg 0.0066 ND p,p'-DDD 0.0033 ND mg/kg p,p'-DDE mg/kg 0.0033 ND p,p'-DDT mg/kg 0.0033 ND Toxaphene 0.033 ND mg/kg **PCB 8082** 0.033 Aroclor (Total) mg/kg ND Aroclor-1016 mg/kg 0.033 ND Aroclor-1221 0.033 ND mg/kg Aroclor-1232 mg/kg 0.033 ND Aroclor-1242 0.033 ND mg/kg Aroclor-1248 mg/kg 0.033 ND Aroclor-1254 mg/kg 0.033 ND Aroclor-1260 0.033 ND mg/kg Aroclor-1262 mg/kg 0.033 ND

mg/kg

0.033

ND

Lab#: AC43958-004 Collection Date: 4/10/2009

Sample ID: B-7

Cumpic ib. B-7	Campic ID. D-1					
TestGroup/Analyte	DF	Units	RL	Result		
Semivolatile Organics + 2	5 (8270)					
:TotalSemiVolatileTic	1	mg/kg	NA 0.000	100J		
1,2,4-Trichlorobenzene 1,2-Diphenylhydrazine	1 1	mg/kg mg/kg	0.088 0.088	ND ND		
2,4,5-Trichlorophenol	1	mg/kg	0.088	ND		
2,4,6-Trichlorophenol	1	mg/kg	0.088	ND		
2,4-Dichlorophenol	1	mg/kg	0.088	ND		
2,4-Dimethylphenol	1 1	mg/kg	0.088 0.44	ND ND		
2,4-Dinitrophenol 2,4-Dinitrotoluene	1	mg/kg mg/kg	0.088	ND		
2,6-Dinitrotoluene	1	mg/kg	0.088	ND		
2-Chloronaphthalene	1	mg/kg	0.088	ND		
2-Chlorophenol	1	mg/kg	0.088	ND		
2-Methylnaphthalene 2-Methylphenol	1 1	mg/kg	0.088 0.088	ND ND		
2-Nitroaniline	1	mg/kg mg/kg	0.088	ND		
2-Nitrophenol	1	mg/kg	0.088	ND		
3&4-Methylphenol	1	mg/kg	0.088	ND		
3,3'-Dichlorobenzidine	1	mg/kg	0.088	ND		
3-Nitroaniline 4,6-Dinitro-2-methylphenol	1 1	mg/kg mg/kg	0.088 0.44	ND ND		
4-Bromophenyl-phenylether	1	mg/kg	0.088	ND		
4-Chloro-3-methylphenol	1	mg/kg	0.088	ND		
4-Chloroaniline	1	mg/kg	0.088	ND		
4-Chlorophenyl-phenylether	1	mg/kg	0.088	ND		
4-Nitroaniline 4-Nitrophenol	1 1	mg/kg mg/kg	0.088 0.088	ND ND		
Acenaphthene	1	mg/kg	0.088	0.098		
Acenaphthylene	1	mg/kg	0.088	0.19		
Aniline	1	mg/kg	0.088	ND		
Anthracene	1	mg/kg	0.088	0.42		
Benzioleathreese	1 1	mg/kg	0.44	ND		
Benzo[a]anthracene Benzo[a]pyrene	1	mg/kg mg/kg	0.088 0.088	2.0 1.8		
Benzo[b]fluoranthene	1	mg/kg	0.088	2.2		
Benzo[g,h,i]perylene	1	mg/kg	0.088	1.2		
Benzo[k]fluoranthene	1	mg/kg	0.088	0.76		
Benzoic acid	1	mg/kg	0.44	ND		
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	1 1	mg/kg mg/kg	0.088 0.088	ND ND		
bis(2-Chloroisopropyl)ether	1	mg/kg	0.088	ND		
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.088	0.17		
Butylbenzylphthalate	1	mg/kg	0.088	ND		
Carbazole	1	mg/kg	0.088	0.088		
Chrysene Dibenzo[a,h]anthracene	1	mg/kg mg/kg	0.088 0.088	2.0 0.30		
Dibenzofuran	1	mg/kg	0.088	ND		
Diethylphthalate	1	mg/kg	0.088	ND		
Dimethylphthalate	1	mg/kg	0.088	ND		
Di-n-butylphthalate	1	mg/kg	0.088	ND		
Di-n-octylphthalate Fluoranthene	1	mg/kg	0.088 0.088	0.14 3.3		
Fluorene	1	mg/kg mg/kg	0.088	0.12		
Hexachlorobenzene	1	mg/kg	0.088	ND		
Hexachlorobutadiene	1	mg/kg	0.088	ND		
Hexachlorocyclopentadiene	1	mg/kg	0.44	ND		
Hexachloroethane	1 1	mg/kg	0.088	ND		
Indeno[1,2,3-cd]pyrene Isophorone	1	mg/kg mg/kg	0.088 0.088	1.0 ND		
Naphthalene	1	mg/kg	0.088	ND		
Nitrobenzene	1	mg/kg	0.088	ND		
N-Nitrosodimethylamine	1	mg/kg	0.088	ND		
N-Nitroso-di-n-propylamine	1	mg/kg	0.088	ND		
N-Nitrosodiphenylamine Pentachlorophenol	1 1	mg/kg mg/kg	0.088 0.44	ND ND		
Phenanthrene	1	mg/kg	0.088	1.8		
Phenol	1	mg/kg	0.088	ND		
Pyrene	1	mg/kg	0.088	4.1		

Project #:

Aroclor-1268

Lab#: AC43958-004 Collection Date: 4/10/2009 Lab#: AC43958-004 Collection Date

Sample ID: B-7

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	260	7600
Antimony	100	mg/kg	2.6	ND
Arsenic	100	mg/kg	2.6	7.8
Barium	100	mg/kg	13	180
Beryllium	100	mg/kg	0.79	ND
Cadmium	100	mg/kg	0.79	ND
Calcium	100	mg/kg	1300	5400
Chromium	100	mg/kg	6.6	31
Cobalt	100	mg/kg	3.3	8.1
Copper	100	mg/kg	6.6	140
Iron	100	mg/kg	260	16000
Lead	100	mg/kg	6.6	1400
Magnesium	100	mg/kg	660	2500
Manganese	100	mg/kg	13	310
Nickel	100	mg/kg	6.6	25
Potassium	100	mg/kg	660	920
Selenium	100	mg/kg	2.4	4.1
Silver	100	mg/kg	2.0	ND
Sodium	100	mg/kg	330	ND
Thallium	100	mg/kg	1.6	ND
Vanadium	100	mg/kg	13	24
Zinc	100	mg/kg	13	270

Lab#: AC43958-004 Collection Date: 4/10/2009
Sample ID: B-7

Sample ID: B-7				2000
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.994	mg/kg	NA	ND
1.1.1-Trichloroethane	0.994	mg/kg	0.0065	ND
1,1,2,2-Tetrachloroethane	0.994	mg/kg	0.0065	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.994	mg/kg	0.0065	ND
1,1,2-Trichloroethane	0.994	mg/kg	0.0065	ND
1,1-Dichloroethane	0.994	mg/kg	0.0065	ND
1,1-Dichloroethene	0.994	mg/kg	0.0065	ND
1,2,3-Trichloropropane	0.994	mg/kg	0.0065	ND
1,2,4-Trimethylbenzene	0.994	mg/kg	0.0013	ND
1,2-Dichlorobenzene	0.994	mg/kg	0.0065	ND
1,2-Dichloroethane	0.994	mg/kg	0.0065	ND
1,2-Dichloropropane	0.994	mg/kg	0.0065	ND
1,3,5-Trimethylbenzene	0.994	mg/kg	0.0013	ND
1,3-Dichlorobenzene	0.994	mg/kg	0.0065	ND
1,3-Dichloropropane	0.994	mg/kg	0.0065	ND
1,4-Dichlorobenzene	0.994	mg/kg	0.0065	ND
1,4-Dioxane	0.994	mg/kg	0.33	ND
2-Butanone	0.994	mg/kg	0.0065	ND
2-Chloroethylvinylether	0.994	mg/kg	0.0065	ND
2-Hexanone	0.994	mg/kg	0.0065	ND
4-Isopropyltoluene	0.994	mg/kg	0.0013	ND
4-Methyl-2-pentanone	0.994	mg/kg	0.0065	ND
Acetone	0.994	mg/kg	0.033	ND
Acrolein	0.994	mg/kg	0.033	ND
Acrylonitrile	0.994	mg/kg	0.0065	ND
Benzene	0.994	mg/kg	0.0013	ND
Bromodichloromethane	0.994	mg/kg	0.0065	ND
Bromoform	0.994	mg/kg	0.0065	ND
Bromomethane	0.994	mg/kg	0.0065	ND
Carbon disulfide	0.994	mg/kg	0.0065	ND
Carbon tetrachloride	0.994	mg/kg	0.0065	ND
Chlorobenzene	0.994	mg/kg	0.0065	ND
Chloroethane	0.994	mg/kg	0.0065	ND
Chloroform	0.994	mg/kg	0.0065	0.010
Chloromethane	0.994	mg/kg	0.0065	ND
cis-1,2-Dichloroethene	0.994	mg/kg	0.0065	ND
cis-1,3-Dichloropropene	0.994	mg/kg	0.0065	ND
Dibromochloromethane	0.994	mg/kg	0.0065	ND
Dichlorodifluoromethane	0.994	mg/kg	0.0065	ND
Ethylbenzene	0.994	mg/kg	0.0013	ND
Isopropylbenzene	0.994	mg/kg	0.0013	ND
m&p-Xylenes	0.994	mg/kg	0.0013	ND
Methylene chloride	0.994	mg/kg	0.0065	ND
Methyl-t-butyl ether	0.994	mg/kg	0.0013	ND
n-Butylbenzene	0.994	mg/kg	0.0013	ND
n-Propylbenzene	0.994	mg/kg	0.0013	ND
o-Xylene	0.994	mg/kg	0.0013	ND
sec-Butylbenzene	0.994	mg/kg	0.0013	ND
Styrene	0.994	mg/kg	0.0065	ND
t-Butyl Alcohol	0.994	mg/kg	0.033	ND
t-Butylbenzene	0.994	mg/kg	0.0013	ND
Tetrachloroethene	0.994	mg/kg	0.0065	ND ND
Toluene	0.994	mg/kg	0.0013 0.0065	ND
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.994 0.994	mg/kg	0.0065	ND
trans-1,3-Dichloropropene	0.994	mg/kg	0.0065	ND

Trichloroethene

Vinyl chloride

Xylenes (Total)

Trichlorofluoromethane

0.994

0.994

0.994

0.994

mg/kg

mg/kg

mg/kg

mg/kg

0.0065

0.0065

0.0065

0.0013

ND

ND

ND

ND

0040

Collection Date: 4/10/2009 Lab#: AC43958-005 Collection Date: 4/10/2009 Lab#: AC43958-005 Sample ID: B-10 TestGroup/Analyte DF Units RL Result % Solids SM2540G % Solids 1 84 percent Mercury (Soil/Waste) 7471A 167 mg/kg 0.099 ND **Organochlorine Pesticides 8081** Aldrin mg/kg 0.0060 ND 0.0012 Alpha-BHC mg/kg ND beta-BHC 0.0012 ND mg/kg 0.012 Chlordane mg/kg ND delta-BHC mg/kg 0.0060 ND 0.0012 ND Dieldrin mg/kg 0.0060 Endosulfan I mg/kg ND 0.0060 ND Endosulfan II mg/kg Endosulfan Sulfate 0.0060 ND mg/kg Endrin mg/kg 0.0060 ND Endrin Aldehyde 0.0060 ND mg/kg Endrin Ketone mg/kg 0.0060 ND gamma-BHC 0.0012 ND mg/kg 0.0060 Heptachlor ND mg/kg Heptachlor Epoxide mg/kg 0.0060 ND 0.0060 ND Methoxychlor mg/kg 0.0030 ND p,p'-DDD mg/kg p,p'-DDE mg/kg 0.0030 ND p,p'-DDT 0.0030 ND mg/kg 0.030 Toxaphene mg/kg ND PCB 8082 Aroclor (Total) 0.03 ND mg/kg 0.030 ND Aroclor-1016 mg/kg Aroclor-1221 mg/kg 0.030 ND 0.030 ND Aroclor-1232 mg/kg Aroclor-1242 mg/kg 0.030 ND Aroclor-1248 mg/kg 0.030 ND 0.030 ND Aroclor-1254 mg/kg Aroclor-1260 mg/kg 0.030 ND 0.030 ND Aroclor-1262 mg/kg 0.030 ND Aroclor-1268 mg/kg

Sample ID: B-10				
TestGroup/Analyte	DF	Units	RL	Result
Semivolatile Organics + 25	5 (8270)			
:TotalSemiVolatileTic	1	mg/kg	NA	59J
1,2,4-Trichlorobenzene	1 1	mg/kg mg/kg	0.079 0.079	ND ND
1,2-Diphenylhydrazine 2,4,5-Trichlorophenol	1	mg/kg	0.079	ND
2,4,6-Trichlorophenol	1	mg/kg	0.079	ND
2,4-Dichlorophenol	1	mg/kg	0.079	ND
2,4-Dimethylphenol	1	mg/kg	0.079	ND
2,4-Dinitrophenol	1	mg/kg	0.40 0.079	ND ND
2,4-Dinitrotoluene 2,6-Dinitrotoluene	1 1	mg/kg mg/kg	0.079	ND
2-Chloronaphthalene	1	mg/kg	0.079	ND
2-Chlorophenol	. 1	mg/kg	0.079	ND
2-Methylnaphthalene	1	mg/kg	0.079	ND
2-Methylphenol	1	mg/kg	0.079	ND
2-Nitroaniline 2-Nitrophenol	1 1	mg/kg mg/kg	0.079 0.079	ND ND
2-Nitrophenol 3&4-Methylphenol	1	mg/kg	0.079	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.079	ND
3-Nitroaniline	1	mg/kg	0.079	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.40	ND
4-Bromophenyl-phenylether	1	mg/kg	0.079	ND
4-Chloro-3-methylphenol	1	mg/kg	0.079	ND ND
4-Chloroaniline 4-Chlorophenyl-phenylether	1 1	mg/kg mg/kg	0.079 0.079	ND
4-Nitroaniline	1	mg/kg	0.079	ND
4-Nitrophenol	1	mg/kg	0.079	ND
Acenaphthene	1	mg/kg	0.079	ND
Acenaphthylene	1	mg/kg	0.079	ND
Aniline	1	mg/kg	0.079	ND
Anthracene Benzidine	1 1	mg/kg mg/kg	0.079 0.40	ND ND
Benzo[a]anthracene	1	mg/kg	0.079	ND
Benzo[a]pyrene	1	mg/kg	0.079	ND
Benzo[b]fluoranthene	1	mg/kg	0.079	ND
Benzo[g,h,i]perylene	1	mg/kg	0.079	ND
Benzo[k]fluoranthene	1	mg/kg	0.079	ND
Benzoic acid bis(2-Chloroethoxy)methane	1 1	mg/kg mg/kg	0.40 0.079	ND ND
bis(2-Chloroethyl)ether	1	mg/kg	0.079	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.079	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.079	ND
Butylbenzylphthalate	1	mg/kg	0.079	ND
Carbazole	1	mg/kg	0.079	ND
Chrysene	1 1	mg/kg mg/kg	0.079 0.079	ND ND
Dibenzo[a,h]anthracene Dibenzofuran	1	mg/kg	0.079	ND
Diethylphthalate	1	mg/kg	0.079	ND
Dimethylphthalate	1	mg/kg	0.079	ND
Di-n-butylphthalate	1	mg/kg	0.079	ND
Di-n-octylphthalate	1	mg/kg	0.079	ND
Fluoranthene	1 1	mg/kg	0.079 0.079	ND ND
Fluorene Hexachlorobenzene	1	mg/kg mg/kg	0.079	ND
Hexachlorobutadiene	1	mg/kg	0.079	ND
Hexachlorocyclopentadiene	1	mg/kg	0.40	ND
Hexachloroethane	1	mg/kg	0.079	ND
Indeno[1,2,3-cd]pyrene	1	mg/kg	0.079	ND
Isophorone	1	mg/kg	0.079	ND
Naphthalene Nitrobenzene	1 1	mg/kg mg/kg	0.079 0.079	ND ND
N-Nitrosodimethylamine	1	mg/kg	0.079	ND
N-Nitroso-di-n-propylamine	1	mg/kg	0.079	ND
N-Nitrosodiphenylamine	1	mg/kg	0.079	ND
Pentachlorophenol	1	mg/kg	0.40	ND
Phenanthrene	1	mg/kg	0.079	ND
Phenol	1	mg/kg	0.079	ND

Pyrene

mg/kg

ND

0.079

Lab#: AC43958-005 Collection Date: 4/10/2009

Sample ID: B-10

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	11000
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	5.0
Barium	100	mg/kg	12	110
Beryllium	100	mg/kg	0.71	ND
Cadmium	100	mg/kg	0.71	ND
Calcium	100	mg/kg	1200	1400
Chromium	100	mg/kg	6.0	27
Cobalt	100	mg/kg	3.0	16
Copper	100	mg/kg	6.0	27
Iron	100	mg/kg	240	21000
Lead	100	mg/kg	6.0	59
Magnesium	100	mg/kg	600	6300
Manganese	100	mg/kg	12	1600
Nickel	100	mg/kg	6.0	61
Potassium	100	mg/kg	600	7100
Selenium	100	mg/kg	2.1	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	560
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	12	32
Zinc	100	mg/kg	12	100

Collection Date: 4/10/2009 Lab#: AC43958-005 Sample ID: B-10

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.996	mg/kg	NA	0.022J
1,1,1-Trichloroethane	0.996	mg/kg	0.0059	ND
1,1,2,2-Tetrachloroethane	0.996	mg/kg	0.0059	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.996	mg/kg	0.0059	ND
1,1,2-Trichloroethane	0.996	mg/kg	0.0059	ND
1,1-Dichloroethane	0.996	mg/kg	0.0059	ND
1,1-Dichloroethene	0.996	mg/kg	0.0059	ND
1,2,3-Trichloropropane	0.996	mg/kg	0.0059	ND
1,2,4-Trimethylbenzene	0.996	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,2-Dichloroethane	0.996	mg/kg	0.0059	ND
1,2-Dichloropropane	0.996	mg/kg	0.0059	ND
1,3,5-Trimethylbenzene	0.996	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,3-Dichloropropane	0.996	mg/kg	0.0059	ND
1,4-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,4-Dioxane	0.996	mg/kg	0.30	ND
2-Butanone	0.996	mg/kg	0.0059	ND
2-Chloroethylvinylether	0.996	mg/kg	0.0059	ND
2-Hexanone	0.996	mg/kg	0.0059	ND
4-Isopropyltoluene	0.996	mg/kg	0.0012	0.0018
4-Methyl-2-pentanone	0.996	mg/kg	0.0059	ND
Acetone	0.996	mg/kg	0.030	ND
Acrolein	0.996	mg/kg	0.030	ND
Acrylonitrile	0.996	mg/kg	0.0059	ND
Benzene	0.996	mg/kg	0.0012	ND
Bromodichloromethane	0.996	mg/kg	0.0059	ND
Bromoform	0.996	mg/kg	0.0059	ND
Bromomethane	0.996	mg/kg	0.0059	ND
Carbon disulfide	0.996	mg/kg	0.0059	ND
Carbon tetrachloride	0.996	mg/kg	0.0059	ND
Chlorobenzene	0.996	mg/kg	0.0059	ND
Chloroethane	0.996	mg/kg	0.0059	ND
Chloroform	0.996	mg/kg	0.0059	ND
Chloromethane	0.996	mg/kg	0.0059	ND
cis-1,2-Dichloroethene	0.996	mg/kg	0.0059	ND
cis-1,3-Dichloropropene	0.996	mg/kg	0.0059	ND
Dibromochloromethane	0.996	mg/kg	0.0059	ND
Dichlorodifluoromethane	0.996	mg/kg	0.0059	ND
Ethylbenzene	0.996	mg/kg	0.0012	ND
Isopropy!benzene	0.996	mg/kg	0.0012	ND
m&p-Xylenes	0.996	mg/kg	0.0012	ND
Methylene chloride	0.996	mg/kg	0.0059	ND
Methyl-t-butyl ether	0.996	mg/kg	0.0012	ND ND
n-Butylbenzene	0.996	mg/kg	0.0012	ND
n-Propylbenzene	0.996	mg/kg	0.0012	ND
o-Xylene	0.996	mg/kg	0.0012	
sec-Butylbenzene	0.996	mg/kg	0.0012	ND
Styrene	0.996	mg/kg	0.0059 0.030	ND ND
t-Butyl Alcohol	0.996	mg/kg	0.0012	ND
t-Butylbenzene	0.996	mg/kg	0.0012	ND ND
Tetrachloroethene	0.996 0.996	mg/kg mg/kg	0.0039	ND
Toluene	0.996	mg/kg mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.996	mg/kg mg/kg	0.0059	ND
trans-1,3-Dichloropropene Trichloroethene	0.996	mg/kg	0.0059	ND
Trichlorofluoromethane	0.996	mg/kg	0.0059	ND
manoronic mane	0.550	9/19	0,0009	ND

Vinyl chloride

Xylenes (Total)

0.996

0.996

mg/kg

mg/kg

0.0059

0.0012

ND

ND

0042

Lab#: AC43958-006 Collection Date: 4/13/2009 Lab#: AC43958-006 Collection Date: 4/13/2009 Sample ID: B-11 Sample ID: B-11 TestGroup/Analyte Units RL Result DF Units RL Result TestGroup/Analyte Semivolatile Organics + 25 (8270) % Solids SM2540G mg/kg NA 100J % Solids 1 percent 83 :TotalSemiVolatileTic 1,2,4-Trichlorobenzene mg/kg 0.24 ND Mercury (Soil/Waste) 7471A mg/kg 0.24 ND 1.2-Diphenylhydrazine 3 167 0.10 1.4 ma/ka Mercury ND 0.24 2,4,5-Trichlorophenol 3 mg/kg 0.24 ND 2,4,6-Trichlorophenol 3 mg/kg **Organochlorine Pesticides 8081** 2.4-Dichlorophenol 3 mg/kg 0.24 ND mg/kg 0.0060 ND 2,4-Dimethylphenol 3 mg/kg 0.24 ND Alpha-BHC 0.0012 ND ma/ka ND 3 1.2 ND 2.4-Dinitrophenol mg/kg beta-BHC mg/kg 0.0012 0.012 ND 2.4-Dinitrotoluene 3 mg/kg 0.24 ND Chlordane mg/kg 0.24 ND 2,6-Dinitrotoluene mg/kg 0.0060 ND delta-BHC mg/kg 0.24 ND 2-Chloronaphthalene 3 Dieldrin mg/kg 0.0012 ND mg/kg 2-Chlorophenol 3 0.24 ND Endosulfan I 0.0060 ND mg/kg ma/ka 3 mg/kg 0.24 ND 2-Methylnaphthalene Endosulfan II mg/kg 0.0060 ND 0.24 ND 0.0060 ND 2-Methylphenol 3 mg/kg Endosulfan Sulfate mg/kg 3 0.24 ND ND 2-Nitroaniline mg/kg Endrin ma/ka 0.0060 3 0.24 ND 2-Nitrophenol ma/ka Endrin Aldehyde mg/kg 0.0060 ND 0.0060 3&4-Methylphenol 3 mg/kg 0.24 ND ND Endrin Ketone mg/kg 0.24 ND 3,3'-Dichlorobenzidine 3 mg/kg gamma-BHC 0.0012 ND mg/kg ND 3 0.24 0.0060 ND 3-Nitroaniline mg/kg Heptachlor mg/kg 4,6-Dinitro-2-methylphenol 3 mg/kg 1.2 ND mg/ka 0.0060 ND Heptachlor Epoxide 3 0.24 ND 4-Bromophenyl-phenylether mg/kg Methoxychlor mg/kg 0.0060 ND 0.24 ND 0.0030 ND 4-Chioro-3-methylphenol 3 mg/kg p,p'-DDD mg/kg 0.24 ND 4-Chloroaniline 3 mg/kg p,p'-DDE mg/kg 0.0030 ND 0.24 ND p,p'-DDT 3 0.0030 ND 4-Chlorophenyl-phenylether mg/kg mg/kg 0.030 ND 4-Nitroaniline 3 mg/kg 0.24 ND Toxaphene ma/ka ND 4-Nitrophenol 3 mg/kg 0.24 **PCB 8082** 0.24 0.30 Acenaphthene 3 mg/kg 0.03 ND Aroclor (Total) mg/kg 3 0.24 ND Acenaphthylene mg/kg Aroclor-1016 0.030 ND mg/kg ND 3 ma/ka 0.24 Aniline 0.030 ND Aroclor-1221 mg/kg Anthracene 3 mg/kg 0.24 1.0 Aroclor-1232 mg/kg 0.030 ND ND 3 1.2 Benzidine mg/kg 0.030 ND Aroclor-1242 mg/kg 0.24 2.7 Benzo[a]anthracene 3 mg/kg 0.030 Aroclor-1248 mg/kg ND mg/kg 0.24 2.2 Benzofalpyrene Aroclor-1254 mg/kg 0.030 ND 0.24 2.9 Benzo[b]fluoranthene 3 mg/kg 0.030 ND Aroclor-1260 1 mg/kg 3 0.24 1.4 Benzo[g,h,i]perylene mg/kg Aroclor-1262 mg/kg 0.030 ND Benzo[k]fluoranthene 3 mg/kg 0.24 1.0 Aroclor-1268 mg/kg 0.030 ND 3 1.2 ND Benzoic acid mg/kg 3 0.24 ND bis(2-Chloroethoxy)methane mg/kg bis(2-Chloroethyl)ether 3 mg/kg 0.24 ND ND mg/kg 0.24 bis(2-Chloroisopropyl)ether 0.57 0.24 bis(2-Ethylhexyl)phthalate 3 mg/kg 3 0.24 ND Butylbenzylphthalate mg/kg 0.24 ND 3 mg/kg Carbazole Chrysene 3 mg/kg 0.24 2.5 3 0.24 0.43 Dibenzo[a,h]anthracene mg/kg Dibenzofurar 3 mg/kg 0.24 ND Diethylphthalate 3 mg/kg 0.24 ND 3 0.24 ND Dimethylphthalate mg/kg Di-n-butylphthalate 3 mg/kg 0.24 ND 3 mg/kg 0.24 0.56 Di-n-octylphthalate Fluoranthene 3 mg/kg 0.24 5.6 3 0.24 0.40 mg/kg Fluorene Hexachlorobenzene 3 mg/kg 0.24 ND 0.24 ND Hexachlorobutadiene mg/kg ND 3 1.2 Hexachlorocyclopentadiene ma/ka Hexachloroethane 3 mg/kg 0.24 ND 3 mg/kg 0.24 1.2 Indeno[1,2,3-cd]pyrene 0.24 ND Isophorone 3 mg/kg 3 0.24 ND Naphthalene mg/kg ND 0.24 3 mg/kg Nitrobenzene N-Nitrosodimethylamine 3 mg/kg 0.24 ND 3 0.24 ND N-Nitroso-di-n-propylamine mg/kg ND N-Nitrosodiphenylamine 3 mg/kg 0.24 1.2 ND Pentachlorophenol mg/kg

mg/kg

mg/kg

mg/kg

3

3

4.3

ND

5.3

0.24

0.24

0.24

RL = Reporting Limit

Phenanthrene

Pyrene

Lab#: AC43958-006 Collection Date: 4/13/2009

Sample ID: B-11

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	6000
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	6.2
Barium	100	mg/kg	12	96
Beryllium	100	mg/kg	0.72	ND
Cadmium	100	mg/kg	0.72	ND
Calcium	100	mg/kg	1200	16000
Chromium	100	mg/kg	6.0	16
Cobalt	100	mg/kg	3.0	6.5
Copper	100	mg/kg	6.0	96
Iron	100	mg/kg	240	14000
Lead	100	mg/kg	6.0	180
Magnesium	100	mg/kg	600	3600
Manganese	100	mg/kg	12	260
Nickel	100	mg/kg	6.0	25
Potassium	100	mg/kg	600	1000
Selenium	100	mg/kg	2.2	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	ND
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	12	21
Zinc	100	mg/kg	12	240

Collection Date: 4/13/2009 Lab#: AC43958-006 Sample ID: B-11

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.965	mg/kg	NA	0.071J
1,1,1-Trichloroethane	0.965	mg/kg	0.0058	ND
1,1,2,2-Tetrachloroethane	0.965	mg/kg	0.0058	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.965	mg/kg	0.0058	ND
1,1,2-Trichloroethane	0.965	mg/kg	0.0058	ND
1,1-Dichloroethane	0.965	mg/kg	0.0058	ND
1,1-Dichloroethene	0.965	mg/kg	0.0058	ND
1,2,3-Trichloropropane	0.965	mg/kg	0.0058	ND
1,2,4-Trimethylbenzene	0.965	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.965	mg/kg	0.0058	ND
1,2-Dichloroethane	0.965	mg/kg	0.0058	ND
1,2-Dichloropropane	0.965	mg/kg	0.0058	ND
1,3,5-Trimethylbenzene	0.965	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.965	mg/kg	0.0058	ND
1,3-Dichloropropane	0.965	mg/kg	0.0058	ND
1,4-Dichlorobenzene	0.965	mg/kg	0.0058	ND
1,4-Dioxane	0.965	mg/kg	0.29	ND
2-Butanone	0.965	mg/kg	0.0058	ND
2-Chloroethylvinylether	0.965	mg/kg	0.0058	ND
2-Hexanone	0.965	mg/kg	0.0058	ND
4-Isopropyltoluene	0.965	mg/kg	0.0012	ND
4-Methyl-2-pentanone	0.965	mg/kg	0.0058	ND
Acetone	0.965	mg/kg	0.029	ND
Acrolein	0.965	mg/kg	0.029	ND
Acrylonitrile	0.965	mg/kg	0.0058	ND
Benzene	0.965	mg/kg	0.0012	ND
Bromodichloromethane	0.965	mg/kg	0.0058	ND
Bromoform	0.965	mg/kg	0.0058	ND
Bromomethane	0.965	mg/kg	0.0058	ND
Carbon disulfide	0.965	mg/kg	0.0058	ND
Carbon tetrachloride	0.965	mg/kg	0.0058	ND
Chlorobenzene	0.965	mg/kg	0.0058	ND
Chloroethane	0.965	mg/kg	0.0058	ND
Chloroform	0.965	mg/kg	0.0058	ND
Chloromethane	0.965	mg/kg	0.0058	ND
cis-1,2-Dichloroethene	0.965	mg/kg	0.0058	ND
cis-1,3-Dichloropropene	0.965	mg/kg	0.0058	ND
Dibromochloromethane	0.965	mg/kg	0.0058	ND
Dichlorodifluoromethane	0.965	mg/kg	0.0058	ND
Ethylbenzene	0.965	mg/kg	0.0012	ND
Isopropylbenzene	0.965	mg/kg	0.0012	ND
m&p-Xylenes	0.965	mg/kg	0.0012	ND
Methylene chloride	0.965	mg/kg	0.0058	ND
Methyl-t-butyl ether	0.965	mg/kg	0.0012	ND
n-Butylbenzene	0.965	mg/kg	0.0012	ND
n-Propylbenzene	0.965	mg/kg	0.0012	ND
o-Xylene	0.965	m g/kg	0.0012	ND
sec-Butylbenzene	0.965	mg/kg	0.0012	ND
Styrene	0.965	mg/kg	0.0058	ND
t-Butyl Alcohol	0.965	mg/kg	0.029	ND
t-Butylbenzene	0.965	mg/kg	0.0012	ND
Tetrachloroethene	0.965	mg/kg	0.0058	ND
Toluene	0.965	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.965	mg/kg	0.0058	ND
trans-1,3-Dichloropropene	0.965	mg/kg	0.0058	ND
Trichloroethene	0.965	mg/kg	0.0058	ND
Trichlorofluoromethane	0.965	mg/kg	0.0058	ND
Vinyl chloride	0.965	mg/kg	0.0058	ND

0.965

mg/kg

Xylenes (Total)

0.0012 ND

 0044_{1}

Lab#: AC43958-007 Collection Date: 4/13/2009 Sample ID: B-12 TestGroup/Analyte DF Units RL Result % Solids SM2540G 81 % Solids 1 percent Mercury (Soil/Waste) 7471A Mercury 167 mg/kg 0.10 ND **Organochlorine Pesticides 8081** mg/kg 0.0062 ND Aldrin Alpha-BHC mg/kg 0.0012 ND 0.0012 beta-BHC ND mg/kg Chlordane mg/kg 0.012 ND delta-BHC 0.0062 ND mg/kg 0.0012 ND Dieldrin mg/kg Endosulfan i mg/kg 0.0062 ND 0.0062 ND Endosulfan II mg/kg 0.0062 ND Endosulfan Sulfate mg/kg 0.0062 ND Endrin mg/kg 0.0062 ND Endrin Aldehyde mg/kg Endrin Ketone mg/kg 0.0062 ND 0.0012 ND gamma-BHC mg/kg 0.0062 ND Heptachlor mg/kg Heptachlor Epoxide mg/kg 0.0062 ND 0.0062 ND Methoxychlor mg/kg 0.0031 p,p'-DDD mg/kg ND mg/kg 0.0031 p,p'-DDE 0.0031 p,p'-DDT ND mg/kg Toxaphene mg/kg 0.031 ND **PCB 8082** 0.031 ND mg/kg Aroclor (Total) 0.031 Aroclor-1016 mg/kg ND Aroclor-1221 mg/kg 0.031 ND 0.031 ND Aroclor-1232 mg/kg Aroclor-1242 mg/kg 0.031 ND 0.031 ND Aroclor-1248 mg/kg 0.031 ND Aroclor-1254 mg/kg Aroclor-1260 mg/kg 0.031 ND Aroclor-1262 0.031 ND mg/kg ND Aroclor-1268 mg/kg 0.031

Collection Date: 4/13/2009 Lab#: AC43958-007 Sample ID: B-12

TestGroup/Analyte	DF	Units	RL	Result
Semivolatile Organics + 25	(8270)			
:TotalSemiVolatileTic	1	mg/kg	NA	110J
1,2,4-Trichlorobenzene	1	mg/kg	0.082	ND
1,2-Diphenylhydrazine	1	mg/kg	0.082	ND
2,4,5-Trichlorophenol	1	mg/kg	0.082	ND
2,4,6-Trichlorophenol	1	mg/kg	0.082	ND
2,4-Dichlorophenol	1	mg/kg	0.082	ND
2,4-Dimethylphenol	1	mg/kg	0.082	ND
2,4-Dinitrophenol	1	mg/kg	0.41	ND
2,4-Dinitrotoluene	1	mg/kg	0.082	ND
2,6-Dinitrotoluene	1	mg/kg	0.082	ND
2-Chloronaphthalene	1	mg/kg	0.082	ND
2-Chlorophenol	1	mg/kg	0.082	ND
2-Methylnaphthalene	1	mg/kg	0.082	ND
2-Methylphenol	1	mg/kg	0.082	ND
2-Nitroaniline	1	mg/kg	0.082	ND
2-Nitrophenol	1	mg/kg	0.082	ND
3&4-Methylphenol	1	mg/kg	0.082	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.082	ND
3-Nitroaniline	1	mg/kg	0.082	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.41	ND
4-Bromophenyl-phenylether	1	mg/kg	0.082	ND
4-Chloro-3-methylphenol	1	mg/kg	0.082	ND
4-Chloroaniline	1	mg/kg	0.082	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.082	ND
4-Nitroaniline	1	mg/kg	0.082	ND
4-Nitrophenol	1	mg/kg	0.082	ND
Acenaphthene	1	mg/kg	0.082	ND
Acenaphthylene	1	mg/kg	0.082	ND
Aniline	1	mg/kg	0.082	ND
Anthracene	1	mg/kg	0.082	ND
Benzidine	1	mg/kg	0.41	ND
Benzo[a]anthracene	1	mg/kg	0.082	0.10
Benzo[a]pyrene	1	mg/kg	0.082	0.089
Benzo[b]fluoranthene	1	mg/kg	0.082	0.12
Benzo(g,h,i)perylene	1	mg/kg	0.082	ND
Benzo[k]fluoranthene	1	mg/kg	0.082	ND
Benzoic acid	1	mg/kg	0.41	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.082	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.082	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.082	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.082	ND
Butylbenzylphthalate	1	mg/kg	0.082	ND
Carbazole	1	mg/kg	0.082	ND
Chrysene	1	mg/kg	0.082	0.098
Dibenzo[a,h]anthracene	1	mg/kg	0.082	ND
Dibenzofuran	1	mg/kg	0.082	ND
Diethylphthalate	1	mg/kg	0.082	ND
Dimethylphthalate	1	mg/kg	0.082	ND
Di-n-butylphthalate	1	mg/kg	0.082	ND
Di-n-octylphthalate	1	mg/kg	0.082	ND
Fluoranthene	1	mg/kg	0.082	0.23
Fluorene	1	mg/kg	0.082	ND
Hexachlorobenzene	1	mg/kg	0.082	ND
Hexachlorobutadiene	1	mg/kg	0.082	ND
Hexachlorocyclopentadiene	1	mg/kg	0.41	ND
Hexachioroethane	1	mg/kg	0.082	ND
Indeno[1,2,3-cd]pyrene	1	mg/kg	0.082	ND
Isophorone	1	mg/kg	0.082	ND
•	1	mg/kg	0.082	ND
Naphthalene	1		0.082	ND
Nitrobenzene N. Nitropodimethylamine		mg/kg mg/kg		ND
N-Nitrosodimethylamine	1 1	mg/kg	0.082	ND
N-Nitroso-di-n-propylamine		mg/kg	0.082	
N-Nitrosodiphenylamine	1	mg/kg	0.082	ND
Pentachlorophenol	1	mg/kg	0.41	ND
Phenanthrene	1	mg/kg	0.082	0,13
Phenol	1	mg/kg	0.082	ND

0045

Lab#: AC43958-007 Collection Date: 4/13/2009 Sample ID: B-12

TestGroup/Analyte DF Units RL Result TAL Metals 6010 Aluminum 100 mg/kg 250 3200 Antimony 100 2.5 ND mg/kg Arsenic 100 2.5 3.6 mg/kg Barium 100 mg/kg 12 ND Beryllium 0.74 100 mg/kg ND Cadmium 100 mg/kg 0.74 ND Calcium 1200 100 mg/kg ND Chromium 100 mg/kg 6.2 8.6 Cobalt 3.1 3.5 100 mg/kg Copper 100 mg/kg 6.2 7.3 Iron 100 250 9800 mg/kg Lead 100 mg/kg 6.2 6.7 Magnesium 100 620 1300 mg/kg 77 Manganese 100 mg/kg 12 Nickel 100 mg/kg 6.2 8.7 Potassium 100 mg/kg 620 ND Selenium 100 mg/kg 2.2 ND Silver 100 1.9 ND mg/kg ND Sodium 100 mg/kg 310 Thallium 100 1.5 ND mg/kg mg/kg Vanadium 100 12 13 Zinc 100 mg/kg 12

Lab#: AC43958-007 Collection Date: 4/13/2009

Sample ID: B-1	12
----------------	----

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260))			
:TotalVolatileTic	0.992	mg/kg	NA	0.12J
1,1,1-Trichloroethane	0.992	mg/kg	0.0061	ND
1,1,2,2-Tetrachloroethane	0.992	mg/kg	0.0061	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.992	mg/kg	0.0061	ND
1,1,2-Trichloroethane	0.992	mg/kg	0.0061	ND
1,1-Dichloroethane	0.992	mg/kg	0.0061	ND
1,1-Dichloroethene	0.992	mg/kg	0.0061	ND
1,2,3-Trichloropropane	0.992	mg/kg	0.0061	ND
1,2,4-Trimethylbenzene	0.992	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.992	mg/kg	0.0061	ND
1,2-Dichloroethane	0.992	mg/kg	0.0061 0.0061	ND ND
1,2-Dichloropropane	0.992 0.992	mg/kg mg/kg	0.0001	ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	0.992	mg/kg mg/kg	0.0012	ND
1,3-Dichloropropane	0.992	mg/kg	0.0061	ND
1,4-Dichlorobenzene	0.992	mg/kg	0.0061	ND
1,4-Dioxane	0.992	mg/kg	0.31	ND
2-Butanone	0.992	mg/kg	0.0061	ND
2-Chloroethylvinylether	0.992	mg/kg	0.0061	ND
2-Hexanone	0.992	mg/kg	0.0061	ND
4-Isopropyltoluene	0.992	mg/kg	0.0012	0.021
4-Methyl-2-pentanone	0.992	mg/kg	0.0061	ND
Acetone	0.992	mg/kg	0.031	ND
Acrolein	0.992	mg/kg	0.031	ND
Acrylonitrile	0.992	mg/kg	0.0061	ND
Benzene	0.992	mg/kg	0.0012	ND
Bromodichloromethane	0.992	mg/kg	0.0061	ND
Bromoform	0.992	mg/kg	0.0061	ND
Bromomethane	0.992	mg/kg	0.0061	ND
Carbon disulfide	0.992	mg/kg	0.0061	ND
Carbon tetrachloride	0.992 0.992	mg/kg	0.0061 0.0061	ND ND
Chlorobenzene Chloroethane	0.992	mg/kg mg/kg	0.0061	ND
Chloroform	0.992	mg/kg	0.0061	ND
Chloromethane	0.992	mg/kg	0.0061	ND
cis-1,2-Dichloroethene	0.992	mg/kg	0.0061	ND
cis-1,3-Dichloropropene	0.992	mg/kg	0.0061	ND
Dibromochloromethane	0.992	mg/kg	0.0061	ND
Dichlorodifluoromethane	0.992	mg/kg	0.0061	ND
Ethylbenzene	0.992	mg/kg	0.0012	ND
Isopropylbenzene	0.992	mg/kg	0.0012	ND
m&p-Xylenes	0.992	mg/kg	0.0012	ND
Methylene chloride	0.992	mg/kg	0.0061	0.0084
Methyl-t-butyl ether	0.992	mg/kg	0.0012	ND
n-Butylbenzene	0.992	mg/kg	0.0012	ND
n-Propylbenzene	0.992	mg/kg	0.0012	ND
o-Xylene	0.992	mg/kg	0.0012	ND
sec-Butylbenzene	0.992	mg/kg	0.0012	ND
Styrene	0.992	mg/kg	0.0061	ND
t-Butyl Alcohol	0.992	mg/kg	0.031	ND ND
t-Butylbenzene Tetrachloroethene	0.992 0.992	mg/kg mg/kg	0.0012 0.0061	ND ND
Toluene	0.992	mg/kg mg/kg	0.0061	ND ND
trans-1,2-Dichloroethene	0.992	mg/kg mg/kg	0.0012	ND
trans-1,2-Dichloropropene	0.992	mg/kg mg/kg	0.0061	ND
Trichloroethene	0.992	mg/kg mg/kg	0.0061	ND
Trichlorofluoromethane	0.992	mg/kg	0.0061	ND
Vinyl chloride	0.992	mg/kg	0.0061	ND
Xylenes (Total)	0.992	mg/kg	0.0012	ND
Ay. S. 100 (10tal)	U. 332	mang.	0.0012	

0046

Lab#: AC43958-008 Collection Date: 4/13/2009

Sample ID: B-11 GW

TestGroup/Analyte DF Units RL Result Mercury (Water) 7470A Mercury ug/l 0.70 17 **Organochlorine Pesticides 8081** Aldrin 0.010 ND ug/l Alpha-BHC 0.010 ND ug/l beta-BHC ug/l 0.010 ND Chlordane ug/l 0.10 ND delta-BHC ug/l 0.010 ND Dieldrin 0.010 ND ug/l Endosulfan I ug/l 0.010 ND Endosulfan II ug/l 0.010 ND Endosulfan Sulfate 0.010 ND ug/l Endrin ug/l 0.010 ND Endrin Aldehyde 0.010 ND ug/l Endrin Ketone 0.010 ND ug/l gamma-BHC ug/l 0.010 ND Heptachlor 0.010 ND ug/l Heptachlor Epoxide 0.010 ug/l ND Methoxychlor 0.010 ND ug/l p,p'-DDD 0.010 ND ug/l p,p'-DDE ug/l 0.010 ND p,p'-DDT 0.010 ND ug/l 0.25 Toxaphene ug/l ND PCB 8082 Aroclor (Total) ug/l 0.25 ND Aroclor-1016 0.25 ND ug/l Aroclor-1221 ug/l 0.25 ND Aroclor-1232 0.25 ND ug/l Aroclor-1242 0.25 ND ug/l Aroclor-1248 0.25 ND ug/l Aroclor-1254 0.25 ND ug/l Aroclor-1260 ug/i 0.25 ND

0.25

0.25

ug/l

ug/l

ND

ND

Lab#: AC43958-008 Collection Date: 4/13/2009

Sample ID: B-11 GW

TestGroup/Analyte	DF	Units	RL	Result
Semivolatile Organics + 25	(8270)			
:TotalSemiVolatileTic	1	ug/l	NA	4.9J
1,2,4-Trichlorobenzene 1,2-Diphenylhydrazine	1 1	ug/l ug/l	2.0 2.0	ND ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol 2,4-Dinitrotoluene	1 1	ug/l ug/l	10 2.0	ND ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol 2-Nitroaniline	1 1	ug/l ug/l	2.0 2.0	ND ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	2.0	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1 1	ug/l	10 2.0	ND ND
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	1	ug/l ug/l	2.0	ND
4-Chloroaniline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether	1	ug/I	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1 1	ug/l	2.0	ND ND
Acenaphthene Acenaphthylene	1	ug/l ug/l	2.0 2.0	ND ND
Aniline	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Benzidine	1	ug/l	10	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene Benzo[b]fluoranthene	1 1	ug/l ug/l	2.0 2.0	ND ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
Benzoic acid	1	ug/l	10	ND
bis(2-Chloroethoxy)methane	1	ug/i	2.0	ND
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	1	ug/l ug/l	2.0 2.0	ND ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	7.9
Butylbenzylphthalate	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo(a,h)anthracene	1 1	ug/l	2.0 2.0	ND ND
Dibenzofuran Diethylphthalate	1	ug/l ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	2.0	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1 1	ug/l	2.0	ND ND
Fluorene Hexachlorobenzene	1	ug/l ug/l	2.0 2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	10	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone Naphthalene	1 1	ug/l ug/l	2.0 2.0	ND ND
Nitrobenzene	1	ug/l	2.0	ND
N-Nitrosodimethylamine	1	ug/l	2.0	ND
N-Nitroso-di-n-propylamine	1	ug/l	2.0	ND
N-Nitrosodiphenylamine	1	ug/l	2.0	ND
Pentachlorophenol Phenanthrene	1 1	ug/l	10 2.0	ND ND
Phenol	1	ug/i ug/i	2.0	ND
Pyrene	1	ug/l	2.0	2.5
		-		

Aroclor-1262

Aroclor-1268

Lab#: AC43958-008 Collection Date: 4/13/2009

Sample ID: B-11 GW

Zinc

TestGroup/Analyte DF Units RL Result **TAL Metals 6010** Aluminum 1 ug/l 180 240000 Antimony ug/l 12 ND 410 Arsenic 1 ug/l 7.5 50 2500 Barium 1 ug/l 28 Beryllium 1 ug/l 4.0 Cadmium 3.5 19 ug/l 2000 340000 Calcium 1 ug/l 50 770 Chromium ug/l Cobalt ug/l 20 350 50 1300 Copper ug/l 550 800000 Iron 2 ug/l 4.0 2200 Lead ug/l 2000 160000 Magnesium 1 ug/l 40 12000 Manganese ug/l Nickel 1 ug/l 50 820 Potassium 5000 65000 ug/i ND Selenium ug/l 40 Silver ug/l 20 ND Sodium 5000 60000 1 ug/l Thallium ug/l 10 ND 1100 Vanadium ug/l 50

ug/l

50

4200

Lab#: AC43958-008 Collection Date: 4/13/2009

Sample ID: B-11 GW		1114-		Daguit
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260))			
:TotalVolatileTic	1	ug/l	NA	ND
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/f	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichloropropane	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/I	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/I	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,3-Dichloropropane	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/I	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Chloroethylvinylether	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Acrolein	1	ug/l	5.0	ND
Acrylonitrile	1	ua/l	1.0	ND

Acrylonitrile ug/I 0.50 ND Benzene ua/l Bromodichloromethane ug/l 1.0 ND 1.0 ND Bromoform ug/l ND 5.0 Bromomethane ug/l Carbon disulfide ug/l 1.0 ND 1.0 ND Carbon tetrachloride ug/l ND Chlorobenzene ug/l 1.0 Chloroethane ug/l 1.0 ND 1.0 ND Chloroform ug/l ND Chloromethane ug/l 1.0 1.0 ND cis-1,2-Dichloroethene ug/I ND cis-1.3-Dichloropropene 1.0 ug/l Dibromochloromethane ug/l 1.0 ND 1.0 ND Dichlorodifluoromethane ug/l 1.0 ND Ethylbenzene ug/l ug/l 1.0 ND Isopropylbenzene 1.0 ND m&p-Xylenes ua/l Methylene chloride ug/l 1.0 ND 0.50 ND Methyl-t-butyl ether ug/i ND 1.0 n-Butylbenzene ug/l n-Propylbenzene ug/i 1.0 ND ND o-Xvlene ug/l 1.0 1.0 ND sec-Butylbenzene ug/l 1.0 ND Styrene ug/l 5.0 ND t-Butyl Alcohol ug/l t-Butylbenzene ug/l 1.0 ND 1.0 ND Tetrachloroethene ug/l ND Toluene ug/l 1.0 trans-1,2-Dichloroethene ug/l 1.0 ΝĐ 1.0 ΝĐ trans-1,3-Dichloropropene ua/l ND Trichloroethene ug/l 1.0 1.0 ND Trichlorofluoromethane ug/l ND Vinyl chloride 1.0 ug/l Xylenes (Total) ug/l ND

RL = Reporting Limit

ND = Not Detected

NOTE: Soil Results are reported to Dry Weight

Project #: 9041403 Page 16 of 20

Λ	Λ	Α.	Q.	
U	v	4	0	

Sample ID: WC-1					Sample ID: WC-2				
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		80	% Solids SM2540G % Solids	1	percent		84
lgnitability Ignitability	1			NEG	Ignitability Ignitability	1			NEG
Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND	Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND
рН 9040B/9045C _{рН}	1	ph		9.6	рН 9040B/9045C _{рн}	1	ph		9.9
Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND	Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND
Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND	Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND
TCLP Herbicides 8151 2.4-D	1	mg/l	0.0020	ND	TCLP Herbicides 8151 2,4-D	1	mg/l	0.0020	ND
Silvex	1	mg/l	0.0020	ND	Silvex	1	mg/l	0.0020	ND
TCLP Metals 6010		_			TCLP Metals 6010	_		0.00	ND
Arsenic	1 1	mg/l	0.20 0.25	ND 0.32	Arsenic Barium	1 1	mg/l mg/l	0.20 0.25	ND 0.34
Barium Cadmium	1	mg/l mg/l	0.25	0.32 ND	Cadmium	1	mg/l	0.050	ND
Chromium	1	mg/l	0.20	ND	Chromium	1	mg/l	0.20	ND
Lead	1	mg/l	0.15	0.26	Lead	1	mg/l	0.15	ND
Nickel	1	mg/l	0.20	ND	Nickel	1	mg/l	0.20	ND
Selenium	1	mg/l	0.20	ND	Selenium	1	mg/l	0.20	ND
Silver	1	mg/l	0.050	ND	Silver	1	mg/l	0.050	ND
TCLP Metals Extraction 1311 TCLP Metals Extraction	1	n/a		Complete	TCLP Metals Extraction 1311 TCLP Metals Extraction	1	n/a		Comple
TCLP Organics Extraction 131 TCLP Organics Extraction	1			Complete	TCLP Organics Extraction 13 TCLP Organics Extraction	11 1			Complet
TCLP Pesticides 8081					TCLP Pesticides 8081				
Chlordane	1	mg/l	0.0010	ND	Chlordane	1	mg/l	0.0010	ND
Endrin	1	mg/l	0.00010	ND	Endrin	1	mg/l	0.00010	ND
gamma-BHC	1	mg/l	0.00010	ND	gamma-BHC	1	mg/l	0.00010	ND
Heptachlor	1	mg/l	0.00010	ND	Heptachlor	1	mg/l	0.00010 0.00010	ND ND
Heptachlor Epoxide	1	mg/l	0.00010	ND	Heptachlor Epoxide	1	mg/l mg/l	0.00010	ND
Methoxychlor Toxaphene	1 1	mg/l mg/l	0.00010 0.0025	ND ND	Methoxychlor Toxaphene	1	mg/l	0.0025	ND
	'	mg/r	0.0025	110					_
TCLP Semivolatiles 8270			0.0000	ND	TCLP Semivolatiles 8270 2,4,5-Trichlorophenol	1	mg/l	0.0080	ND
2,4,5-Trichlorophenol	1 1	mg/l mg/l	0.0080 0.0080	ND ND	2,4,6-Trichlorophenol	1	mg/l	0.0080	ND
2,4,6-Trichlorophenol 2,4-Dinitrotoluene	1	mg/l	0.0080	ND	2,4-Dinitrotoluene	1	mg/l	0.0080	ND
2-Methylphenol	1	mg/l	0.0080	ND	2-Methylphenol	1	mg/l	0.0080	ND
3&4-Methylphenol	1	mg/l	0.0080	ND	3&4-Methylphenol	1	mg/l	0.0080	ND
Hexachlorobenzene	1	mg/l	0.0080	ND	Hexachlorobenzene	1	mg/l	0.0080	ND
Hexachlorobutadiene	1	mg/l	0.0080	ND	Hexachlorobutadiene	1	mg/l	0.0080	ND
Hexachloroethane	1	mg/l	0.0080	ND	Hexachloroethane	1	mg/l	0.0080	ND ND
Nitrobenzene Pentachlorophenol	1 1	mg/l mg/l	0.0080 0.040	ND ND	Nitrobenzene Pentachlorophenol	1	mg/l mg/l	0.000	ND
Pyridine	1	mg/l	0.040	ND	Pyridine	1	mg/l	0.040	ND
	·	9	0.0 .0		·				
TCLP Volatiles 8260		ma/l	0.0010	ND	TCLP Volatiles 8260 1,1-Dichloroethene	1	mg/l	0.0010	ND
1,1-Dichloroethene 1,2-Dichloroethane	1 1	mg/l mg/l	0.0010	ND ND	1,2-Dichloroethane	1	mg/i	0.00050	ND
1,4-Dichlorobenzene	1	mg/l	0.0010	ND	1,4-Dichlorobenzene	1	mg/l	0.0010	ND
2-Butanone	1	mg/l	0.0010	ND	2-Butanone	1	mg/l	0.0010	ND
Benzene	1	mg/l	0.00050	ND	Benzene	1	mg/l	0.00050	ND
Carbon tetrachloride	1	mg/l	0.0010	ND	Carbon tetrachloride	1	mg/l	0.0010	ND
Chlorobenzene	1	mg/l	0.0010	ND	Chlorobenzene	1	mg/l	0.0010	ND
Chloroform	1	mg/l	0.0010	ND	Chloroform	1	mg/l	0.0010	ND
Tetrachloroethene	1	mg/l	0.0010	ND	Tetrachloroethene	1	mg/l	0.0010	ND
Trichloroethene	1	mg/l	0.0010	ND	Trichloroethene	1	mg/l	0.0010 0.0010	ND ND
Vinyl chloride	1	mg/l	0.0010	ND	Vinyl chloride	1	mg/l	0.0010	ND
TCLP Zero Headspace Extracti Zero Headspace Extraction	ion 1				TCLP Zero Headspace Extract Zero Headspace Extraction	tion 1			

0049Lab#: AC43958-011 Lab#: AC43958-012 Collection Date: 4/9/2009 Collection Date: 4/10/2009 Sample ID: WC-3 Sample ID: WC-4 Result Result TestGroup/Analyte DE Units RL TestGroup/Analyte DF Units RL % Solids SM2540G % Solids SM2540G % Solids 1 percent 87 % Solids 1 percent 85 Ignitability Ignitability NEG Ignitability 1 NEG Ignitability 1 Mercury (TCLP) 7470A Mercury (TCLP) 7470A 0.00070 ND Mercury mq/l 0.00070 ND Mercury mg/l pH 9040B/9045C pH 9040B/9045C 1 ph 9.5 pН 1 рh 9.2 **Reactive Cyanide Reactive Cyanide** ND Cyanide (Reactive) mg/kg 10 ND Cvanide (Reactive) ma/ka 10 **Reactive Sulfide** Reactive Sulfide ND Sulfide (Reactive) mg/kg 100 ND Sulfide (Reactive) 1 mg/kg 100 **TCLP Herbicides 8151 TCLP Herbicides 8151** 0.0020 ND 0.0020 ND 2,4-D mg/l 2.4-D mg/i 0.0020 ND Silvex 1 mg/l 0.0020 ND Silvex 1 mg/l **TCLP Metals 6010 TCLP Metals 6010** ND 0.20 ND Arsenic mg/l 0.20 Arsenio mg/l 0.25 0.33 0.60 **Barium** Barium 1 mg/l 0.25 1 mq/ Cadmium 0.050 ND Cadmium mg/l 0.050 ND mg/l Chromium 0.20 ND Chromium 0.20 ND mg/l 1 mg/l 0.15 ND Lead mg/l 0.15 1.2 1 ead mg/l Nickel 0.20 ND Nickel mg/l 0.20 ND mg/l 0.20 ND Selenium ND mg/l Selenium mg/l 0.20 Silver mg/i 0.050 ND Silver mg/l 0.050 ND **TCLP Metals Extraction 1311** TCLP Metals Extraction 1311 **TCLP Metals Extraction** n/a Complete TCLP Metals Extraction n/a Complete TCLP Organics Extraction 1311 TCLP Organics Extraction 1311 **TCLP Organics Extraction** Complete **TCLP Organics Extraction** Complete **TCLP Pesticides 8081 TCLP Pesticides 8081** mg/l 0.0010 ND 0.0010 ND Chlordane Chlordane 1 mg/l 0.00010 ND 0.00010 ND Endrin ma/l Endrin mg/l gamma-BHC 0.00010 ND gamma-BHC 0.00010 ND mg/l ma/ 0.00010 ND Heptachlor Heptachlor mg/l 0.00010 ND 1 mg/l 0.00010 ND Heptachlor Epoxide 1 mg/l 0.00010 ND Heptachlor Epoxide mg/l 0.00010 ND Methoxychlor mg/l Methoxychlor mg/l 0.00010 ND 0.0025 ND 0.0025 ND Toxaphene mg/l Toxaphene mg/l **TCLP Semivolatiles 8270 TCLP Semivolatiles 8270** 2,4,5-Trichlorophenol 0.0080 ND mg/l 0.0080 ND 2,4,5-Trichlorophenol mg/l 0.0080 ND 2.4.6-Trichlorophenol 2,4,6-Trichlorophenol mg/i 0.0080 ND ma/l 2,4-Dinitrotoluene 0.0080 ND 2,4-Dinitrotoluene mg/l 0.0080 ND mg/l 0.0080 2-Methylphenol mg/l 0.0080 ND ND 2-Methylphenol ma/i ND 3&4-Methylphenol 0.0080 3&4-Methylphenol 0.0080 ND 1 mg/l mg/i Hexachlorobenzene 0.0080 ND Hexachlorobenzene mg/l 0.0080 ND mg/l 0.0080 ND Hexachlorobutadiene 0.0080 mg/l Hexachlorobutadiene mg/l ND 0.0080 ND Hexachloroethane mg/l 0.0080 ND Hexachloroethane mg/l 0.0080 ND Nitrobenzene mg/l 0.0080 ND Nitrobenzene ma/l 0.040 ND Pentachlorophenol Pentachlorophenol mg/l 0.040 ND ma/i Pyridine Pyridine 0.040 ND mg/ 0.0080 ND mg/l **TCLP Volatiles 8260 TCLP Volatiles 8260** 1,1-Dichloroethene 0.0010 ND 0.0010 ND mg/l 1.1-Dichloroethene mg/ 0.00050 ND 1,2-Dichloroethane 0.00050 ND 1,2-Dichloroethane mg/l mg/l 0.0010 ND 0.0010 ND 1.4-Dichlorobenzene mg/ 1.4-Dichlorobenzene ma/l 0.0010 ND mg/l 2-Butanone 2-Butanone 0.0010 ND mg/l 0.00050 Benzene 0.00050 NΠ Benzene ND mg/l mg/l 0.0010 ND Carbon tetrachloride mg/l 0.0010 ND Carbon tetrachloride mg/l 0.0010 ND 0.0010 ND Chlorobenzene mg/l Chlorobenzene mg/l 0.0010 ND Chloroform mg/l 0.0010 ND Chloroform ma/ 0.0010 ND Tetrachloroethene Tetrachloroethene mg/l 0.0010 ND mg/l Trichloroethene 0.0010 ND Trichloroethene 0.0010 ND mg/l mg/l Vinvl chloride mg/l 0.0010 ND Vinvl chloride mg/l 0.0010 ND **TCLP Zero Headspace Extraction** TCLP Zero Headspace Extraction

Zero Headspace Extraction

Zero Headspace Extraction

0050 Lab#: AC43958-014 Collection Date: 4/13/2009 Collection Date: 4/9/2009 Lab#: AC43958-013 Sample ID: WC-6 Sample ID: WC-5 DF Units RL Result TestGroup/Analyte DF Units RL Result TestGroup/Analyte % Solids SM2540G % Solids SM2540G 1 percent 79 1 percent % Solids Ignitability Ignitability NEG Ignitability NFG Ignitability 1 Mercury (TCLP) 7470A Mercury (TCLP) 7470A 0.00070 ND ma/l 0.00070 ND Mercury mg/l Mercury pH 9040B/9045C pH 9040B/9045C 9.2 рΗ ph 8.6 1 ph Reactive Cyanide Reactive Cyanide ND Cyanide (Reactive) mg/kg 10 ND 10 Cyanide (Reactive) ma/ka Reactive Sulfide **Reactive Sulfide** ND Sulfide (Reactive) mg/kg 100 ND Sulfide (Reactive) 1 mg/kg 100 **TCLP Herbicides 8151 TCLP Herbicides 8151** 0.0020 ND 0.0020 ND 2,4-D mg/l 2 4-D ma/l 0.0020 ND 0.0020 ND Silvex mg/l Silvex mg/l **TCLP Metals 6010 TCLP Metals 6010** 0.20 ND 1 0.20 ND Arsenic mg/l ma/l Arsenic 0.25 0.34 Barium 1 mg/ 0.25 0.39 Barium mq/l 0.050 ND Cadmium 0.050 ND 1 Cadmium mg/l 0.20 ND 0.20 ND Chromium mg/l Chromium ma/l ND 0.15 Lead mg/l 0.15 ND Lead mg/l 0.20 ND Nickel mg/i 0.20 ND Nickel ma/l 0.20 ND Selenium mg/l Selenium mg/l 0.20 ND ND 0.050 ND Silver mg/l 0.050 Silver mg/l **TCLP Metals Extraction 1311 TCLP Metals Extraction 1311 TCLP Metals Extraction** n/a Complete **TCLP Metals Extraction** n/a Complete TCLP Organics Extraction 1311 **TCLP Organics Extraction 1311 TCLP Organics Extraction** Complete **TCLP Organics Extraction** Complete **TCLP Pesticides 8081 TCLP Pesticides 8081** 0.0010 ND 0.0010 Chlordane mg/l ND Chlordane mg/l 0.00010 ND 0.00010 ND Endrin mg/l Endrin mg/l 0.00010 ND 0.00010 ND gamma-BHC mg/l gamma-BHC ma/l 0.00010 ND Heptachlor 0.00010 ND Heptachlor ma/l mg/l 0.00010 ND Heptachlor Epoxide mg/l 0.00010 ND Heptachlor Epoxide mg/l 0.00010 ND Methoxychlor mg/l 0.00010 ND Methoxychlor mg/i 0.0025 ND 0.0025 ND Toxaphene mg/l Toxaphene mg/l TCLP Semivolatiles 8270 **TCLP Semivolatiles 8270** 0.0080 ND 2,4,5-Trichlorophenol mg/l 0.0080 ND 1 mq/l 2.4.5-Trichlorophenol 0.0080 ND 2.4.6-Trichlorophenol 2,4,6-Trichlorophenol mg/l 0.0080 ND ma/l 2,4-Dinitrotoluene 0.0080 ND mg/l 0.0080 ND 2,4-Dinitrotoluene mg/l 0.0080 2-Methylphenol mg/l 0.0080 ND ND 2-Methylphenol mg/l 0.0080 ND 0.0080 ND 3&4-Methylphenol mg/l 3&4-Methylphenol mg/l 0.0080 ND Hexachlorobenzene 0.0080 ND Hexachlorobenzene mg/l 0.0080 ND Hexachlorobutadiene 0.0080 Hexachlorobutadiene mg/l mg/l ND 0.0080 ND Hexachloroethane mg/l 0.0080 ND Hexachioroethane mg/l ND mg/l 0.0080 ND 0.0080 Nitrobenzene Nitrobenzene mg/l 0.040 ND Pentachlorophenol 0.040 ND Pentachlorophenol ma/l mg/l 0.040 ND mg/ 0.040 ND Pyridine mg/l **TCLP Volatiles 8260** TCLP Volatiles 8260 0.0010 ND 1,1-Dichloroethene ND 1.1-Dichloroethene mg/ mg/l 0.0010 1,2-Dichloroethane 0.00050 ND 0.00050 ND mg/ 1,2-Dichloroethane mg/l 0.0010 ND 0.0010 ND 1,4-Dichlorobenzene mg/l 1.4-Dichlorobenzene mg/l 0.0010 ND 0.0010 ND 2-Butanone ma/ 2-Butanone mg/l 0.00050 ND 0.00050 ND Benzene mg/ Benzene mg/l 0.0010 ND Carbon tetrachloride mg/l 0.0010 ND Carbon tetrachloride mg/ Chlorobenzene 0.0010 ND 0.0010 ND mg/l Chlorobenzene mg/l ND Chloroform mg/l 0.0010 ND 0.0010 Chloroform mg/l ND 0.0010 Tetrachloroethene mg/l 0.0010 ND Tetrachloroethene mg/l 0.0010 ND 0.0010 ND Trichloroethene mg/ Trichloroethene mg/l mq/l 0.0010 ND Vinyl chloride mg/l 0.0010 ND Vinvl chloride TCLP Zero Headspace Extraction

ND = Not Detected NOTE: Soil Results are reported to Dry Weight Project #: 9041403 RL = Reporting Limit

Zero Headspace Extraction

Page 19 of 20

TCLP Zero Headspace Extraction

Zero Headspace Extraction

Lab#: AC43958-015 Collection Date: 4/6/2009
Sample ID: TRIP BLANK

TestGroup/Analyte DF Units RL Resul
Volatile Organics + 10 (8260)

TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	1	ug/l	NA	ND
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichloropropane	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/I	1.0	ND
1,2-Dichlorobenzene	1 1	ug/l	1.0 0.50	ND ND
1,2-Dichloroethane 1,2-Dichloropropane	1	ug/l	1.0	ND
1,3,5-Trimethylbenzene	1	ug/l ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,3-Dichloropropane	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Chloroethylvinylether	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Acrolein	1	ug/l	5.0	ND
Acrylonitrile	1	ug/l	1.0	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	5.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/i	1.0	ND
m&p-Xylenes	1 1	ug/l	1.0 1.0	ND ND
Methylene chloride	1	ug/l	0.50	ND ND
Methyl-t-butyl ether	1	ug/l ug/l	1.0	ND
n-Butylbenzene n-Propylbenzene	1	ug/l	1.0	ND
o-Xviene	1	ug/i	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
t-Butyl Alcohol	1	ug/l	5.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1	ND
		J.		

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M61735.D

Analysis Date: 04/15/09 09:25

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5 1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3 1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
107-06-2 1,2-Dichloroethane	0.50	U	100-41-4	Ethylbenzene	1.0	U
78-87-5 1,2-Dichloropropane	1.0	U	98-82-8	Isopropylbenzene	1.0	U
108-67-8 1,3,5-Trimethylbenzene	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
123-91-1 1,4-Dioxane	50	U	103-65-1	n-Propylbenzene	1.0	U
78-93-3 2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	U	135-98-8	sec-Butylbenzene	1.0	U
591-78-6 2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
67-64-1 Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
107-02-8 Acrolein	5.0	U	108-88-3	Toluene	1.0	U
107-13-1 Acrylonitrile	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
71-43-2 Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-25-2 Bromoform	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
74-83-9 Bromomethane	5.0	U	75-01-4	Vinyl Chloride	1.0	U
75-15-0 Carbon Disulfide	1.0	υ				

Worksheet #: 115287

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 3M61735.D

Analysis Date: 04/15/09 09:25

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 8260B

Units: ug/L

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	OJ	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M43985.D

Analysis Date: 04/15/09 15:10

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

		O	פיישיי			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0050	U	56-23-5	Carbon Tetrachloride	0.0050	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0050	υ	108-90-7	Chlorobenzene	0.0050	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0050	υ	75-00-3	Chloroethane	0.0050	U
79-00-5 1,1,2-Trichloroethane	0.0050	U	67-66-3	Chloroform	0.0050	U
75-34-3 1,1-Dichloroethane	0.0050	υ	74-87-3	Chloromethane	0.0050	U
75-35-4 1,1-Dichloroethene	0.0050	υ	156-59-2	cis-1,2-Dichloroethene	0.0050	U
96-18-4 1,2,3-Trichloropropane	0.0050	υ	10061-01-5	cis-1,3-Dichloropropene	0.0050	U
95-63-6 1,2,4-Trimethylbenzene	0.0010	υ	124-48-1	Dibromochloromethane	0.0050	U
95-50-1 1,2-Dichlorobenzene	0.0050	υ	75-71-8	Dichlorodifluoromethane	0.0050	U
107-06-2 1,2-Dichloroethane	0.0050	U	100-41-4	Ethylbenzene	0.0010	U
78-87-5 1,2-Dichloropropane	0.0050	U	98-82-8	Isopropylbenzene	0.0010	U
108-67-8 1,3,5-Trimethylbenzene	0.0010	U	136777612	m&p-Xylenes	0.0010	U
541-73-1 1,3-Dichlorobenzene	0.0050	U	75-09-2	Methylene Chloride	0.0050	U
142-28-9 1,3-Dichloropropane	0.0050	U	1634-04-4	Methyl-t-butyl ether	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0050	U	104-51-8	n-Butylbenzene	0.0010	U
123-91-1 1,4-Dioxane	0.25	U	103-65-1	n-Propylbenzene	0.0010	U
78-93-3 2-Butanone	0.0050	U	95-47-6	o-Xylene	0.0010	U
110-75-8 2-Chloroethylvinylether	0.0050	U	135-98-8	sec-Butylbenzene	0.0010	U
591-78-6 2-Hexanone	0.0050	U	100-42-5	Styrene	0.0050	U
99-87-6 4-Isopropyltoluene	0.0010	U	75-65-0	t-Butyl Alcohol	0.025	U
108-10-1 4-Methyl-2-Pentanone	0.0050	U	98-06-6	t-Butylbenzene	0.0010	U
67-64-1 Acetone	0.025	U	127-18-4	Tetrachloroethene	0.0050	U
107-02-8 Acrolein	0.025	U	108-88-3	Toluene	0.0010	U
107-13-1 Acrylonitrile	0.0050	U	156-60-5	trans-1,2-Dichloroethene	0.0050	U
71-43-2 Benzene	0.0010	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U
75-27-4 Bromodichloromethane	0.0050	U	79-01-6	Trichloroethene	0.0050	U
75-25-2 Bromoform	0.0050	U	75-69-4	Trichlorofluoromethane	0.0050	U
74-83-9 Bromomethane	0.0050	U	75-01-4	Vinyl Chloride	0.0050	U
75-15-0 Carbon Disulfide	0.0050	U				

Worksheet #: 115287

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 1M43985.D

Analysis Date: 04/15/09 15:10

Date Rec/Extracted:

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Method: EPA 8260B

Units: mg/Kg

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M44035.D

Analysis Date: 04/16/09 07:18

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0050	U	56-23-5	Carbon Tetrachloride	0.0050	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0050	U	108-90-7	Chlorobenzene	0.0050	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0050	υ	75-00-3	Chloroethane	0.0050	U
79-00-5 1,1,2-Trichloroethane	0.0050	U	67-66-3	Chloroform	0.0050	U
75-34-3 1,1-Dichloroethane	0.0050	υ	74-87-3	Chloromethane	0.0050	U
75-35-4 1,1-Dichloroethene	0.0050	υ	156-59-2	cis-1,2-Dichloroethene	0.0050	U
96-18-4 1,2,3-Trichloropropane	0.0050	υ	10061-01-5	cis-1,3-Dichloropropene	0.0050	U
95-63-6 1,2,4-Trimethylbenzene	0.0010	U	124-48-1	Dibromochloromethane	0.0050	U
95-50-1 1,2-Dichlorobenzene	0.0050	U	75-71-8	Dichlorodifluoromethane	0.0050	U
107-06-2 1,2-Dichloroethane	0.0050	U ,	100-41-4	Ethylbenzene	0.0010	U
78-87-5 1,2-Dichloropropane	0.0050	U	98-82-8	Isopropylbenzene	0.0010	U
108-67-8 1,3,5-Trimethylbenzene	0.0010	U	136777612	m&p-Xylenes	0.0010	U
541-73-1 1,3-Dichlorobenzene	0.0050	U	75-09-2	Methylene Chloride	0.0050	U
142-28-9 1,3-Dichloropropane	0.0050	U	1634-04-4	Methyl-t-butyl ether	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0050	U	104-51-8	n-Butylbenzene	0.0010	U
123-91-1 1,4-Dioxane	0.25	U	103-65-1	n-Propylbenzene	0.0010	U
78-93-3 2-Butanone	0.0050	U	95-47-6	o-Xylene	0.0010	U
110-75-8 2-Chloroethylvinylether	0.0050	U	135-98-8	sec-Butylbenzene	0.0010	U
591-78-6 2-Hexanone	0.0050	U	100-42-5	Styrene	0.0050	U
99-87-6 4-Isopropyltoluene	0.0010	U	75-65-0	t-Butyl Alcohol	0.025	U
108-10-1 4-Methyl-2-Pentanone	0.0050	U	98-06-6	t-Butylbenzene	0.0010	U
67-64-1 Acetone	0.025	U	127-18-4	Tetrachloroethene	0.0050	U
107-02-8 Acrolein	0.025	U	108-88-3	Toluene	0.0010	U
107-13-1 Acrylonitrile	0.0050	U	156-60-5	trans-1,2-Dichloroethene	0.0050	U
71-43-2 Benzene	0.0010	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U
75-27-4 Bromodichloromethane	0.0050	U	79-01-6	Trichloroethene	0.0050	U
75-25-2 Bromoform	0.0050	U	75-69-4	Trichlorofluoromethane	0.0050	U
74-83-9 Bromomethane	0.0050	U	75-01-4	Vinyl Chloride	0.0050	U
75-15-0 Carbon Disulfide	0.0050	U				

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 1M44035.D

Analysis Date: 04/16/09 07:18

Date Rec/Extracted:

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	OJ

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC43958-001

Client Id: B-2

Data File: 1M44020.D

Analysis Date: 04/16/09 00:48 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.07g

Final Vol: NA

Dilution: 0.986

Solids: 85

Units: mg/Kg

			O	9,9			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	3 1,1,1-Trichloroethane	0.0058	U	56-23-5	Carbon Tetrachloride	0.0058	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0058	U	108-90-7	Chlorobenzene	0.0058	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0058	U	75-00-3	Chloroethane	0.0058	U
79-00-5	1,1,2-Trichloroethane	0.0058	U	67-66-3	Chloroform	0.0058	U
75-34-3	3 1,1-Dichloroethane	0.0058	U	74-87-3	Chloromethane	0.0058	U
75-35-4	1,1-Dichloroethene	0.0058	U	156-59-2	cis-1,2-Dichloroethene	0.0058	U
96-18-4	1,2,3-Trichloropropane	0.0058	U	10061-01-5	cis-1,3-Dichloropropene	0.0058	U
95-63-6	1,2,4-Trimethylbenzene	0.0012	U	124-48-1	Dibromochloromethane	0.0058	U
95-50-1	1,2-Dichlorobenzene	0.0058	U	75-71-8	Dichlorodifluoromethane	0.0058	U
107-06-2	1,2-Dichloroethane	0.0058	U	100-41-4	Ethylbenzene	0.0012	U
78-87-5	1,2-Dichloropropane	0.0058	U	98-82-8	Isopropylbenzene	0.0012	U
108-67-8	1,3,5-Trimethylbenzene	0.0012	U	136777612	m&p-Xylenes	0.0012	U
541-73-1	1,3-Dichlorobenzene	0.0058	U	75-09-2	Methylene Chloride	0.0058	U
142-28-9	1,3-Dichloropropane	0.0058	U	1634-04-4	Methyl-t-butyl ether	0.0012	U
106-46-7	1,4-Dichlorobenzene	0.0058	U	104-51-8	n-Butylbenzene	0.0012	U
123-91-1	1,4-Dioxane	0.29	U	103-65-1	n-Propylbenzene	0.0012	U
78-93-3	3 2-Butanone	0.0058	υ	95-47-6	o-Xylene	0.0012	U
110-75-8	2-Chloroethylvinylether	0.0058	U	135-98-8	sec-Butylbenzene	0.0012	U
591-78-6	3 2-Hexanone	0.0058	U	100-42-5	Styrene	0.0058	U
99-87-6	4-Isopropyltoluene	0.0012	U	75-65-0	t-Butyl Alcohol	0.029	U
108-10-1	4-Methyl-2-Pentanone	0.0058	U	98-06-6	t-Butylbenzene	0.0012	U
67-64-1	Acetone	0.029	U	127-18-4	Tetrachloroethene	0.0058	U
107-02-8	Acrolein	0.029	U	108-88-3	Toluene	0.0012	U
107-13-1	Acrylonitrile	0.0058	U	156-60-5	trans-1,2-Dichloroethene	0.0058	U
71-43-2	Benzene	0.0012	U	10061-02-6	trans-1,3-Dichloropropene	0.0058	U
75-27-4	Bromodichloromethane	0.0058	U	79-01-6	Trichloroethene	0.0058	U
75-25-2	Bromoform	0.0058	U	75-69-4	Trichlorofluoromethane	0.0058	U
74-83-9	Bromomethane	0.0058	U	75-01-4	Vinyl Chloride	0.0058	U
75-15-0	Carbon Disulfide	0.0058	U	1330-20-7	Xylenes (Total)	0.0012	U

Worksheet #: 115287

Total Target Concentration (

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

â - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-001

Client Id: B-2

Data File: 1M44020.D

Analysis Date: 04/16/09 00:48

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.07g Final Vol: NA

Dilution: 0.986

Solids: 85

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	OJ	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC43958-002

Client Id: B-3

Data File: 1M44021.D

Analysis Date: 04/16/09 01:04 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.08g

Final Vol: NA

Dilution: 0.984

Solids: 87

Units: mg/Kg

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0057	U	56-23-5	Carbon Tetrachloride	0.0057	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0057	U	108-90-7	Chlorobenzene	0.0057	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0057	U	75-00-3	Chloroethane	0.0057	U
79-00-5 1,1,2-Trichloroethane	0.0057	U	67-66-3	Chloroform	0.0057	U
75-34-3 1,1-Dichloroethane	0.0057	U	74-87-3	Chloromethane	0.0057	U
75-35-4 1,1-Dichloroethene	0.0057	U	156-59-2	cis-1,2-Dichloroethene	0.0057	U
96-18-4 1,2,3-Trichloropropane	0.0057	U	10061-01-5	cis-1,3-Dichloropropene	0.0057	U
95-63-6 1,2,4-Trimethylbenzene	0.0011	U	124-48-1	Dibromochloromethane	0.0057	U
95-50-1 1,2-Dichlorobenzene	0.0057	U	75-71-8	Dichlorodifluoromethane	0.0057	U
107-06-2 1,2-Dichloroethane	0.0057	U	100-41-4	Ethylbenzene	0.0011	U
78-87-5 1,2-Dichloropropane	0.0057	U	98-82-8	Isopropylbenzene	0.0011	U
108-67-8 1,3,5-Trimethylbenzene	0.0011	U	136777612	m&p-Xylenes	0.0011	U
541-73-1 1,3-Dichlorobenzene	0.0057	U	75-09-2	Methylene Chloride	0.0057	U
142-28-9 1,3-Dichloropropane	0.0057	U	1634-04-4	Methyl-t-butyl ether	0.0011	U
106-46-7 1,4-Dichlorobenzene	0.0057	U	104-51-8	n-Butylbenzene	0.0011	U
123-91-1 1,4-Dioxane	0.28	U	103-65-1	n-Propylbenzene	0.0011	U
78-93-3 2-Butanone	0.0057	U	95-47-6	o-Xylene	0.0011	U
110-75-8 2-Chloroethylvinylether	0.0057	U	135-98-8	sec-Butylbenzene	0.0011	U
591-78-6 2-Hexanone	0.0057	U	100-42-5	Styrene	0.0057	U
99-87-6 4-Isopropyltoluene	0.0011	U	75-65-0	t-Butyl Alcohol	0.028	U
108-10-1 4-Methyl-2-Pentanone	0.0057	U	98-06-6	t-Butylbenzene	0.0011	U
67-64-1 Acetone	0.028	U	127-18-4	Tetrachloroethene	0.0057	U
107-02-8 Acrolein	0.028	U	108-88-3	Toluene	0.0011	U
107-13-1 Acrylonitrile	0.0057	U	156-60-5	trans-1,2-Dichloroethene	0.0057	U
71-43-2 Benzene	0.0011	U	10061-02-6	trans-1,3-Dichloropropene	0.0057	U
75-27-4 Bromodichloromethane	0.0057	U	79-01-6	Trichloroethene	0.0057	U
75-25-2 Bromoform	0.0057	U	75-69-4	Trichlorofluoromethane	0.0057	U
74-83-9 Bromomethane	0.0057	U	75-01-4	Vinyl Chloride	0.0057	U
75-15-0 Carbon Disulfide	0.0057	U	1330-20-7	Xylenes (Total)	0.0011	U

Worksheet #: 115287

Total Target Concentration 0

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-002

Client Id: B-3

Data File: 1M44021.D

Analysis Date: 04/16/09 01:04

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.08g

Final Vol: NA

Dilution: 0.984

Solids: 87

Method: EPA 8260B

Units: mg/Kg

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC43958-003

Client Id: B-6

Data File: 1M44022.D

Analysis Date: 04/16/09 01:21 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.1g

Final Vol: NA

Dilution: 0.980

Solids: 82

Units: mg/Kg

onits. nig/kg									
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc				
71-55-6 1,1,1-Trichloroethane	0.0060	U	56-23-5 Carbon Tetrachloride	0.0060	U				
79-34-5 1,1,2,2-Tetrachloroethane	0.0060	U	108-90-7 Chlorobenzene	0.0060	U				
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0060	U	75-00-3 Chloroethane	0.0060	U				
79-00-5 1,1,2-Trichloroethane	0.0060	U	67-66-3 Chloroform	0.0060	U				
75-34-3 1,1-Dichloroethane	0.0060	U	74-87-3 Chloromethane	0.0060	U				
75-35-4 1,1-Dichloroethene	0.0060	U	156-59-2 cis-1,2-Dichloroethene	0.0060	U				
96-18-4 1,2,3-Trichloropropane	0.0060	U	10061-01-5 cis-1,3-Dichloropropene	0.0060	U				
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1 Dibromochloromethane	0.0060	U				
95-50-1 1,2-Dichlorobenzene	0.0060	U	75-71-8 Dichlorodifluoromethane	0.0060	U				
107-06-2 1,2-Dichloroethane	0.0060	U	100-41-4 Ethylbenzene	0.0012	U				
78-87-5 1,2-Dichloropropane	0.0060	U	98-82-8 Isopropylbenzene	0.0012	U				
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612 m&p-Xylenes	0.0012	· U				
541-73-1 1,3-Dichlorobenzene	0.0060	U	75-09-2 Methylene Chloride	0.0060	0.0061				
142-28-9 1,3-Dichloropropane	0.0060	υ	1634-04-4 Methyl-t-butyl ether	0.0012	U				
106-46-7 1,4-Dichlorobenzene	0.0060	U	104-51-8 n-Butylbenzene	0.0012	U				
123-91-1 1,4-Dioxane	0.30	U	103-65-1 n-Propylbenzene	0.0012	U				
78-93-3 2-Butanone	0.0060	U	95-47-6 o-Xylene	0.0012	U				
110-75-8 2-Chloroethylvinylether	0.0060	U	135-98-8 sec-Butylbenzene	0.0012	U				
591-78-6 2-Hexanone	0.0060	U	100-42-5 Styrene	0.0060	U				
99-87-6 4-Isopropyltoluene	0.0012	0.023	75-65-0 t-Butyl Alcohol	0.030	U				
108-10-1 4-Methyl-2-Pentanone	0.0060	U	98-06-6 t-Butylbenzene	0.0012	U				
67-64-1 Acetone	0.030	U	127-18-4 Tetrachloroethene	0.0060	U				
107-02-8 Acrolein	0.030	U	108-88-3 Toluene	0.0012	U				
107-13-1 Acrylonitrile	0.0060	U	156-60-5 trans-1,2-Dichloroethene	0.0060	U				
71-43-2 Benzene	0.0012	U	10061-02-6 trans-1,3-Dichloropropene	0.0060	U				
75-27-4 Bromodichloromethane	0.0060	U	79-01-6 Trichloroethene	0.0060	U				
75-25-2 Bromoform	0.0060	U	75-69-4 Trichlorofluoromethane	0.0060	U				
74-83-9 Bromomethane	0.0060	U	75-01-4 Vinyl Chloride	0.0060	U				
75-15-0 Carbon Disulfide	0.0060	U	1330-20-7 Xylenes (Total)	0.0012	U				

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC43958-003

Client Id: B-6

Initial Vol: 5.1g

Data File: 1M44022.D

Final Vol: NA

Analysis Date: 04/16/09 01:21

Dilution: 0.980

Matrix: Soil

Solids: 82

Date Rec/Extracted: 04/13/09-NA

Method: EPA 8260B

Units: mg/Kg

	Cas#	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.09	0.11 J	
2	79-92-5	Camphene	7.27	0.0044 J	
3	18172-67-3	IbetaPinene	7.50	0.0076 J	
4	13466-78-9	.DELTA.3-Carene	7.69	0.10 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0.22

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC43958-004

Client Id: B-7

Data File: 1M44040.D

Analysis Date: 04/16/09 08:44 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.03g

Final Vol: NA

Dilution: 0.994

Solids: 76

Units: mg/Kg

		Omto:				
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0065	U	56-23-5	Carbon Tetrachloride	0.0065	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0065	U	108-90-7	Chlorobenzene	0.0065	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0065	U	75-00-3	Chloroethane	0.0065	U
79-00-5 1,1,2-Trichloroethane	0.0065	U	67-66-3	Chloroform	0.0065	0.010
75-34-3 1,1-Dichloroethane	0.0065	U	74-87-3	Chloromethane	0.0065	U
75-35-4 1,1-Dichloroethene	0.0065	U	156-59-2	cis-1,2-Dichloroethene	0.0065	U.
96-18-4 1,2,3-Trichloropropane	0.0065	U	10061-01-5	cis-1,3-Dichloropropene	0.0065	U
95-63-6 1,2,4-Trimethylbenzene	0.0013	U	124-48-1	Dibromochloromethane	0.0065	U
95-50-1 1,2-Dichlorobenzene	0.0065	U	75-71-8	Dichlorodifluoromethane	0.0065	U
107-06-2 1,2-Dichloroethane	0.0065	U	100-41-4	Ethylbenzene	0.0013	U
78-87-5 1,2-Dichloropropane	0.0065	U	98-82-8	Isopropylbenzene	0.0013	U
108-67-8 1,3,5-Trimethylbenzene	0.0013	U	136777612	m&p-Xylenes	0.0013	U
541-73-1 1,3-Dichlorobenzene	0.0065	U	75-09-2	Methylene Chloride	0.0065	U
142-28-9 1,3-Dichloropropane	0.0065	U	1634-04-4	Methyl-t-butyl ether	0.0013	U
106-46-7 1,4-Dichlorobenzene	0.0065	U	104-51-8	n-Butylbenzene	0.0013	U
123-91-1 1,4-Dioxane	0.33	U	103-65-1	n-Propylbenzene	0.0013	U
78-93-3 2-Butanone	0.0065	U	95-47-6	o-Xylene	0.0013	U
110-75-8 2-Chloroethylvinylether	0.0065	U	135-98-8	sec-Butylbenzene	0.0013	U
591-78-6 2-Hexanone	0.0065	U	100-42-5	Styrene	0.0065	U
99-87-6 4-Isopropyltoluene	0.0013	U	75-65-0	t-Butyl Alcohol	0.033	U
108-10-1 4-Methyl-2-Pentanone	0.0065	U	98-06-6	t-Butylbenzene	0.0013	U
67-64-1 Acetone	0.033	U	127-18-4	Tetrachloroethene	0.0065	U
107-02-8 Acrolein	0.033	U	108-88-3	Toluene	0.0013	U
107-13-1 Acrylonitrile	0.0065	U	156-60-5	trans-1,2-Dichloroethene	0.0065	U
71-43-2 Benzene	0.0013	U	10061-02-6	trans-1,3-Dichloropropene	0.0065	U
75-27-4 Bromodichloromethane	0.0065	U	79-01-6	Trichloroethene	0.0065	U
75-25-2 Bromoform	0.0065	U	75-69-4	Trichlorofluoromethane	0.0065	U
74-83-9 Bromomethane	0.0065	U	75-01-4	Vinyl Chloride	0.0065	U
75-15-0 Carbon Disulfide	0.0065	U	1330-20-7	Xylenes (Total)	0.0013	U

Worksheet #: 115287

Total Target Concentration 0.01

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-004

Client Id: B-7

Data File: 1M44040.D

Analysis Date: 04/16/09 08:44

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.03g

Final Vol: NA

Dilution: 0.994

Solids: 76

Method: EPA 8260B

Units: mg/Kg

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	01	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC43958-005

Client Id: B-10

Data File: 1M44041.D

Analysis Date: 04/16/09 09:01 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.02g

Final Vol: NA

Dilution: 0.996

Solids: 84

Units: mg/Kg

		O	9,9			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0059	U	56-23-5	Carbon Tetrachloride	0.0059	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0059	U	108-90-7	Chlorobenzene	0.0059	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0059	U	75-00-3	Chloroethane	0.0059	U
79-00-5 1,1,2-Trichloroethane	0.0059	U	67-66-3	Chloroform	0.0059	U
75-34-3 1,1-Dichloroethane	0.0059	U	74-87-3	Chloromethane	0.0059	U
75-35-4 1,1-Dichloroethene	0.0059	U	156-59-2	cis-1,2-Dichloroethene	0.0059	U
96-18-4 1,2,3-Trichloropropane	0.0059	U	10061-01-5	cis-1,3-Dichloropropene	0.0059	U
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1	Dibromochloromethane	0.0059	U
95-50-1 1,2-Dichlorobenzene	0.0059	U	75-71-8	Dichlorodifluoromethane	0.0059	U
107-06-2 1,2-Dichloroethane	0.0059	U	100-41-4	Ethylbenzene	0.0012	U
78-87-5 1,2-Dichloropropane	0.0059	U	98-82-8	Isopropylbenzene	0.0012	U
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612	m&p-Xylenes	0.0012	U
541-73-1 1,3-Dichlorobenzene	0.0059	U	75-09-2	Methylene Chloride	0.0059	U
142-28-9 1,3-Dichloropropane	0.0059	U	1634-04-4	Methyl-t-butyl ether	0.0012	U
106-46-7 1,4-Dichlorobenzene	0.0059	U	104-51-8	n-Butylbenzene	0.0012	U
123-91-1 1,4-Dioxane	0.30	U	103-65-1	n-Propylbenzene	0.0012	U
78-93-3 2-Butanone	0.0059	U	95-47-6	o-Xylene	0.0012	U
110-75-8 2-Chloroethylvinylether	0.0059	U	135-98-8	sec-Butylbenzene	0.0012	U
591-78-6 2-Hexanone	0.0059	U	100-42-5	Styrene	0.0059	U
99-87-6 4-Isopropyltoluene	0.0012	0.0018	75-65-0	t-Butyl Alcohol	0.030	U
108-10-1 4-Methyl-2-Pentanone	0.0059	U	98-06-6	t-Butylbenzene	0.0012	U
67-64-1 Acetone	0.030	U	127-18-4	Tetrachloroethene	0.0059	U
107-02-8 Acrolein	0.030	U	108-88-3	Toluene	0.0012	U
107-13-1 Acrylonitrile	0.0059	U	156-60-5	trans-1,2-Dichloroethene	0.0059	U
71-43-2 Benzene	0.0012	U	10061-02-6	trans-1,3-Dichloropropene	0.0059	U
75-27-4 Bromodichloromethane	0.0059	U	79-01-6	Trichloroethene	0.0059	U
75-25-2 Bromoform	0.0059	U	75-69-4	Trichlorofluoromethane	0.0059	U
74-83-9 Bromomethane	0.0059	U	75-01-4	Vinyl Chloride	0.0059	U
75-15-0 Carbon Disulfide	0.0059	U	1330-20-7	Xylenes (Total)	0.0012	U
			•			

Worksheet #: 115287

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC43958-005

Client Id: B-10

Data File: 1M44041.D

Analysis Date: 04/16/09 09:01

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.02g

Final Vol: NA

Dilution: 0.996

Solids: 84

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.08	0.022 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0.022

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-006

Client Id: B-11

Data File: 1M44042.D

Analysis Date: 04/16/09 09:17 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.18g

Final Vol: NA

Dilution: 0.965

Solids: 83

Units: mg/Kg

		0				
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0058	U	56-23-5	Carbon Tetrachloride	0.0058	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0058	U	108-90-7	Chlorobenzene	0.0058	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0058	U	75-00-3	Chloroethane	0.0058	U
79-00-5 1,1,2-Trichloroethane	0.0058	U	67-66-3	Chloroform	0.0058	U
75-34-3 1,1-Dichloroethane	0.0058	U	74-87-3	Chloromethane	0.0058	U
75-35-4 1,1-Dichloroethene	0.0058	U	156-59-2	cis-1,2-Dichloroethene	0.0058	U
96-18-4 1,2,3-Trichloropropane	0.0058	U	10061-01-5	cis-1,3-Dichloropropene	0.0058	U
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1	Dibromochloromethane	0.0058	U
95-50-1 1,2-Dichlorobenzene	0.0058	U	75-71-8	Dichlorodifluoromethane	0.0058	U
107-06-2 1,2-Dichloroethane	0.0058	U	100-41-4	Ethylbenzene	0.0012	U
78-87-5 1,2-Dichloropropane	0.0058	U	98-82-8	Isopropylbenzene	0.0012	U
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612	m&p-Xylenes	0.0012	U
541-73-1 1,3-Dichlorobenzene	0.0058	U	75-09-2	Methylene Chloride	0.0058	U
142-28-9 1,3-Dichloropropane	0.0058	U	1634-04-4	Methyl-t-butyl ether	0.0012	U
106-46-7 1,4-Dichlorobenzene	0.0058	U	104-51-8	n-Butylbenzene	0.0012	U
123-91-1 1,4-Dioxane	0.29	U	103-65-1	n-Propylbenzene	0.0012	U
78-93-3 2-Butanone	0.0058	U	95-47-6	o-Xylene	0.0012	U
110-75-8 2-Chloroethylvinylether	0.0058	U	135-98-8	sec-Butylbenzene	0.0012	U
591-78-6 2-Hexanone	0.0058	U	100-42-5	Styrene	0.0058	U
99-87-6 4-Isopropyltoluene	0.0012	U	75-65-0	t-Butyl Alcohol	0.029	U
108-10-1 4-Methyl-2-Pentanone	0.0058	U	98-06-6	t-Butylbenzene	0.0012	U
67-64-1 Acetone	0.029	U	127-18-4	Tetrachloroethene	0.0058	U
107-02-8 Acrolein	0.029	U	108-88-3	Toluene	0.0012	U
107-13-1 Acrylonitrile	0.0058	U	156-60-5	trans-1,2-Dichloroethene	0.0058	U
71-43-2 Benzene	0.0012	U	10061-02-6	trans-1,3-Dichloropropene	0.0058	U
75-27-4 Bromodichloromethane	0.0058	U	79-01-6	Trichloroethene	0.0058	U
75-25-2 Bromoform	0.0058	U	75-69-4	Trichlorofluoromethane	0.0058	U
74-83-9 Bromomethane	0.0058	U	75-01-4	Vinyl Chloride	0.0058	U
75-15-0 Carbon Disulfide	0.0058	U	1330-20-7	Xylenes (Total)	0.0012	U

Worksheet #: 115287

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-006 Client Id: B-11

Data File: 1M44042.D

Analysis Date: 04/16/09 09:17

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.18g Final Vol: NA

Dilution: 0.965

Solids: 83

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	7.42	0.0052 J
2		unknown	8.47	0.0074 J
3	2958-76-1	Naphthalene, decahydro-2-methyl-	8.56	0.0053 J
4	2958-76-1	2-METHYLDECALIN (PROBABLY TRA	8.70	0.0068 J
5		unknown	8.92	0.0061 J
6	54725-16-5	2H-Inden-2-one, 1,4,5,6,7,7a-hexahydro	9.08	0.0054 J
7	4175-53-5	1H-Indene, 2,3-dihydro-1,3-dimethyl-	9.23	0.011 J
8	91-20-3	Naphthalene	9.37	0.010 J
9		unknown	9.47	0.0092 J
10	4175-54-6	Naphthalene, 1,2,3,4-tetrahydro-1,4-dim	9.85	0.0049 J

Worksheet #: 115287

Total Tentatively Identified Concentration 0.071

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC43958-007

Client Id: B-12

Data File: 1M44043.D

Analysis Date: 04/16/09 09:34 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.04g

Final Vol: NA

Dilution: 0.992

Solids: 81

Units: mg/Kg

		Omio. I	פיישיי			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0061	U	56-23-5	Carbon Tetrachloride	0.0061	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0061	U	108-90-7	Chlorobenzene	0.0061	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0061	U	75-00-3	Chloroethane	0.0061	U
79-00-5 1,1,2-Trichloroethane	0.0061	U	67-66-3	Chloroform	0.0061	U
75-34-3 1,1-Dichloroethane	0.0061	U	74-87-3	Chloromethane	0.0061	U
75-35-4 1,1-Dichloroethene	0.0061	U	156-59-2	cis-1,2-Dichloroethene	0.0061	U
96-18-4 1,2,3-Trichloropropane	0.0061	U	10061-01-5	cis-1,3-Dichloropropene	0.0061	U
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1	Dibromochloromethane	0.0061	U
95-50-1 1,2-Dichlorobenzene	0.0061	U	75-71-8	Dichlorodifluoromethane	0.0061	U
107-06-2 1,2-Dichloroethane	0.0061	U	100-41-4	Ethylbenzene	0.0012	U
78-87-5 1,2-Dichloropropane	0.0061	U	98-82-8	Isopropylbenzene	0.0012	U
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612	m&p-Xylenes	0.0012	U
541-73-1 1,3-Dichlorobenzene	0.0061	U	75-09-2	Methylene Chloride	0.0061	0.0084
142-28-9 1,3-Dichloropropane	0.0061	U	1634-04-4	Methyl-t-butyl ether	0.0012	U
106-46-7 1,4-Dichlorobenzene	0.0061	U	104-51-8	n-Butylbenzene	0.0012	U
123-91-1 1,4-Dioxane	0.31	U	103-65-1	n-Propylbenzene	0.0012	U
78-93-3 2-Butanone	0.0061	U	95-47-6	o-Xylene	0.0012	U
110-75-8 2-Chloroethylvinylether	0.0061	U	135-98-8	sec-Butylbenzene	0.0012	U
591-78-6 2-Hexanone	0.0061	U	100-42-5	Styrene	0.0061	U
99-87-6 4-Isopropyltoluene	0.0012	0.021	75-65-0	t-Butyl Alcohol	0.031	U
108-10-1 4-Methyl-2-Pentanone	0.0061	U	98-06-6	t-Butylbenzene	0.0012	U
67-64-1 Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0061	U
107-02-8 Acrolein	0.031	U	108-88-3	Toluene	0.0012	U
107-13-1 Acrylonitrile	0.0061	U	156-60-5	trans-1,2-Dichloroethene	0.0061	U
71-43-2 Benzene	0.0012	U	10061-02-6	trans-1,3-Dichloropropene	0.0061	U
75-27-4 Bromodichloromethane	0.0061	U	79-01-6	Trichloroethene	0.0061	U
75-25-2 Bromoform	0.0061	υ	75-69-4	Trichlorofluoromethane	0.0061	U
74-83-9 Bromomethane	0.0061	υ	75-01-4	Vinyl Chloride	0.0061	U
75-15-0 Carbon Disulfide	0.0061	U	1330-20-7	Xylenes (Total)	0.0012	U

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-007

Client Id: B-12

Data File: 1M44043.D

Analysis Date: 04/16/09 09:34

Date Rec/Extracted: 04/13/09-NA

Matrix: Soil

Initial Vol: 5.04g

Final Vol: NA

Dilution: 0.992

Solids: 81

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.08	0.060 J	_
2	18172-67-3	IbetaPinene	7.49	0.0066 J	
3	13466-78-9	.DELTA.3-Carene	7.69	0.054 J	

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC43958-008

Client Id: B-11 GW Data File: 3M61743.D

Analysis Date: 04/15/09 11:42 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml

Final Vol. NA
Dilution: 1.00

Solids: 0

Units: ug/L

			Ollits. t	19 , L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichtoroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U
107-06-2	1,2-Dichloroethane	0.50	υ	100-41-4	Ethylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	υ	98-82-8	Isopropylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	υ	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	U
142-28-9	1,3-Dichloropropane	1.0	υ	1634-04-4	Methyl-t-butyl ether	0.50	U
106-46-7	1,4-Dichlorobenzene	1.0	υ	104-51-8	n-Butylbenzene	1.0	U
123-91-1	1,4-Dioxane	50	υ	103-65-1	n-Propylbenzene	1.0	U
78-93-3	2-Butanone	1.0	υ	95-47-6	o-Xylene	1.0	U
110-75-8	2-Chloroethylvinylether	1.0	υ	135-98-8	sec-Butylbenzene	1.0	U
591-78-6	2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	υ	98-06-6	t-Butylbenzene	1.0	U
67-64-1	Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	U
107-02-8	Acrolein	5.0	U	108-88-3	Toluene	1.0	U
107-13-1	Acrylonitrile	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
71-43-2	Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-27-4	Bromodichloromethane	1.0	υ	79-01-6	Trichloroethene	1.0	U
75-25-2	Bromoform	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U
74-83-9	Bromomethane	5.0	υ	75-01-4	Vinyl Chloride	1.0	U
75-15-0	Carbon Disulfide	1.0	υ	1330-20-7	Xylenes (Total)	1	U
			r				

Worksheet #: 115287

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC43958-008

Client Id: B-11 GW

Data File: 3M61743.D

Analysis Date: 04/15/09 11:42

Date Rec/Extracted: 04/13/09-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 8260B

Units: ug/L

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC43958-015

Client Id: TRIP BLANK Data File: 3M61740.D

Analysis Date: 04/15/09 10:51 Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

RL		Cas#	Compound	RL	Conc
1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
1.0	U	108-90-7	Chlorobenzene	1.0	U
1.0	U	75-00-3	Chloroethane	1.0	U
1.0	U	67-66-3	Chloroform	1.0	U
1.0	U	74-87-3	Chloromethane	1.0	U
1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
1.0	U	124-48-1	Dibromochloromethane	1.0	U
1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
0.50	U	100-41-4	Ethylbenzene	1.0	U
1.0	U	98-82-8	Isopropylbenzene	1.0	U
1.0	U	136777612	m&p-Xylenes	1.0	U
1.0	U	75-09-2	Methylene Chloride	1.0	U
1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
1.0	U	104-51-8	n-Butylbenzene	1.0	U
50	U	103-65-1	n-Propylbenzene	1.0	U
1.0	U	95-47-6	o-Xylene	1.0	U
1.0	U	135-98-8	sec-Butylbenzene	1.0	U
1.0	U	100-42-5	Styrene	1.0	U
1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
1.0	U	98-06-6	t-Butylbenzene	1.0	U
5.0	U	127-18-4	Tetrachloroethene	1.0	U
5.0	U	108-88-3	Toluene	1.0	U
1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
1.0	U	79-01-6	Trichloroethene	1.0	U
1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
5.0	U	75-01-4	Vinyl Chloride	1.0	U
1.0	U	1330-20-7	Xylenes (Total)	1	U
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 U	1.0 U 56-23-5 1.0 U 108-90-7 1.0 U 75-00-3 1.0 U 75-00-3 1.0 U 74-87-3 1.0 U 156-59-2 1.0 U 10061-01-5 1.0 U 124-48-1 1.0 U 124-48-1 1.0 U 98-82-8 1.0 U 136777612 1.0 U 136777612 1.0 U 136777612 1.0 U 1634-04-4 1.0 U 104-51-8 50 U 103-65-1 1.0 U 95-47-6 1.0 U 95-47-6 1.0 U 135-98-8 1.0 U 100-42-5 1.0 U 98-06-6 5.0 U 108-88-3 1.0 U 156-60-5 0.50 U 1061-02-6 1.0 U 75-69-4 5.0 U 75-69-4 5.0 U 75-69-4	1.0 U 56-23-5 Carbon Tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U 75-00-3 Chloroform 1.0 U 67-66-3 Chloroform 1.0 U 74-87-3 Chloromethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 U 10061-01-5 cis-1,3-Dichloropropene 1.0 U 124-48-1 Dibromochloromethane 1.0 U 75-71-8 Dichlorodifluoromethane 1.0 U 100-41-4 Ethylbenzene 1.0 U 136777612 m&p-Xylenes 1.0 U 136777612 m&p-Xylenes 1.0 U 1634-04-4 Methyl-t-butyl ether 1.0 U 1634-04-4 Methyl-t-butyl ether 1.0 U 103-65-1 n-Propylbenzene 50 U 103-65-1 n-Propylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0	1.0 U 56-23-5 Carbon Tetrachloride 1.0 1.0 U 108-90-7 Chlorobenzene 1.0 1.0 U 75-00-3 Chloroethane 1.0 1.0 U 67-66-3 Chloroform 1.0 1.0 U 74-87-3 Chloromethane 1.0 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 1.0 U 10661-01-5 cis-1,3-Dichloropropene 1.0 1.0 U 10661-01-5 cis-1,3-Dichloropropene 1.0 1.0 U 124-48-1 Dibromochloromethane 1.0 1.0 U 124-48-1 Dibromochloromethane 1.0 1.0 U 100-41-4 Ethylbenzene 1.0 1.0 U 100-41-4 Ethylbenzene 1.0 1.0 U 136777612 m&p-Xylenes 1.0 1.0 U 1634-04-4 Methyl-t-butyl ether 0.50 1.0 U 1634-04-4 Methyl-t-butyl ether 0.50 1.0 U 103-65-1 n-Propylbenzene 1.0 1.0 U

Worksheet #: 115287

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $[\]emph{J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC43958-015

Client Id: TRIP BLANK Data File: 3M61740.D

Analysis Date: 04/15/09 10:51

Date Rec/Extracted: 04/13/09-NA

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 8260B

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.B - Indicates the analyte was found in the blank as well as in the sample.

FORM 3 Spike Recovery

Batch Number: MBS11916

Mbs Name: MBS11916

Ns Name: AC43942-014

Ms Name: AC43942-014(MS)

Msd Name: AC43942-014(MSD

Mbs File: 1M43986.D

Non Spk'd File: 1M43963.D

Spike File: 1M44006.D

Spike Dup File: 1M44007.D

Matrix: Soil

Method: EPA 8260B

Mbs Date: 04/15/09 15:27 Non Spk'd Date: 04/15/09 09:16

Spike Date: 04/15/09 20:57 Spike Dup Date: 04/15/09 21:14

Compound	C#	Со	Mr	Conc Exp	Lo Llm	Hi Lim	Rpd Llm	Mbs Conc	Sample Conc	Spike Conc	Spike Dup Conc	Mbs Rec	MS Rec	Msd Rec	Rpd
Vinyl Chloride	6	1	0	50	6	117	53	39.76	0.00	39.14	36.75	80	78	74	6.3
1,1-Dichloroethene	19	1	0	50	8	114	53	40.98	0.00	39.88	37.53	82	80	75	6.1
1,1-Dichloroethane	22	1	0	50	14	127	44	44.88	0.00	42.52	42.76	90	85	86	0.56
Chloroform	29	1	0	50	26	119	39	46.67	0.00	44.31	43.60	93	89	87	1.6
1,2-Dichloroethane	33	1	0	50	18	130	37	45.93	0.00	41.36	42.80	92	83	86	3.4
2-Butanone	34	1	0	50	4	141	59	48.27	0.00	47.26	43.98	97	95	88	7.2
Carbon Tetrachloride	36	1	0	50	19	122	40	41.99	0.00	44.76	36.81	84	90	74	19
Trichloroethene	42	1	0	50	21	116	39	39.98	0.00	59.10	55.24	80	118 Mo	110	6.8
Benzene	43	1	0	50	21	122	38	39.40	0.00	37.66	36.11	79	75	72	4.2
Tetrachloroethene	55	1	0	50	18	116	37	32.86	0.00	39.60	29.60	66	79	59	29
Toluene	57	1	0	50	19	128	35	41.15	0.00	42.03	36.24	82	84	72	15
Chlorobenzene	59	1	0	50	21	117	37	38.95	0.00	39.71	33.72	78	79	67	16
1,4-Dichlorobenzene	70	1	0	50	20	110	41	31.30	0.00	32.01	26.17	63	64	52	20
1,2-Dichlorobenzene	71	1	0	50	19	113	42	35.48	0.00	38.08	30.24	71	76	60	23
n-Propylbenzene	78	1	0	50	16	122	42	34.04	0.00	40.87	31.46	68	82	63	26
sec-Butylbenzene	83	1	0	50	9	125	48	33.24	0.00	42.00	33.60	66	84	67	22

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB4113

Client Id:

Data File: 5M50076.D Analysis Date: 04/21/09 10:00 Date Rec/Extracted: NA-04/20/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			19, L			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
122-66-7 1,2-Diphenylhydrazine	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4 2,4,5-Trichlorophenol	2.0	U	65-85-0	Benzoic Acid	10	U
88-06-2 2,4,6-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
120-83-2 2,4-Dichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	2.0	U
105-67-9 2,4-Dimethylphenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
51-28-5 2,4-Dinitrophenol	10	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
121-14-2 2,4-Dinitrotoluene	2.0	U	85-68-7	Butylbenzylphthalate	2.0	U
606-20-2 2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7 2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8 2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6 2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	2.0	U
95-48-7 2-Methylphenol	2.0	U	84-66-2	Diethylphthalate	2.0	U
88-74-4 2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5 2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5 3&4-Methylphenol	2.0	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1 3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2 3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1 4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3 4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7 4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8 4-Chloroaniline	2.0	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3 4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6 4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7 4-Nitrophenol	2.0	U	91-20-3	Naphthalene	2.0	U
83-32-9 Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8 Acenaphthylene	2.0	U	62-75-9	N-Nitrosodimethylamine	2.0	U
62-53-3 Aniline	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	2.0	U
120-12-7 Anthracene	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
92-87-5 Benzidine	10	U	87-86-5	Pentachlorophenol	10	U
56-55-3 Benzo[a]anthracene	2.0	U	85-01-8	Phenanthrene	2.0	U
50-32-8 Benzo[a]pyrene	2.0	U	108-95-2	Phenol	2.0	U
205-99-2 Benzo[b]fluoranthene	2.0	U	129-00-0	Pyrene	2.0	U
- -			,			

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: WMB4113

Client Id:

Matrix: Aqueous

Initial Vol: 1000ml Final Vol: 1ml

Data File: 5M50076.D

Analysis Date: 04/21/09 10:00

Dilution: 1

Date Rec/Extracted: NA-04/20/09

Solids: 0

Method: EPA 8270C

Units: ug/L

	Cas#	Compound	RT	Conc	
1	111-76-2	Ethanol, 2-butoxy-	4.56	4.6 J	
2	526-73-8	Benzene, 1,2,3-trimethyl-	5.33	4.5 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 9.1

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB4113

Client Id:

Data File: 9M17766.D

Analysis Date: 04/22/09 13:13

Date Rec/Extracted: NA-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 100

Units: mg/Kg

120-82-1 1,2,4-Trichlorobenzene	Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
122-66-7 1,2-Diphenylhydrazine 0.067 U 207-08-9 Benzo[k]fluoranthene 0.067 U 95-95-4 2,4,5-Trichlorophenol 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 112-08-32 2,4-Dirchlorophenol 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 108-67-9 2,4-Dimethylphenol 0.067 U 108-60-1 bis(2-chloroisopropyl)ether 0.067 U 108-67-9 2,4-Dimethylphenol 0.067 U 108-60-1 bis(2-chloroisopropyl)ether 0.067 U 111-91-7 bis(2-Ethylhexyl)phthalate			1				
95-95-4 2,4,5-Trichlorophenol 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 111-91-1 bis(2-Chloroethxy)methan 0.067 U 115-67-9 2,4-Dimethylphenol 0.067 U 111-44- bis(2-Chloroethxy)methan 0.067 U 105-67-9 2,4-Dimethylphenol 0.067 U 108-60-1 bis(2-chloroisopropyl)ether 0.067 U 121-14-2 2,4-Dinitrophenol 0.033 U 117-81-7 bis(2-Ethylhexy)lphthalate 0.067 U 85-68-7 Butylbenzylphthalate 0.067 U 85-68-7 Butylbenzylphthalate 0.067 U 86-74-8 Carbazole 0.067 U 191-58-7 2-Chloronaphthalene 0.067 U 86-74-8 Carbazole 0.067 U 191-58-7 2-Chlorophenol 0.067 U 191-58-7 2-Chlorophenol 0.067 U 191-57-6 2-Methylnaphthalane 0.067 U 191-57-6 2-Methylnaphthalane 0.067 U 192-80-19 0.067 U 192-80-9 0.067 U 192-80-	• •	0.067	บ			0.067	U
88-06-2 2,4,6-Trichlorophenol 0.067 U 111-91-1 bis(2-Chloroethoxy)methan 0.067 U 120-83-2 2,4-Dichlorophenol 0.067 U 111-44-4 bis(2-Chloroethylpherher) 0.067 U 51-28-5 2,4-Dimitrylphenol 0.33 U 117-81-7 bis(2-Ethylhexyl)phthalate 0.067 U 121-14-2 2,4-Dinitrofoluene 0.067 U 85-88-7 Bulylbenzylphthalate 0.067 U 606-20-2 2,6-Dinitrofoluene 0.067 U 86-74-8 Carbazole 0.067 U 91-58-7 2-Chlorophenol 0.067 U 218-01-9 Chysene 0.067 U 95-48-7 2-Methylphaphol 0.067 U 312-04-9 Dienzofuran 0.067 U 88-74-8 2-Methylphaphol 0.067 U 313-04-60-2 Dienzylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 314-66-2 Diethylphthalate 0.067 U 88-75		0.067	บ	65-85-0	Benzoic Acid	0.33	U
105-67-9 2.4-Dimethylphenol 0.067 U 108-60-1 bis(2-chloroisopropyl)ether 0.067 U 117-81-7 bis(2-Eltylhexyl)phthalate 0.067 U 118-71-7 bis(2-Eltylhexyl)phthalate 0.067 U 1	·	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
S1-28-5 2,4-Dinitrophenol 0.33 U 117-81-7 bis(2-Ethylhexyl)phthalate 0.067 U 121-14-2 2,4-Dinitrotoluene 0.067 U 85-68-7 Butylbenzylphthalate 0.067 U 91-58-7 2-Chloronaphthalene 0.067 U 218-019 Chrysene 0.067 U 91-58-7 2-Chloronaphthalene 0.067 U 218-019 Chrysene 0.067 U 91-57-6 2-Methylphenol 0.067 U 132-64-9 Dibenzofu,h]anthracene 0.067 U 91-57-6 2-Methylphenol 0.067 U 132-64-9 Dibenzofuran 0.067 U 132-44-62 Di-n-butylphthalate 0.067 U 132-44-62 Di-n-butylphthalate 0.067 U 132-44-2 Di-n-butylphthalate 0.067 U 132-44-	120-83-2 2,4-Dichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
121-14-2 2,4-Dinitrotoluene 0.067 U 85-68-7 Butylbenzylphthalate 0.067 U 91-58-7 2-Chloronaphthalene 0.067 U 218-01-9 Chrysene 0.067 U 91-58-7 2-Chloronaphthalene 0.067 U 218-01-9 Chrysene 0.067 U 91-57-8 2-Methylphaphthalene 0.067 U 132-64-9 Dibenzo[a,h]anthracene 0.067 U 95-48-7 2-Methylphenol 0.067 U 132-64-9 Dibenzofuran 0.067 U 95-48-7 2-Methylphenol 0.067 U 131-11-3 Dimethylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 131-11-3 Dimethylphthalate 0.067 U 106-44-5 384-Methylphenol 0.067 U 117-84-0 Di-n-octylphthalate 0.067 U 91-94-1 3,3-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 86-73-7 Fluorene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 106-47-8 4-Chloro-3-methylphenol 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 193-39-5 Nitrosodimethylamine 0.067 U 100-01-7 4-Nitroaniline 0.067 U 193-39-5 Nitrosodimethylamine 0.067 U 100-01-7 4-Nitroaniline	105-67-9 2,4-Dimethylphenol	0.067	บ	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
106-2-02 2,6-Dinitrololuene	51-28-5 2,4-Dinitrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
91-58-7 2-Chloronaphthalene 0.067 U 218-01-9 Chrysene 0.067 U 95-57-8 2-Chlorophenol 0.067 U 53-70-3 Dibenzo[a,h]anthracene 0.067 U 91-57-6 2-Methylphenol 0.067 U 132-64-9 Dibenzofuran 0.067 U 95-48-7 2-Methylphenol 0.067 U 84-66-2 Diethylphthalate 0.067 U 88-74-4 2-Nitroaniline 0.067 U 84-74-2 Di-n-butylphthalate 0.067 U 88-74-5 2-Nitrophenol 0.067 U 84-74-2 Di-n-butylphthalate 0.067 U 106-44-5 3&4-Methylphenol 0.067 U 117-84-0 Di-n-octylphthalate 0.067 U 91-94-1 3,3'-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 86-73-7 Fluorene 0.067 U 105-50-3 4-Chloro-3-methylphenol 0.067 U 87-88-3 Hexachlorobutadiene 0.067 <td< td=""><td>121-14-2 2,4-Dinitrotoluene</td><td>0.067</td><td>U</td><td>85-68-7</td><td>Butylbenzylphthalate</td><td>0.067</td><td>U</td></td<>	121-14-2 2,4-Dinitrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
95-57-8 2-Chlorophenol 0.067 U 53-70-3 Dibenzo[a,h]anthracene 0.067 U 91-57-6 2-Methylnaphthalene 0.067 U 132-64-9 Dibenzofuran 0.067 U 88-74-4 2-Nitroaniline 0.067 U 84-66-2 Diethylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 88-75-5 2-Nitrophenol 0.067 U 131-11-3 Dimethylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 117-84-0 Di-n-octylphthalate 0.067 U 91-94-1 3,3'-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobenzene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorocyclopentadiene 0.33 U 106-47-8 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-02-7 4-Nitrophenol 0.067 U 99-95-3 Nitrobenzene 0.067 U 99-95-3 Nitrobenzene 0.067 U 100-02-7 A-Nitrophenol 0.067 U 99-95-3 Nitrobenzene 0.067 U 99-95-3 Nitrobenzene 0.067 U 99-95-3 Nitrobenzene 0.067 U 99-95-3 Nitrobenzene 0.067 U 99-87-5 Benzidine 0.067 U 99-87-5 Benzidine 0.033 U 90-96-8 Acenaphthylene 0.067 U 86-30-8 Pentachlorophenol 0.067 U 99-87-5 Benzidine 0.033 U 85-65-3 Benzo[a]pyrene 0.067 U 85-01-8 Phenol 0.067 U 85-01-8 Phenol 0.067 U 99-87-5 Benzidine 0.067 U 85-01-8 Phenol 0.067 U 85-01-8 Phenol 0.067 U 85-01-8 Phenol 0.067 U 85-01-8 Phenol 0.067 U 99-87-3 Benzo[a]pyrene 0.067 U 99-88-5 Phenol 0.	606-20-2 2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-57-6 2-Methylnaphthalene 0.067 U 132-64-9 Dibenzofuran 0.067 U 95-48-7 2-Methylphenol 0.067 U 84-66-2 Diethylphthalate 0.067 U 88-74-4 2-Nitropaniline 0.067 U 131-11-3 Dimethylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 84-74-2 Di-n-butylphthalate 0.067 U 106-44-5 3&4-Methylphenol 0.067 U 117-84-0 Di-n-butylphthalate 0.067 U 91-94-1 3,3'-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 106-47-8 4-Chloro-a-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.03 U 106-47-8	91-58-7 2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-48-7 2-Methylphenol	95-57-8 2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U
88-74-4 2-Nitrophiline 0.067 U 131-11-3 Dimethylphthalate 0.067 U 88-75-5 2-Nitrophenol 0.067 U 84-74-2 Di-n-butylphthalate 0.067 U 106-44-5 3&4-Methylphenol 0.067 U 206-44-0 Fluoranthene 0.067 U 91-94-1 3,3'-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 534-52-1 4,6-Dinitro-2-methylphenol 0.33 U 118-74-1 Hexachlorobutadiene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 106-47-8 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorobutadiene 0.067 U 106-47-8 4-Chloroaniline 0.067 U 77-47-4 Hexachlorobutadiene 0.067 U 10	91-57-6 2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
88-75-5 2-Nitrophenol 0.067 U 84-74-2 Di-n-butylphthalate 0.067 U 106-44-5 3&4-Methylphenol 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 534-52-1 4,6-Dinitro-2-methylphenol 0.33 U 118-74-1 Hexachlorobenzene 0.067 U 534-52-1 4,6-Dinitro-2-methylphenol 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 59-50-7 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.33 U 106-47-8 4-Chloroaniline 0.067 U 67-72-1 Hexachlorocyclopentadiene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 98-95-3 Nitrobenzene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 98-95-3 Nitrobenzene 0.067 U 98-95-3 Nitrobenzene 0.067 U 98-95-3 Aniline 0.067 U 98-95-3 Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 62-164-7 N-Nitrosodimethylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenol 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 50-32-8 Phenol	95-48-7 2-Methylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
106-44-5 3&4-Methylphenol 0.067 U 117-84-0 Di-n-octylphthalate 0.067 U 91-94-1 3,3'-Dichlorobenzidine 0.067 U 206-44-0 Fluoranthene 0.067 U 99-09-2 3-Nitroaniline 0.067 U 86-73-7 Fluorene 0.067 U 534-52-1 4,6-Dinitro-2-methylphenol 0.33 U 118-74-1 Hexachlorobenzene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 59-50-7 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorobutadiene 0.067 U 106-47-8 4-Chloroaniline 0.067 U 67-72-1 Hexachlorobutadiene 0.067 U 7005-72-3 4-Chloroaniline 0.067 U 67-72-1 Hexachlorobutadiene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 1	88-74-4 2-Nitroaniline	0.067	υ	131-11-3	Dimethylphthalate	0.067	U
91-94-1 3,3'-Dichlorobenzidine	88-75-5 2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U
99-09-2 3-Nitroaniline	106-44-5 3&4-Methylphenol	0.067	U	117-84-0	Di-n-octylphthalate	0.067	U
534-52-1 4,6-Dinitro-2-methylphenol 0.33 U 118-74-1 Hexachlorobenzene 0.067 U 101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 59-50-7 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.33 U 106-47-8 4-Chloroaniline 0.067 U 67-72-1 Hexachlorocyclopentadiene 0.067 U 7005-72-3 4-Chlorophenyl-phenylether 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U	91-94-1 3,3'-Dichlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U
101-55-3 4-Bromophenyl-phenylether 0.067 U 87-68-3 Hexachlorobutadiene 0.067 U 59-50-7 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.33 U 106-47-8 4-Chloropaniline 0.067 U 67-72-1 Hexachlorocyclopentadiene 0.067 U 7005-72-3 4-Chlorophenyl-phenylether 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 86-30-6 n-Nitrosodimethylamine 0.067 U <	99-09-2 3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U
59-50-7 4-Chloro-3-methylphenol 0.067 U 77-47-4 Hexachlorocyclopentadiene 0.33 U 106-47-8 4-Chloroaniline 0.067 U 67-72-1 Hexachlorocyclopentadiene 0.067 U 7005-72-3 4-Chlorophenyl-phenylether 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitrosodimethylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 </td <td>534-52-1 4,6-Dinitro-2-methylphenol</td> <td>0.33</td> <td>U</td> <td>118-74-1</td> <td>Hexachlorobenzene</td> <td>0.067</td> <td>U</td>	534-52-1 4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
106-47-8 4-Chloroaniline 0.067 U 67-72-1 Hexachloroethane 0.067 U 7005-72-3 4-Chlorophenyl-phenylether 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U <td>101-55-3 4-Bromophenyl-phenylether</td> <td>0.067</td> <td>U</td> <td>87-68-3</td> <td>Hexachlorobutadiene</td> <td>0.067</td> <td>U</td>	101-55-3 4-Bromophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U
7005-72-3 4-Chlorophenyl-phenylether 0.067 U 193-39-5 Indeno[1,2,3-cd]pyrene 0.067 U 100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	59-50-7 4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
100-01-6 4-Nitroaniline 0.067 U 78-59-1 Isophorone 0.067 U 100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	106-47-8 4-Chloroaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
100-02-7 4-Nitrophenol 0.067 U 91-20-3 Naphthalene 0.067 U 83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	7005-72-3 4-Chlorophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
83-32-9 Acenaphthene 0.067 U 98-95-3 Nitrobenzene 0.067 U 208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	100-01-6 4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U
208-96-8 Acenaphthylene 0.067 U 62-75-9 N-Nitrosodimethylamine 0.067 U 62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	100-02-7 4-Nitrophenol	0.067	U	91-20-3	Naphthalene	0.067	U
62-53-3 Aniline 0.067 U 621-64-7 N-Nitroso-di-n-propylamine 0.067 U 120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	83-32-9 Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
120-12-7 Anthracene 0.067 U 86-30-6 n-Nitrosodiphenylamine 0.067 U 92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	208-96-8 Acenaphthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
92-87-5 Benzidine 0.33 U 87-86-5 Pentachlorophenol 0.33 U 56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	62-53-3 Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
56-55-3 Benzo[a]anthracene 0.067 U 85-01-8 Phenanthrene 0.067 U 50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	120-12-7 Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
50-32-8 Benzo[a]pyrene 0.067 U 108-95-2 Phenol 0.067 U	92-87-5 Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	υ
00 02 0 Dollar [a]p) 10 10	56-55-3 Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
205-99-2 Benzo[b]fluoranthene 0.067 U 129-00-0 Pyrene 0.067 U	50-32-8 Benzo[a]pyrene	0.067	บ	108-95-2	Phenol	0.067	U
	205-99-2 Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB4113

Matrix: Soil

Client Id:

Initial Vol: 30g

Data File: 9M17766.D

Final Vol: 1ml

Analysis Date: 04/22/09 13:13

Dilution: 1

Date Rec/Extracted: NA-04/22/09

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	3.53	0.27 J
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	64 JA
3		unknown	4.63	0.20 J

Worksheet #: 116081

Total Tentatively Identified Concentration 64

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.</sup>

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB4113

Matrix: Soil

Client Id:

Data File: 10M04342.D

Initial Vol: 30g

Method: EPA 8270C

Analysis Date: 04/22/09 13:31

Final Vol: 1ml

Date Rec/Extracted: NA-04/22/09

Dilution: 1

Column: DB-5MS 30M 0.250mm ID 0.25um film

Solids: 100

Units: mg/Kg

Cas # Compound	RL	Conc	Cas#	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.067	U	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7 1,2-Diphenylhydrazine	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4 2,4,5-Trichlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2 2,4,6-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2 2,4-Dichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9 2,4-Dimethylphenol	0.067	U	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5 2,4-Dinitrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2 2,4-Dinitrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2 2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7 2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8 2-Chlorophenol	0.067	υ	53-70-3	Dibenzo[a,h]anthracene	0.067	U
91-57-6 2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
95-48-7 2-Methylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
88-74-4 2-Nitroaniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U
88-75-5 2-Nitrophenol	0.067	υ	84-74-2	Di-n-butylphthalate	0.067	U
106-44-5 3&4-Methylphenol	0.067	υ	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1 3,3'-Dichlorobenzidine	0.067	υ	206-44-0	Fluoranthene	0.067	U
99-09-2 3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U
534-52-1 4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
101-55-3 4-Bromophenyl-phenylether	0.067	υ	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7 4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8 4-Chloroaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
7005-72-3 4-Chlorophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6 4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U
100-02-7 4-Nitrophenol	0.067	U	91-20-3	Naphthalene	0.067	U
83-32-9 Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8 Acenaphthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
62-53-3 Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
120-12-7 Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
92-87-5 Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	U
56-55-3 Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8 Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2 Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB4113

Client Id:

Matrix: Soil Initial Vol: 30g

Data File: 10M04342.D

Final Vol: 1ml

Analysis Date: 04/22/09 13:31

Dilution: 1

Date Rec/Extracted: NA-04/22/09

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.19	0.26 J
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.60	68 JA
3		unknown	4.37	0.19 J

Worksheet #: 116081

Total Tentatively Identified Concentration 68

A - Indicates an aldol condensate.

J - Indicates an estimated value.B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB4113

Number: SMB4113 Client Id:

Data File: 5M50102.D

Analysis Date: 04/22/09 13:40 Date Rec/Extracted: NA-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 100

Units: mg/Kg

		0111101	פיייפיי			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.067	U	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7 1,2-Diphenylhydrazine	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4 2,4,5-Trichlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2 2,4,6-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2 2,4-Dichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9 2,4-Dimethylphenol	0.067	U	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5 2,4-Dinitrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2 2,4-Dinitrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2 2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7 2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8 2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U
91-57-6 2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
95-48-7 2-Methylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
88-74-4 2-Nitroaniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U
88-75-5 2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U
106-44-5 3&4-Methylphenol	0.067	U	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1 3,3'-Dichlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U
99-09-2 3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U
534-52-1 4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
101-55-3 4-Bromophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7 4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8 4-Chloroaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
7005-72-3 4-Chlorophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6 4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U
100-02-7 4-Nitrophenol	0.067	U	91-20-3	Naphthalene	0.067	U
83-32-9 Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8 Acenaphthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
62-53-3 Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
120-12-7 Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
92-87-5 Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	U
56-55-3 Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8 Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2 Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB4113

Client Id:

Data File: 5M50102.D

Analysis Date: 04/22/09 13:40

Date Rec/Extracted: NA-04/22/09

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc	
1		unknown	3.61	0.35 J	_
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.95	40 JA	
3	111-76-2	Ethanol, 2-butoxy-	4.56	0.16 J	
4		unknown	4.67	0.24 J	

- J Indicates an estimated value.
 B Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB4115 Method: EPA 8270C

Client Id: Matrix: Soil
Data File: 9M17799.D Initial Vol: 30g
Analysis Date: 04/23/09 16:41 Final Vol: 1ml
Date Rec/Extracted: NA-04/23/09 Dilution: 1
Column: DB-5MS 30M 0.250mm ID 0.25um film Solids: 100

Units: mg/Kg

		Units: n	ilg/Ng			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.067	υ	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7 1,2-Diphenylhydrazine	0.067	υ	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4 2,4,5-Trichlorophenol	0.067	υ	65-85-0	Benzoic Acid	0.33	U
88-06-2 2,4,6-Trichlorophenol	0.067	υ	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2 2,4-Dichlorophenol	0.067	υ	111-44-4	bis(2-Chloroethyl)ether	0.067	υ
105-67-9 2,4-Dimethylphenol	0.067	υ	108-60-1	bis(2-chloroisopropyl)ether	0.067	υ
51-28-5 2,4-Dinitrophenol	0.33	υ	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	υ
121-14-2 2,4-Dinitrotoluene	0.067	υ	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2 2,6-Dinitrotoluene	0.067	υ	86-74-8	Carbazole	0.067	U
91-58-7 2-Chloronaphthalene	0.067	υ	218-01-9	Chrysene	0.067	U
95-57-8 2-Chlorophenol	0.067	υ	53-70-3	Dibenzo[a,h]anthracene	0.067	υ
91-57-6 2-Methylnaphthalene	0.067	υ	132-64-9	Dibenzofuran	0.067	υ
95-48-7 2-Methylphenol	0.067	υ	84-66-2	Diethylphthalate	0.067	υ
88-74-4 2-Nitroaniline	0.067	υ	131-11-3	Dimethylphthalate	0.067	U
88-75-5 2-Nitrophenol	0.067	υ	84-74 - 2	Di-n-butylphthalate	0.067	U
106-44-5 3&4-Methylphenol	0.067	υ	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1 3,3'-Dichlorobenzidine	0.067	υ	206-44-0	Fluoranthene	0.067	U
99-09-2 3-Nitroaniline	0.067	υ	86-73-7	' Fluorene	0.067	U
534-52-1 4,6-Dinitro-2-methylphenol	0.33	υ	118-74-1	Hexachiorobenzene	0.067	U
101-55-3 4-Bromophenyl-phenylether	0.067	υ	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7 4-Chloro-3-methylphenol	0.067	υ	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8 4-Chloroaniline	0.067	υ	67-72-1	Hexachloroethane	0.067	U
7005-72-3 4-Chlorophenyl-phenylether	0.067	υ	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6 4-Nitroaniline	0.067	υ	78-59-1	Isophorone	0.067	U
100-02-7 4-Nitrophenol	0.067	υ	91-20-3	Naphthalene	0.067	U
83-32-9 Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8 Acenaphthylene	0.067	υ	62-75-9	N-Nitrosodimethylamine	0.067	υ
62-53-3 Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	υ
120-12-7 Anthracene	0.067	υ	86-30-6	n-Nitrosodiphenylamine	0.067	υ
92-87-5 Benzidine	0.33	υ	87-86-5	Pentachlorophenol	0.33	υ
56-55-3 Benzo[a]anthracene	0.067	υ	85-01-8	Phenanthrene	0.067	U
50-32-8 Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2 Benzo[b]fluoranthene	0.067	υ	129-00-0	Pyrene	0.067	υ
• •						

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

F - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB4115 Client Id:

Data File: 9M17799.D

Analysis Date: 04/23/09 16:41

Date Rec/Extracted: NA-04/23/09

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	3.53	0.38 J
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.89	88 JA
3		unknown	4.62	0.28 J

Worksheet #: 116081

Total Tentatively Identified Concentration 89

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.</sup>

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-001

Client Id: B-2

Data File: 9M17803.D

Analysis Date: 04/23/09 18:10

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 85

Units: mg/Kg

		Units. i	iig/ng			
Cas # Compound	RL	Conc	Cas#	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.078	U	191-24-2	Benzo[g,h,i]perylene	0.078	U
122-66-7 1,2-Diphenylhydrazine	0.078	U	207-08-9	Benzo[k]fluoranthene	0.078	U
95-95-4 2,4,5-Trichlorophenol	0.078	U	65-85-0	Benzoic Acid	0.39	U
88-06-2 2,4,6-Trichlorophenol	0.078	U	111-91-1	bis(2-Chloroethoxy)methan	0.078	U
120-83-2 2,4-Dichlorophenol	0.078	U	111-44-4	bis(2-Chloroethyl)ether	0.078	U
105-67-9 2,4-Dimethylphenol	0.078	U	108-60-1	bis(2-chloroisopropyl)ether	0.078	U
51-28-5 2,4-Dinitrophenol	0.39	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.078	0.27
121-14-2 2,4-Dinitrotoluene	0.078	U	85-68-7	Butylbenzylphthalate	0.078	U
606-20-2 2,6-Dinitrotoluene	0.078	U	86-74-8	Carbazole	0.078	U
91-58-7 2-Chloronaphthalene	0.078	U	218-01-9	Chrysene	0.078	0.087
95-57-8 2-Chlorophenol	0.078	U	53-70-3	Dibenzo[a,h]anthracene	0.078	U
91-57-6 2-Methylnaphthalene	0.078	U	132-64-9	Dibenzofuran	0.078	· U
95-48-7 2-Methylphenol	0.078	U	84-66-2	Diethylphthalate	0.078	U
88-74-4 2-Nitroaniline	0.078	U	131-11-3	Dimethylphthalate	0.078	U
88-75-5 2-Nitrophenol	0.078	U	84-74-2	Di-n-butylphthalate	0.078	U
106-44-5 3&4-Methylphenol	0.078	U	117-84-0	Di-n-octylphthalate	0.078	0.21
91-94-1 3,3'-Dichlorobenzidine	0.078	U	206-44-0	Fluoranthene	0.078	0.13
99-09-2 3-Nitroaniline	0.078	U	86-73-7	Fluorene	0.078	U
534-52-1 4,6-Dinitro-2-methylphenol	0.39	U	118-74-1	Hexachlorobenzene	0.078	U
101-55-3 4-Bromophenyl-phenylether	0.078	U	87-68-3	Hexachlorobutadiene	0.078	U
59-50-7 4-Chloro-3-methylphenol	0.078	U	77-47-4	Hexachlorocyclopentadiene	0.39	U
106-47-8 4-Chloroaniline	0.078	U	67-72-1	Hexachloroethane	0.078	U
7005-72-3 4-Chlorophenyl-phenylether	0.078	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.078	U
100-01-6 4-Nitroaniline	0.078	U	78-59-1	Isophorone	0.078	U
100-02-7 4-Nitrophenol	0.078	U	91-20-3	Naphthalene	0.078	U
83-32-9 Acenaphthene	0.078	U	98-95-3	Nitrobenzene	0.078	U
208-96-8 Acenaphthylene	0.078	U	62-75-9	N-Nitrosodimethylamine	0.078	U
62-53-3 Aniline	0.078	U	621-64-7	N-Nitroso-di-n-propylamine	0.078	U
120-12-7 Anthracene	0.078	U	86-30-6	n-Nitrosodiphenylamine	0.078	U
92-87-5 Benzidine	0.39	U	87-86-5	Pentachlorophenol	0.39	U
56-55-3 Benzo[a]anthracene	0.078	0.087	85-01-8	Phenanthrene	0.078	U
50-32-8 Benzo[a]pyrene	0.078	0.082	108-95-2	Phenol	0.078	U
205-99-2 Benzo[b]fluoranthene	0.078	0.12	129-00-0	Pyrene	0.078	0.14

Worksheet #: 116081

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-001

Matrix: Soil

Client Id: B-2

Initial Vol: 30g

Data File: 9M17803.D

Final Vol: 1ml

Analysis Date: 04/23/09 18:10

Dilution: 1

Date Rec/Extracted: 04/13/09-04/23/09

Solids: 85

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.52	0.43 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	93 JAB
3		unknown	4.62	0.31 JB
4	85027-76-5	17-Methoxy-3.betamethoxymethoxy-9.	12.17	0.22 J
5		unknown	13.12	0.21 J
6	1330-96-7	1,2-Benzenedicarboxylic acid, isodecyl	13.78	0.38 J

Worksheet #: 116081

Total Tentatively Identified Concentration 95

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-002

Client Id: B-3

Data File: 5M50105.D

Analysis Date: 04/22/09 17:01 Date Rec/Extracted: 04/13/09-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 87

Units: mg/Kg

O # Compound	D.		···g/···g	Compound	RL	Cono
Cas # Compound	RL_	Conc		Compound	0.077	Conc U
120-82-1 1,2,4-Trichlorobenzene	0.077	U		Benzo[g,h,i]perylene		U
122-66-7 1,2-Diphenylhydrazine	0.077	U		Benzo[k]fluoranthene	0.077	_
95-95-4 2,4,5-Trichlorophenol	0.077	U		Benzoic Acid	0.38	U
88-06-2 2,4,6-Trichlorophenol	0.077	U		bis(2-Chloroethoxy)methan	0.077	U
120-83-2 2,4-Dichlorophenol	0.077	U		bis(2-Chloroethyl)ether	0.077	U
105-67-9 2,4-Dimethylphenol	0.077	U		bis(2-chloroisopropyl)ether	0.077	U
51-28-5 2,4-Dinitrophenol	0.38	U		bis(2-Ethylhexyl)phthalate	0.077	U
121-14-2 2,4-Dinitrotoluene	0.077	U		Butylbenzylphthalate	0.077	U
606-20-2 2,6-Dinitrotoluene	0.077	U		Carbazole	0.077	U
91-58-7 2-Chloronaphthalene	0.077	U		Chrysene	0.077	U
95-57-8 2-Chlorophenol	0.077	U	53-70-3	Dibenzo[a,h]anthracene	0.077	U
91-57-6 2-Methylnaphthalene	0.077	U	132-64-9	Dibenzofuran	0.077	U
95-48-7 2-Methylphenol	0.077	U	84-66-2	Diethylphthalate	0.077	U
88-74-4 2-Nitroaniline	0.077	U	131-11-3	Dimethylphthalate	0.077	U
88-75-5 2-Nitrophenol	0.077	U	84-74-2	Di-n-butylphthalate	0.077	U
106-44-5 3&4-Methylphenol	0.077	U	117-84-0	Di-n-octylphthalate	0.077	U
91-94-1 3,3'-Dichlorobenzidine	0.077	U	206-44-0	Fluoranthene	0.077	U
99-09-2 3-Nitroaniline	0.077	U	86-73-7	Fluorene	0.077	U
534-52-1 4,6-Dinitro-2-methylphenol	0.38	U	118-74-1	Hexachlorobenzene	0.077	U
101-55-3 4-Bromophenyl-phenylether	0.077	U	87-68-3	Hexachlorobutadiene	0.077	U
59-50-7 4-Chloro-3-methylphenol	0.077	U	77-47-4	Hexachlorocyclopentadiene	0.38	U
106-47-8 4-Chloroaniline	0.077	U	67-72-1	Hexachloroethane	0.077	U
7005-72-3 4-Chlorophenyl-phenylether	0.077	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.077	U
100-01-6 4-Nitroaniline	0.077	U	78-59-1	Isophorone	0.077	U
100-02-7 4-Nitrophenol	0.077	U	91-20-3	Naphthalene	0.077	U
83-32-9 Acenaphthene	0.077	U	98-95-3	Nitrobenzene	0.077	U
208-96-8 Acenaphthylene	0.077	U	62-75-9	N-Nitrosodimethylamine	0.077	U
62-53-3 Aniline	0.077	U	621-64-7	N-Nitroso-di-n-propylamine	0.077	U
120-12-7 Anthracene	0.077	U	86-30-6	n-Nitrosodiphenylamine	0.077	U
92-87-5 Benzidine	0.38	U	87-86-5	Pentachlorophenol	0.38	U
56-55-3 Benzo[a]anthracene	0.077	U		Phenanthrene	0.077	U
50-32-8 Benzo[a]pyrene	0.077	U	108-95-2	Phenol	0.077	U
205-99-2 Benzo[b]fluoranthene	0.077	U	129-00-0	Pyrene	0.077	U
			1	-		

Worksheet #: 116081

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-002

Client Id: B-3

Matrix: Soil Initial Vol: 30g

Data File: 5M50105.D

Final Vol: 1ml

Analysis Date: 04/22/09 17:01

Dilution: 1

Date Rec/Extracted: 04/13/09-04/22/09

Solids: 87

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	3.60	0.43 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.94	52 JAB
3		unknown	4.67	0.30 JB

- J Indicates an estimated value.
- B Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Method: EPA 8270C Sample Number: AC43958-003

Matrix: Soil Client Id: B-6 Initial Vol: 30g Data File: 10M04346.D Final Vol: 1ml Analysis Date: 04/22/09 17:00 Dilution: 1 Date Rec/Extracted: 04/13/09-04/22/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Solids: 82

Units: ma/Ka

	onits: hig/kg							
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc		
120-82-1 1,2,4-Trichlorobenzene	0.081	U	191-24-2	Benzo[g,h,i]perylene	0.081	U		
122-66-7 1,2-Diphenylhydrazine	0.081	U	207-08-9	Benzo[k]fluoranthene	0.081	U		
95-95-4 2,4,5-Trichlorophenol	0.081	U	65-85-0	Benzoic Acid	0.41	U		
88-06-2 2,4,6-Trichlorophenol	0.081	U	111-91-1	bis(2-Chloroethoxy)methan	0.081	U		
120-83-2 2,4-Dichlorophenol	0.081	U	111-44-4	bis(2-Chloroethyl)ether	0.081	U		
105-67-9 2,4-Dimethylphenol	0.081	U	108-60-1	bis(2-chloroisopropyl)ether	0.081	U		
51-28-5 2,4-Dinitrophenol	0.41	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.081	U		
121-14-2 2,4-Dinitrotoluene	0.081	U	85-68-7	Butylbenzylphthalate	0.081	U		
606-20-2 2,6-Dinitrotoluene	0.081	U	86-74-8	Carbazole	0.081	U		
91-58-7 2-Chloronaphthalene	0.081	U	218-01-9	Chrysene	0.081	U		
95-57-8 2-Chlorophenol	0.081	U	53-70-3	Dibenzo[a,h]anthracene	0.081	U		
91-57-6 2-Methylnaphthalene	0.081	U	132-64-9	Dibenzofuran	0.081	U		
95-48-7 2-Methylphenol	0.081	U	84-66-2	Diethylphthalate	0.081	U		
88-74-4 2-Nitroaniline	0.081	U	131-11-3	Dimethylphthalate	0.081	U		
88-75-5 2-Nitrophenol	0.081	U	84-74-2	Di-n-butylphthalate	0.081	U		
106-44-5 3&4-Methylphenol	0.081	U	117-84-0	Di-n-octylphthalate	0.081	U		
91-94-1 3,3'-Dichlorobenzidine	0.081	U	206-44-0	Fluoranthene	0.081	U		
99-09-2 3-Nitroaniline	0.081	U	86-73-7	Fluorene	0.081	U		
534-52-1 4,6-Dinitro-2-methylphenol	0.41	U	118-74-1	Hexachlorobenzene	0.081	U		
101-55-3 4-Bromophenyl-phenylether	0.081	υ	87-68-3	Hexachlorobutadiene	0.081	U		
59-50-7 4-Chloro-3-methylphenol	0.081	υ	77-47-4	Hexachlorocyclopentadiene	0.41	U		
106-47-8 4-Chloroaniline	0.081	U	67-72-1	Hexachloroethane	0.081	U		
7005-72-3 4-Chlorophenyl-phenylether	0.081	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.081	U		
100-01-6 4-Nitroaniline	0.081	U	78-59-1	Isophorone	0.081	U		
100-02-7 4-Nitrophenol	0.081	U	91-20-3	Naphthalene	0.081	U		
83-32-9 Acenaphthene	0.081	U	98-95-3	Nitrobenzene	0.081	U		
208-96-8 Acenaphthylene	0.081	U	62-75-9	N-Nitrosodimethylamine	0.081	U		
62-53-3 Aniline	0.081	U	621-64-7	N-Nitroso-di-n-propylamine	0.081	U		
120-12-7 Anthracene	0.081	U	86-30-6	n-Nitrosodiphenylamine	0.081	U		
92-87-5 Benzidine	0.41	U	87-86-5	Pentachlorophenoi	0.41	U		
56-55-3 Benzo[a]anthracene	0.081	U	85-01-8	Phenanthrene	0.081	U		
50-32-8 Benzo[a]pyrene	0.081	U	108-95-2	Phenol	0.081	U		
205-99-2 Benzo[b]fluoranthene	0.081	υ	129-00-0	Pyrene	0.081	0.095		
				-				

Worksheet #: 116081

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC43958-003

Matrix: Soil

Client Id: B-6

Initial Vol: 30g

Data File: 10M04346.D

Final Vol: 1ml

Analysis Date: 04/22/09 17:00

Dilution: 1

Solids: 82

Date Rec/Extracted: 04/13/09-04/22/09

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.18	0.34 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.60	88 JAB
3		unknown	4.37	0.25 JB

Worksheet #: 116081

Total Tentatively Identified Concentration 89

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.</sup>

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-004

Client Id: B-7

Data File: 9M17773.D

Analysis Date: 04/22/09 17:37 Date Rec/Extracted: 04/13/09-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 76

Units: mg/Kg

			Onits. II	19,179			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.088	U	191-24-2	Benzo[g,h,i]perylene	0.088	1.2
122-66-7	1,2-Diphenylhydrazine	0.088	U	207-08-9	Benzo[k]fluoranthene	0.088	0.76
95-95-4	2,4,5-Trichlorophenol	0.088	U	65-85-0	Benzoic Acid	0.44	U
88-06-2	2,4,6-Trichlorophenol	0.088	U	111-91-1	bis(2-Chloroethoxy)methan	0.088	U
120-83-2	2,4-Dichlorophenol	0.088	U	111-44-4	bis(2-Chloroethyl)ether	0.088	U
105-67-9	2,4-Dimethylphenol	0.088	U	108-60-1	bis(2-chloroisopropyl)ether	0.088	U
51-28-5	2,4-Dinitrophenol	0.44	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.088	0.17
121-14-2	2,4-Dinitrotoluene	0.088	U	85-68-7	Butylbenzylphthalate	0.088	U
606-20-2	2,6-Dinitrotoluene	0.088	U	86-74-8	Carbazole	0.088	0.088
91-58-7	2-Chloronaphthalene	0.088	U	218-01-9	Chrysene	0.088	2.0
95-57-8	2-Chlorophenol	0.088	υ	53-70-3	Dibenzo[a,h]anthracene	0.088	0.30
91-57-6	2-Methylnaphthalene	0.088	U	132-64-9	Dibenzofuran	0.088	U
95-48-7	2-Methylphenol	0.088	U	84-66-2	Diethylphthalate	0.088	U
88-74-4	2-Nitroaniline	0.088	υ	131-11-3	Dimethylphthalate	0.088	U
88- 7 5-5	2-Nitrophenol	0.088	υ	84-74-2	Di-n-butylphthalate	0.088	U
106-44-5	3&4-Methylphenol	0.088	U	117-84-0	Di-n-octylphthalate	0.088	0.14
91-94-1	3,3'-Dichlorobenzidine	0.088	U	206-44-0	Fluoranthene	0.088	3.3
99-09-2	3-Nitroaniline	0.088	U	86-73- 7	Fluorene	0.088	0.12
534-52-1	4,6-Dinitro-2-methylphenol	0.44	U	118-74-1	Hexachlorobenzene	0.088	U
101-55-3	4-Bromophenyl-phenylether	0.088	U	87-68-3	Hexachlorobutadiene	0.088	U
59-50-7	4-Chloro-3-methylphenol	0.088	υ	77-47-4	Hexachlorocyclopentadiene	0.44	U
106-47-8	4-Chloroaniline	0.088	υ	67-72-1	Hexachloroethane	0.088	U
7005-72-3	4-Chlorophenyl-phenylether	0.088	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.088	1.0
100-01-6	4-Nitroaniline	0.088	U	78-59-1	Isophorone	0.088	U
100-02-7	4-Nitrophenol	0.088	U	91-20-3	Naphthalene	0.088	U
83-32-9	Acenaphthene	0.088	0.098	98-95-3	Nitrobenzene	0.088	U
208-96-8	Acenaphthylene	0.088	0.19	62-75-9	N-Nitrosodimethylamine	0.088	U
62-53-3	Aniline	0.088	U	621-64-7	N-Nitroso-di-n-propylamine	0.088	U
120-12-7	Anthracene	0.088	0.42	86-30-6	n-Nitrosodiphenylamine	0.088	U
92-87-5	Benzidine	0.44	U	87-86-5	Pentachlorophenol	0.44	U
56-55-3	Benzo[a]anthracene	0.088	2.0	85-01-8	Phenanthrene	0.088	1.8
50-32-8	Benzo[a]pyrene	0.088	1.8	108-95-2	Phenol	0.088	U
205-99-2	Benzo[b]fluoranthene	0.088	2.2	129-00-0	Pyrene	0.088	4.1

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-004

Client Id: B-7

Data File: 9M17773.D

Analysis Date: 04/22/09 17:37

Date Rec/Extracted: 04/13/09-04/22/09

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 76

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	3.54	0.41 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.90	92 JAB
3		unknown	4.63	0.31 JB
4	629-78-7	Heptadecane	8.69	0.27 J
5	779-02-2	Anthracene, 9-methyl-	9.81	0.42 J
6	779-02-2	Anthracene, 9-methyl-	9.84	0.53 J
7	90-60-8	Benzaldehyde, 3,5-dichloro-2-hydroxy-	9.93	0.64 J
8	1961-96-2	1H-Indene, 1-phenyl-	9.96	0.35 J
9	35465-71-5	2-PHENYLNAPHTHALENE	10.14	0.32 J
10	3674-66-6	Phenanthrene, 2,5-dimethyl-	10.43	0.50 J
11	4630-07-3	Valencene	10.46	0.29 J
12	1576-69-8	Phenanthrene, 2,7-dimethyl-	10.53	0.44 J
13	7380-78-1	Benzene, 1-methoxy-4-(phenylethynyl)-	10.77	0.28 J
14	238-84-6	11H-Benzo[a]fluorene	11.26	0.43 J
15	2381-21-7	Pyrene, 1-methyl-	11.38	0.36 J
16	2381-21-7	Pyrene, 1-methyl-	11.52	0.31 J
17		unknown	12.03	0.30 J
18		unknown	13.34	0.40 J
19	192-97-2	Benzo[e]pyrene	13.60	0.30 J
20	630-03-5	Nonacosane	13.69	0.46 J
21	192-97-2	Benzo[e]pyrene	13.78	1.1 J
22		unknown	14.47	0.37 J
23		unknown	14.80	0.48 J
24	215-58-7	1,2:3,4-Dibenzoanthracene	15.18	0.29 J
25	215-58-7	1,2:3,4-Dibenzoanthracene	15.21	0.38 J

Worksheet #: 116081

Total Tentatively Identified Concentration 100

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-005

Client Id: B-10 Data File: 5M50104.D

Analysis Date: 04/22/09 16:38 Date Rec/Extracted: 04/13/09-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil Initial Vol: 30g Final Vol: 1m! Dilution: 1

Solids: 84

Units: mg/Kg

Cas # Compound	RL	Conc	Cas#	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.079	U	191-24-2	Benzo[g,h,i]perylene	0.079	U
122-66-7 1,2-Diphenylhydrazine	0.079	U	207-08-9	Benzo[k]fluoranthene	0.079	U
95-95-4 2,4,5-Trichlorophenol	0.079	U	65-85-0	Benzoic Acid	0.40	υ
88-06-2 2,4,6-Trichlorophenol	0.079	U	111-91-1	bis(2-Chloroethoxy)methan	0.079	U
120-83-2 2,4-Dichlorophenol	0.079	U	111-44-4	bis(2-Chloroethyl)ether	0.079	U
105-67-9 2,4-Dimethylphenol	0.079	U	108-60-1	bis(2-chloroisopropyl)ether	0.079	U
51-28-5 2,4-Dinitrophenol	0.40	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.079	U
121-14-2 2,4-Dinitrotoluene	0.079	U	85-68-7	Butylbenzylphthalate	0.079	U
606-20-2 2,6-Dinitrotoluene	0.079	U	86-74-8	Carbazole	0.079	U
91-58-7 2-Chloronaphthalene	0.079	υ	218-01-9	Chrysene	0.079	U
95-57-8 2-Chlorophenol	0.079	υ	53-70-3	Dibenzo[a,h]anthracene	0.079	U
91-57-6 2-Methylnaphthalene	0.079	U	132-64-9	Dibenzofuran	0.079	U
95-48-7 2-Methylphenol	0.079	U	84-66-2	Diethylphthalate	0.079	U
88-74-4 2-Nitroaniline	0.079	U	131-11-3	Dimethylphthalate	0.079	U
88-75-5 2-Nitrophenol	0.079	U	84-74-2	Di-n-butylphthalate	0.079	υ
106-44-5 3&4-Methylphenol	0.079	U	117-84-0	Di-n-octylphthalate	0.079	U
91-94-1 3,3'-Dichlorobenzidine	0.079	U	206-44-0	Fluoranthene	0.079	U
99-09-2 3-Nitroaniline	0.079	U	86-73-7	Fluorene	0.079	U
534-52-1 4,6-Dinitro-2-methylphenol	0.40	U	118-74-1	Hexachlorobenzene	0.079	U
101-55-3 4-Bromophenyl-phenylether	0.079	U	87-68-3	Hexachlorobutadiene	0.079	U
59-50-7 4-Chloro-3-methylphenol	0.079	U	77-47-4	Hexachlorocyclopentadiene	0.40	U
106-47-8 4-Chloroaniline	0.079	U	67-72-1	Hexachloroethane	0.079	U
7005-72-3 4-Chlorophenyl-phenylether	0.079	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.079	U
100-01-6 4-Nitroaniline	0.079	U	78-59-1	Isophorone	0.079	U
100-02-7 4-Nitrophenol	0.079	U	91-20-3	Naphthalene	0.079	U
83-32-9 Acenaphthene	0.079	U	98-95-3	Nitrobenzene	0.079	U
208-96-8 Acenaphthylene	0.079	U	62-75-9	N-Nitrosodimethylamine	0.079	U
62-53-3 Aniline	0.079	U	621-64-7	N-Nitroso-di-n-propylamine	0.079	υ
120-12-7 Anthracene	0.079	U	86-30-6	n-Nitrosodiphenylamine	0.079	υ
92-87-5 Benzidine	0.40	U	87-86-5	Pentachlorophenol	0.40	U
56-55-3 Benzo[a]anthracene	0.079	U	85-01-8	Phenanthrene	0.079	U
50-32-8 Benzo[a]pyrene	0.079	U	108-95-2	Phenol	0.079	U
205-99-2 Benzo[b]fluoranthene	0.079	U	129-00-0	Pyrene	0.079	U

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-005 Client Id: B-10

Data File: 5M50104.D

Analysis Date: 04/22/09 16:38

Date Rec/Extracted: 04/13/09-04/22/09

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 84

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.60	0.50 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.94	58 JAB
3		unknown	4.67	0.32 JB
4	102-76-1	1,2,3-Propanetriol, triacetate	7.09	0.24 J

J - Indicates an estimated value.B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-006(3X)

Client Id: B-11

Data File: 9M17823.D

Analysis Date: 04/24/09 11:16 Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 3

Solids: 83

Units: mg/Kg

		Omts. i				
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.24	U	191-24-2	Benzo[g,h,i]perylene	0.24	1.4
122-66-7 1,2-Diphenylhydrazine	0.24	U	207-08-9	Benzo[k]fluoranthene	0.24	1.0
95-95-4 2,4,5-Trichlorophenol	0.24	U	65-85-0	Benzoic Acid	1.2	U
88-06-2 2,4,6-Trichlorophenol	0.24	U	111-91-1	bis(2-Chloroethoxy)methan	0.24	U
120-83-2 2,4-Dichlorophenol	0.24	U	111-44-4	bis(2-Chloroethyl)ether	0.24	U
105-67-9 2,4-Dimethylphenol	0.24	U	108-60-1	bis(2-chloroisopropyl)ether	0.24	U
51-28-5 2,4-Dinitrophenol	1.2	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.24	0.57
121-14-2 2,4-Dinitrotoluene	0.24	U	85-68-7	Butylbenzylphthalate	0.24	U
606-20-2 2,6-Dinitrotoluene	0.24	U	86-74-8	Carbazole	0.24	U
91-58-7 2-Chloronaphthalene	0.24	U	218-01-9	Chrysene	0.24	2.5
95-57-8 2-Chlorophenol	0.24	U	53-70-3	Dibenzo[a,h]anthracene	0.24	0.43
91-57-6 2-Methylnaphthalene	0.24	U	132-64-9	Dibenzofuran	0.24	U
95-48-7 2-Methylphenol	0.24	U	84-66-2	Diethylphthalate	0.24	U
88-74-4 2-Nitroaniline	0.24	U	131-11-3	Dimethylphthalate	0.24	U
88-75-5 2-Nitrophenol	0.24	U	84-74-2	Di-n-butylphthalate	0.24	U
106-44-5 3&4-Methylphenol	0.24	U	117-84-0	Di-n-octylphthalate	0.24	0.56
91-94-1 3,3'-Dichlorobenzidine	0.24	U	206-44-0	Fluoranthene	0.24	5.6
99-09-2 3-Nitroaniline	0.24	U	86-73-7	Fluorene	0.24	0.40
534-52-1 4,6-Dinitro-2-methylphenol	1.2	U	118-74-1	Hexachlorobenzene	0.24	U
101-55-3 4-Bromophenyl-phenylether	0.24	U	87-68-3	Hexachlorobutadiene	0.24	U
59-50-7 4-Chloro-3-methylphenol	0.24	U	77-47-4	Hexachlorocyclopentadiene	1.2	U
106-47-8 4-Chloroaniline	0.24	U	67-72-1	Hexachloroethane	0.24	U
7005-72-3 4-Chlorophenyl-phenylether	0.24	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.24	1.2
100-01-6 4-Nitroaniline	0.24	U	78-59-1	Isophorone	0.24	U
100-02-7 4-Nitrophenol	0.24	U	91-20-3	Naphthalene	0.24	U
83-32-9 Acenaphthene	0.24	0.30	98-95-3	Nitrobenzene	0.24	U
208-96-8 Acenaphthylene	0.24	U	62-75-9	N-Nitrosodimethylamine	0.24	U
62-53-3 Aniline	0.24	U	621-64-7	N-Nitroso-di-n-propylamine	0.24	U
120-12-7 Anthracene	0.24	1.0	86-30-6	n-Nitrosodiphenylamine	0.24	U
92-87-5 Benzidine	1.2	U	87-86-5	Pentachlorophenol	1.2	U
56-55-3 Benzo[a]anthracene	0.24	2.7	85-01-8	Phenanthrene	0.24	4.3
50-32-8 Benzo[a]pyrene	0.24	2.2	108-95-2	Phenol	0.24	U
205-99-2 Benzo[b]fluoranthene	0.24	2.9	129-00-0	Pyrene	0.24	5.3

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-006(3X)

Data File: 9M17823.D

Analysis Date: 04/24/09 11:16

Date Rec/Extracted: 04/13/09-04/23/09

Client Id: B-11

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 3

Solids: 83

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.84	94 JAB
2	111-01-3	Tetracosane, 2,6,10,15,19,23-hexameth	8.67	0.52 J
3	613-12-7	Anthracene, 2-methyl-	9.77	0.72 J
4	613-12-7	Anthracene, 2-methyl-	9.81	0.94 J
5	90-60-8	Benzaldehyde, 3,5-dichloro-2-hydroxy-	9.89	1.4 J
6	35465-71-5	2-PHENYLNAPHTHALENE	10.10	0.50 J
7	3674-66-6	Phenanthrene, 2,5-dimethyl-	10.39	0.62 J
8		unknown	10.43	0.52 J
9	243-17-4	11H-Benzo[b]fluorene	11.22	0.59 J
10	3351-31-3	Chrysene, 3-methyl-	12.73	0.49 J
11	192-97-2	Benzo[e]pyrene	13.55	0.52 J
12	192-97-2	Benzo[e]pyrene	13.74	1.4 J
13	87953-47-7	[4aS-(4a.alpha.,4b.beta.,7.alpha.,8.alph	14.74	0.57 J
14	944-61-6	Benzene, 1,2,3,4-tetrachloro-5,6-dimeth	14.86	0.56 J

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-007

Client Id: B-12

Data File: 9M17820.D

Analysis Date: 04/24/09 10:10

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 81

Units: mg/Kg

Cas # Compound	RL	Conc	Cas#	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.082	U		Benzo[g,h,i]perylene	0.082	U
122-66-7 1,2-Diphenylhydrazine	0.082	υ		Benzo[k]fluoranthene	0.082	U
95-95-4 2,4,5-Trichlorophenol	0.082	υ		Benzoic Acid	0.41	U
88-06-2 2,4,6-Trichlorophenol	0.082	υ	111-91-1	bis(2-Chloroethoxy)methan	0.082	U
120-83-2 2,4-Dichlorophenol	0.082	υ	111-44-4	bis(2-Chloroethyl)ether	0.082	U
105-67-9 2,4-Dimethylphenol	0.082	U	108-60-1	bis(2-chloroisopropyl)ether	0.082	U
51-28-5 2,4-Dinitrophenol	0.41	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.082	U
121-14-2 2,4-Dinitrotoluene	0.082	υ	85-68-7	Butylbenzylphthalate	0.082	U
606-20-2 2,6-Dinitrotoluene	0.082	U	86-74-8	Carbazole	0.082	U
91-58-7 2-Chloronaphthalene	0.082	U	218-01-9	Chrysene	0.082	0.098
95-57-8 2-Chlorophenol	0.082	υ	53-70-3	Dibenzo[a,h]anthracene	0.082	U
91-57-6 2-Methylnaphthalene	0.082	υ	132-64-9	Dibenzofuran	0.082	U
95-48-7 2-Methylphenol	0.082	U	84-66-2	Diethylphthalate	0.082	U
88-74-4 2-Nitroaniline	0.082	U	131-11-3	Dimethylphthalate	0.082	U
88-75-5 2-Nitrophenol	0.082	U	84-74-2	Di-n-butylphthalate	0.082	U
106-44-5 3&4-Methylphenol	0.082	U	117-84-0	Di-n-octylphthalate	0.082	U
91-94-1 3,3'-Dichlorobenzidine	0.082	U	206-44-0	Fluoranthene	0.082	0.23
99-09-2 3-Nitroaniline	0.082	U	86-73-7	Fluorene	0.082	U
534-52-1 4,6-Dinitro-2-methylphenol	0.41	U	118-74-1	Hexachlorobenzene	0.082	U
101-55-3 4-Bromophenyl-phenylether	0.082	U	87-68-3	Hexachlorobutadiene	0.082	U
59-50-7 4-Chloro-3-methylphenol	0.082	υ	77-47-4	Hexachlorocyclopentadiene	0.41	U
106-47-8 4-Chloroaniline	0.082	U	67-72-1	Hexachloroethane	0.082	U
7005-72-3 4-Chlorophenyl-phenylether	0.082	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.082	U
100-01-6 4-Nitroaniline	0.082	U	78-59-1	Isophorone	0.082	U
100-02-7 4-Nitrophenol	0.082	U	91-20-3	Naphthalene	0.082	U
83-32-9 Acenaphthene	0.082	U	98-95-3	Nitrobenzene	0.082	U
208-96-8 Acenaphthylene	0.082	U	62-75-9	N-Nitrosodimethylamine	0.082	U
62-53-3 Aniline	0.082	U	621-64-7	N-Nitroso-di-n-propylamine	0.082	U
120-12-7 Anthracene	0.082	U	86-30-6	n-Nitrosodiphenylamine	0.082	U
92-87-5 Benzidine	0.41	U	87-86-5	Pentachlorophenol	0.41	U
56-55-3 Benzo[a]anthracene	0.082	0.10	85-01-8	Phenanthrene	0.082	0.13
50-32-8 Benzo[a]pyrene	0.082	0.089	108-95-2	Phenol	0.082	U
205-99-2 Benzo[b]fluoranthene	0.082	0.12	129-00-0	Pyrene	0.082	0.21

Worksheet #: 116081

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-007

Client Id: B-12

Data File: 9M17820.D

Analysis Date: 04/24/09 10:10

Date Rec/Extracted: 04/13/09-04/23/09

Matrix: Soil

Watin. Ooi

Initial Vol: 30g Final Vol: 1ml

Dilution: 1

Solids: 81

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	3.52	0.50 JB	
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	110 JAB	
3		unknown	4.61	0.34 JB	
4		unknown	14.71	0.21 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 110

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-008(R)

Client Id: B-11 GW
Data File: 5M50080.D
Analysis Date: 04/21/09 11:30

Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1

Solids: 0

Units: ug/L

		Units: u	g/L			
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
122-66-7 1,2-Diphenylhydrazine	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4 2,4,5-Trichlorophenol	2.0	U	65-85-0	Benzoic Acid	10	U
88-06-2 2,4,6-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
120-83-2 2,4-Dichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	2.0	U
105-67-9 2,4-Dimethylphenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
51-28-5 2,4-Dinitrophenol	10	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	7.9
121-14-2 2,4-Dinitrotoluene	2.0	U	85-68-7	Butylbenzylphthalate	2.0	U
606-20-2 2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7 2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8 2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6 2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	2.0	U
95-48-7 2-Methylphenol	2.0	U	84-66-2	Diethylphthalate	2.0	U
88-74-4 2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5 2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5 3&4-Methylphenol	2.0	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1 3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2 3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1 4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3 4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7 4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8 4-Chloroaniline	2.0	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3 4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6 4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7 4-Nitrophenol	2.0	U	91-20-3	Naphthalene	2.0	U
83-32-9 Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8 Acenaphthylene	2.0	U	62-75-9	N-Nitrosodimethylamine	2.0	U
62-53-3 Aniline	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	2.0	U
120-12-7 Anthracene	2.0	υ	86-30-6	n-Nitrosodiphenylamine	2.0	U
92-87-5 Benzidine	10	U	87-86-5	Pentachlorophenol	10	U
56-55-3 Benzo[a]anthracene	2.0	U	85-01-8	Phenanthrene	2.0	U
50-32-8 Benzo[a]pyrene	2.0	U	108-95-2	Phenol	2.0	U
205-99-2 Benzo[b]fluoranthene	2.0	U	129-00-0	Pyrene	2.0	2.5
• •				-		

Worksheet #: 116081

Total Target Concentration 10

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-008(R)

Client Id: B-11 GW Data File: 5M50080.D

Analysis Date: 04/21/09 11:30 Date Rec/Extracted: 04/13/09-04/20/09 Matrix: Aqueous

Initial Vol: 500ml Final Vol: 0.5ml

Dilution: 1 Solids:

Method: EPA 8270C

Units: ug/L

	Cas #	Compound		RT	Conc
1	111-76-2	Ethanol, 2-butoxy-	4	.56	4.9 JB

- B Indicates the analyte was found in the blank as well as in the sample.

FORM2

Surrogate Recovery

Method: EPA 8270C

					Dilute	Column1	Column1	Column1	Column1	Column1	Column1
				Surr	Out	S1	S2	S 3	S4	S5	S6
Dfile	Sample#	Matrix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
10M04316.	D SMB4112	Soil	04/21/09 13:47	1		84	81	77	76	77	99
10M04342.	D SMB4113	Soil	04/22/09 13:31	1		98	92	91	92	93	108
10M04370.	D SMB4115	Soil	04/23/09 16:14	1		83	78	83	81	74	91
5M50012.E	WMB4111	Aqueous	04/17/09 13:04	1		63	48	96	96	110	96
5M50076.E	WMB4113	Aqueous	04/21/09 10:00	1		66	48	101	98	107	104
5M50102.E	SMB4113	Soil	04/22/09 13:40	1		78	84	86	95	91	102
5M50115.C	SMB4114	Soil	04/23/09 12:12	1		72	74	77	84	79	89
9M17644.E) WMB4109	Aqueous	04/16/09 15:43	1		59	38	93	95	123	114
9M17766.E	SMB4113	Soil	04/22/09 13:13	1		99	97	90	87	99	94
9M17799.E	SMB4115	Soil	04/23/09 16:41	1		80	77	80	83	90	85
9M17803.E			04/23/09 18:10	1		75	72	77	79	78	84
5M50105.E	AC43958-002	Soil	04/22/09 17:01	1		69	76	73	84	84	87
10M04346.	D AC43958-003	Soil	04/22/09 17:00	1		84	83	85	89	91	99
9M17773.E	AC43958-004	Soil	04/22/09 17:37	1		84	85	82	87	94	99
5M50104.E	AC43958-005	Soil	04/22/09 16:38	1		72	80	83	91	93	95
9M17823.E	AC43958-006	(Soil	04/24/09 11:16	3		75	75	81	83	74	88
9M17820.E	AC43958-007	Soil	04/24/09 10:10	1		77	74	77	80	87	87
5M50080.E	AC43958-008	(Aqueous	04/21/09 11:30	1		5.6 *	7.3	4.4 *	5.1*	3*	5.8 *
5M50085.E	AC43958-008	Aqueous	04/21/09 15:07	1		19 *	781 *	0 *	4.5 *	4.2 *	7.6 *
10M04315.	D SMB4112(MS) Soil	04/21/09 13:24	1		85	82	82	81	90	105
10M04317.	D AC44027-002	Soil	04/21/09 14:09	1		88	84	85	87	91	102
10M04318.	D AC44027-002	(Soil	04/21/09 14:32	1		81	78	80	81	83	92
10M04319.	D AC44027-002	(Soil	04/21/09 14:54	1		78	76	74	76	82	91
10M04371.	D SMB4115(MS) Soil	04/23/09 16:36	1		86	82	89	88	90	97
5M50013.E	WMB4111(MS	S Aqueous	04/17/09 13:27	1		71	54	100	95	106	104
5M50077.E	WMB4113(MS	S Aqueous	04/21/09 10:22	1		63	45	102	90	103	108
5M50116.E	SMB4114(MS) Soil	04/23/09 12:35	1		80	88	85	87	92	92
5M50117.E	AC44057-003	Soil	04/23/09 12:58	1		73	79	81	83	88	89
5M50118.E	AC44057-003	(Soil	04/23/09 13:21	1		72	79	83	84	85	84
5M50119.E	AC44057-003	(Soil	04/23/09 13:44	1		75	83	81	81	90	85
9M17643.E	WMB4109(MS	S Aqueous	04/16/09 15:18	1		61	40	93	93	119	107
9M17647.E	AC43942-001	(Aqueous	04/16/09 16:50	1		74	57	94	96	123	107
9M17671.E	AC43942-001	Aqueous	04/17/09 13:26	1		63	49	79	81	109	92
9M17672.E	AC43942-001	(Aqueous	04/17/09 13:48	1		68	54	89	90	116	97
9M17765.E	SMB4113(MS) Soil	04/22/09 12:51	1		90	90	87	85	99	96

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: 8270

Soil Limits

	Spike	
Compound	Amt	Limits
S1=2-Fluorophenol	100	36-114
S2=Phenol-d5	100	32-113
S3=Nitrobenzene-d5	50	37-116
S4=2-Fluorobiphenyl	50	47-113
S5=2,4,6-Tribromophenol	100	31-140
S6=Terphenyl-d14	50	41-152

Aqueous Limits

	Spike	
Compound	Amt	Limits
S1=2-Fluorophenol	100	22-101
S2=Phenol-d5	100	1-95
S3=Nitrobenzene-d5	50	50-128
S4=2-Fluorobiphenyl	50	48-123
S5=2,4,6-Tribromophenol	100	10-123
S6=Terphenyl-d14	50	44-132

ORGANICS PCB REPORT

Sample Number: SMB2236B

Client Id:

Data File: 2G44119.D

Analysis Date: 04/23/09 12:35 Date Rec/Extracted: NA-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 100

Units: mg/Kg

			5 5		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.025	υ	11097-69-1 Aroclor-1254	0.025	U
11104-28-2 Aroclor-1221	0.025	υ	11096-82-5 Aroclor-1260	0.025	U
11141-16-5 Aroclor-1232	0.025	υ	37324-23-5 Aroclor-1262	0.025	U
53469-21-9 Aroclor-1242	0.025	υ	11100-14-4 Aroclor-1268	0.025	U
12672-29-6 Aroclor-1248	0.025	υ			

Worksheet #: 116197

Total Target Concentration

R - Retention Time Out

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS PCB REPORT

Sample Number: WMB3536

Client Id:

Data File: 5G21568.D

Analysis Date: 04/16/09 16:19 Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 5ml

Dilution: 1

Jilution. 1

Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.25	U	11097-69-1 Aroclor-1254	0.25	U
11104-28-2 Aroclor-1221	0.25	U	11096-82-5 Aroclor-1260	0.25	U
11141-16-5 Aroclor-1232	0.25	U	37324-23-5 Aroclor-1262	0.25	U
53469-21-9 Aroclor-1242	0.25	U	11100-14-4 Aroclor-1268	0.25	U
12672-29-6 Aroclor-1248	0.25	U			

Worksheet #: 116197

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-001

Client Id: B-2

Data File: 2G44132.D

Analysis Date: 04/23/09 18:54

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 85

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.029	U	11097-69-1 Aroclor-1254	0.029	U
11104-28-2 Aroclor-1221	0.029	U	11096-82-5 Aroclor-1260	0.029	U
11141-16-5 Aroclor-1232	0.029	U	37324-23-5 Aroclor-1262	0.029	U
53469-21-9 Aroclor-1242	0.029	U	11100-14-4 Aroclor-1268	0.029	U
12672-29-6 Aroclor-1248	0.029	U	1336-36-3 Aroclor (Total)	0.029	U

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-002

Client Id: B-3

Data File: 2G44133.D

Analysis Date: 04/23/09 19:08

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 87

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.029	U	11097-69-1 Aroclor-1254	0.029	U
11104-28-2 Aroclor-1221	0.029	U	11096-82-5 Aroclor-1260	0.029	U
11141-16-5 Aroclor-1232	0.029	U	37324-23-5 Aroclor-1262	0.029	U
53469-21-9 Aroclor-1242	0.029	U	11100-14-4 Aroclor-1268	0.029	U
12672-29-6 Aroclor-1248	0.029	U	1336-36-3 Aroclor (Total)	0.029	U

- B Indicates the analyte was found in the blank as well as in the sample.
- E Indicates the analyte concentration exceeds the calibration range of the instrument.
- R Retention Time Out
- J Indicates an estimated value when a compound is detected at less than the specified detection limit.
- d Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-003

Client Id: B-6

Data File: 2G44134.D

Analysis Date: 04/23/09 19:22

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 82

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.030	U	11097-69-1 Aroclor-1254	0.030	U
11104-28-2 Aroclor-1221	0.030	U	11096-82-5 Aroclor-1260	0.030	U
11141-16-5 Aroclor-1232	0.030	U	37324-23-5 Aroclor-1262	0.030	U
53469-21-9 Aroclor-1242	0.030	U	11100-14-4 Aroclor-1268	0.030	U
12672-29-6 Aroclor-1248	0.030	U	1336-36-3 Aroclor (Total)	0.03	U

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-004

Client Id: B-7

Data File: 2G44135.D

Analysis Date: 04/23/09 19:36

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 76

Units: mg/Kg

			· g· · · g		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.033	U	11097-69-1 Aroclor-1254	0.033	U
11104-28-2 Aroclor-1221	0.033	U	11096-82-5 Aroclor-1260	0.033	U
11141-16-5 Aroclor-1232	0.033	U	37324-23-5 Aroclor-1262	0.033	U
53469-21-9 Aroclor-1242	0.033	U	11100-14-4 Aroclor-1268	0.033	U
12672-29-6 Aroclor-1248	0.033	U	1336-36-3 Aroclor (Total)	0.033	U

Worksheet #: 116197

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-005

Client Id: B-10

Data File: 2G44136.D

Analysis Date: 04/23/09 19:50

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 84

nc
H
•
U
U
U
U

- B Indicates the analyte was found in the blank as well as in the sample.
- E Indicates the analyte concentration exceeds the calibration range of the instrument.
- R Retention Time Out
- J Indicates an estimated value when a compound is detected at less than the specified detection limit.
 - d Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-006

Client Id: B-11

Data File: 2G44151.D

Analysis Date: 04/23/09 23:18

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 83

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.030	U	11097-69-1 Aroclor-1254	0.030	U
11104-28-2 Aroclor-1221	0.030	U	11096-82-5 Aroclor-1260	0.030	U
11141-16-5 Aroclor-1232	0.030	U	37324-23-5 Aroclor-1262	0.030	U
53469-21-9 Aroclor-1242	0.030	U	11100-14-4 Aroclor-1268	0.030	U
12672-29-6 Aroclor-1248	0.030	U	1336-36-3 Aroclor (Total)	0.03	U

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-007

Client Id: B-12

Data File: 2G44137.D

Analysis Date: 04/23/09 20:03 Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 81

Units: mg/Kg

			55		
Cas # Compound	RL	Conc	Cas # Compound	RLR	Conc
12674-11-2 Aroclor-1016	0.031	U	11097-69-1 Aroclor-1254	0.031	U
11104-28-2 Aroclor-1221	0.031	U	11096-82-5 Aroclor-1260	0.031	U
11141-16-5 Aroclor-1232	0.031	U	37324-23-5 Aroclor-1262	0.031	U
53469-21-9 Aroclor-1242	0.031	U	11100-14-4 Aroclor-1268	0.031	U
12672-29-6 Aroclor-1248	0.031	U	1336-36-3 Aroclor (Total)	0.031	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PCB REPORT

Sample Number: AC43958-008

Client Id: B-11 GW Data File: 2G43938.D Analysis Date: 04/17/09 08:49

Date Rec/Extracted: 04/13/09-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082

Matrix: Aqueous

Initial Vol: 500ml

Final Vol: 2.5ml

Dilution: 1

Solids: 0

Units: ug/L

			· 3 · –			
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc	
12674-11-2 Aroclor-1016	0.25	U	11097-69-1 Aroclor-1254	0.25	U	
11104-28-2 Aroclor-1221	0.25	U	11096-82-5 Aroclor-1260	0.25	U	
11141-16-5 Aroclor-1232	0.25	U	37324-23-5 Aroclor-1262	0.25	U	
53469-21-9 Aroclor-1242	0.25	U	11100-14-4 Aroclor-1268	0.25	U	
12672-29-6 Aroclor-1248	0.25	U	1336-36-3 Aroclor (Total)	0.25	U	

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

 $[\]hat{d}$ - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: WMB3536

Client Id:

Data File: 5G21559.D

Analysis Date: 04/16/09 13:23 Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: ug/L

		O11160.	49, –		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.010	U	7421-93-4 Endrin Aldehyde	0.010	U
319-84-6 alpha-BHC	0.010	U	53494-70-5 Endrin Ketone	0.010	U
319-85-7 beta-BHC	0.010	U	58-89-9 gamma-BHC	0.010	U
57-74-9 Chlordane	0.10	U	76-44-8 Heptachlor	0.010	U
319-86-8 delta-BHC	0.010	U	1024-57-3 Heptachlor Epoxide	0.010	U
60-57-1 Dieldrin	0.010	U	72-43-5 Methoxychlor	0.010	U
959-98-8 Endosulfan I	0.010	· U	72-54-8 p,p'-DDD	0.010	U
33213-65-9 Endosulfan II	0.010	U	72-55-9 p,p'-DDE	0.010	U
1031-07-8 Endosulfan Sulfate	0.010	U	50-29-3 p,p'-DDT	0.010	U
72-20-8 Endrin	0.010	U	8001-35-2 Toxaphene	0.25	U

Worksheet #: 116170

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: SMB2236B Me

Client Id:

Data File: 5G21666.D Analysis Date: 04/23/09 12:21

Date Rec/Extracted: NA-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1

Solids: 100

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0050	U	7421-93-4 Endrin Aldehyde	0.0050	U
319-84-6 alpha-BHC	0.0010	U	53494-70-5 Endrin Ketone	0.0050	U
319-85-7 beta-BHC	0.0010	U	58-89-9 gamma-BHC	0.0010	U
57-74-9 Chlordane	0.010	U	76-44-8 Heptachlor	0.0050	U
319-86-8 delta-BHC	0.0050	U	1024-57-3 Heptachlor Epoxide	0.0050	U
60-57-1 Dieldrin	0.0010	U	72-43-5 Methoxychlor	0.0050	U
959-98-8 Endosulfan I	0.0050	U	72-54-8 p,p'-DDD	0.0025	U
33213-65-9 Endosulfan II	0.0050	U	72-55-9 p,p'-DDE	0.0025	U
1031-07-8 Endosulfan Sulfate	0.0050	U	50-29-3 p,p'-DDT	0.0025	U
72-20-8 Endrin	0.0050	U	8001-35-2 Toxaphene	0.025	U

B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-001

Client Id: B-2

Data File: 6G14085.D

Analysis Date: 04/24/09 04:19

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 85

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0059	U	7421-93-4 Endrin Aldehyde	0.0059	U
319-84-6 alpha-BHC	0.0012	U	53494-70-5 Endrin Ketone	0.0059	U
319-85-7 beta-BHC	0.0012	U	58-89-9 gamma-BHC	0.0012	U
57-74-9 Chlordane	0.012	U	76-44-8 Heptachlor	0.0059	U
319-86-8 delta-BHC	0.0059	U	1024-57-3 Heptachlor Epoxide	0.0059	U
60-57-1 Dieldrin	0.0012	U	72-43-5 Methoxychlor	0.0059	U
959-98-8 Endosulfan I	0.0059	U	72-54-8 p,p'-DDD	0.0029	U
33213-65-9 Endosulfan II	0.0059	U	72-55-9 p,p'-DDE	0.0029	U
1031-07-8 Endosulfan Sulfate	0.0059	U	50-29-3 p,p'-DDT	0.0029	U
72-20-8 Endrin	0.0059	U	8001-35-2 Toxaphene	0.029	U

the instrument.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-002

Client Id: B-3

Data File: 5G21682.D

Analysis Date: 04/24/09 06:09

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 87

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0057	U	7421-93-4 Endrin Aldehyde	0.0057	U
319-84-6 alpha-BHC	0.0011	U	53494-70-5 Endrin Ketone	0.0057	U
319-85-7 beta-BHC	0.0011	U	58-89-9 gamma-BHC	0.0011	U
57-74-9 Chlordane	0.011	U	76-44-8 Heptachlor	0.0057	U
319-86-8 delta-BHC	0.0057	U	1024-57-3 Heptachlor Epoxide	0.0057	U
60-57-1 Dieldrin	0.0011	U	72-43-5 Methoxychlor	0.0057	U
959-98-8 Endosulfan I	0.0057	U	72-54-8 p,p'-DDD	0.0029	U
33213-65-9 Endosulfan II	0.0057	U	72-55-9 p,p'-DDE	0.0029	U
1031-07-8 Endosulfan Sulfate	0.0057	U	50-29-3 p,p'-DDT	0.0029	U
72-20-8 Endrin	0.0057	U	8001-35-2 Toxaphene	0.029	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-003

Client Id: B-6

Data File: 6G14086.D

Analysis Date: 04/24/09 04:34 Date Rec/Extracted: 04/13/09-04/23/09

October DD 47/4704D 0014

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 82

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0061	U	7421-93-4 Endrin Aldehyde	0.0061	U
319-84-6 alpha-BHC	0.0012	U	53494-70-5 Endrin Ketone	0.0061	U
319-85-7 beta-BHC	0.0012	U	58-89-9 gamma-BHC	0.0012	U
57-74-9 Chlordane	0.012	U	76-44-8 Heptachlor	0.0061	U
319-86-8 delta-BHC	0.0061	U	1024-57-3 Heptachlor Epoxide	0.0061	U
60-57-1 Dieldrin	0.0012	U	72-43-5 Methoxychlor	0.0061	U
959-98-8 Endosulfan I	0.0061	U	72-54-8 p,p'-DDD	0.0030	U
33213-65-9 Endosulfan II	0.0061	U	72-55-9 p,p'-DDE	0.0030	U
1031-07-8 Endosulfan Sulfate	0.0061	U	50-29-3 p,p'-DDT	0.0030	U
72-20-8 Endrin	0.0061	U	8001-35-2 Toxaphene	0.030	U

- B Indicates the analyte was found in the blank as well as in the sample.
- E Indicates the analyte concentration exceeds the calibration range of the instrument.
- R Retention Time Out
- J Indicates an estimated value when a compound is detected at less than the specified detection limit.
- d Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-004

Client Id: B-7

Data File: 6G14087.D

Analysis Date: 04/24/09 04:49

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 76

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0066	U	7421-93-4 Endrin Aldehyde	0.0066	U
319-84-6 alpha-BHC	0.0013	U	53494-70-5 Endrin Ketone	0.0066	U
319-85-7 beta-BHC	0.0013	U	58-89-9 gamma-BHC	0.0013	U
57-74-9 Chlordane	0.013	U	76-44-8 Heptachlor	0.0066	U
319-86-8 delta-BHC	0.0066	U	1024-57-3 Heptachlor Epoxide	0.0066	U
60-57-1 Dieldrin	0.0013	U	72-43-5 Methoxychlor	0.0066	U
959-98-8 Endosulfan I	0.0066	U	72-54-8 p,p'-DDD	0.0033	U
33213-65-9 Endosulfan II	0.0066	U	72-55-9 p,p'-DDE	0.0033	U
1031-07-8 Endosulfan Sulfate	0.0066	U	50-29 - 3 p,p'-DDT	0.0033	U
72-20-8 Endrin	0.0066	U	8001-35-2 Toxaphene	0.033	U

Worksheet #: 116170

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-005

Client Id: B-10

Data File: 5G21683.D

Analysis Date: 04/24/09 06:27 Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 84

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0060	U	7421-93-4 Endrin Aldehyde	0.0060	U
319-84-6 alpha-BHC	0.0012	U	53494-70-5 Endrin Ketone	0.0060	U
319-85-7 beta-BHC	0.0012	U	58-89-9 gamma-BHC	0.0012	U
57-74-9 Chlordane	0.012	U	76-44-8 Heptachlor	0.0060	U
319-86-8 delta-BHC	0.0060	U	1024-57-3 Heptachlor Epoxide	0.0060	U
60-57-1 Dieldrin	0.0012	U	72-43-5 Methoxychlor	0.0060	U
959-98-8 Endosulfan I	0.0060	U	72-54-8 p,p'-DDD	0.0030	U
33213-65-9 Endosulfan II	0.0060	U	72-55-9 p,p'-DDE	0.0030	U
1031-07-8 Endosulfan Sulfate	0.0060	U	50-29-3 p,p'-DDT	0.0030	U
72-20-8 Endrin	0.0060	U	8001-35-2 Toxaphene	0.030	U

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-006

Client Id: B-11

Data File: 6G14090.D

Analysis Date: 04/24/09 05:34

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 83

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.0060	U	7421-93-4 Endrin Aldehyde	0.0060	U
319-84-6 alpha-BHC	0.0012	U	53494-70-5 Endrin Ketone	0.0060	U
319-85-7 beta-BHC	0.0012	U	58-89-9 gamma-BHC	0.0012	U
57-74-9 Chlordane	0.012	U	76-44-8 Heptachlor	0.0060	U
319-86-8 delta-BHC	0.0060	U	1024-57-3 Heptachlor Epoxide	0.0060	U
60-57-1 Dieldrin	0.0012	U	72-43-5 Methoxychlor	0.0060	U
959-98-8 Endosulfan I	0.0060	U	72-54-8 p,p'-DDD	0.0030	U
33213-65-9 Endosulfan II	0.0060	U	72-55-9 p,p'-DDE	0.0030	U
1031-07-8 Endosulfan Sulfate	0.0060	U	50-29-3 p,p'-DDT	0.0030	U
72-20-8 Endrin	0.0060	U	8001-35-2 Toxaphene	0.030	U

Worksheet #: 116170

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-007

Client Id: B-12

Data File: 5G21684.D

Analysis Date: 04/24/09 06:45

Date Rec/Extracted: 04/13/09-04/23/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 81

Units: mg/Kg

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2 Aldrin	0.0062	U	7421-93-4	Endrin Aldehyde	0.0062	U
319-84-6 alpha-BHC	0.0012	U	53494-70-5	Endrin Ketone	0.0062	U
319-85-7 beta-BHC	0.0012	U	58-89-9	gamma-BHC	0.0012	U
57-74-9 Chlordane	0.012	U	76-44-8	Heptachlor	0.0062	U
319-86-8 delta-BHC	0.0062	U	1024-57-3	Heptachlor Epoxide	0.0062	U
60-57-1 Dieldrin	0.0012	U	72-43-5	Methoxychlor	0.0062	U
959-98-8 Endosulfan I	0.0062	U	72-54-8	p,p'-DDD	0.0031	U
33213-65-9 Endosulfan II	0.0062	U	72-55-9	p,p'-DDE	0.0031	U
1031-07-8 Endosulfan Sulfate	0.0062	U	50-29-3	p,p'-DDT	0.0031	U
72-20-8 Endrin	0.0062	U	8001-35-2	Toxaphene	0.031	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-008

Client Id: B-11 GW
Data File: 6G13944.D
Analysis Date: 04/17/09 10:44

Date Rec/Extracted: 04/13/09-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous Initial Vol: 500ml

Final Vol: 2.5ml

Dilution: 1 Solids: 0

Units: ug/L

			3·-		
Cas # Compound	RLRL	Conc	Cas # Compound	RL	Conc
309-00-2 Aldrin	0.010	U	7421-93-4 Endrin Aldehyde	0.010	U
319-84-6 alpha-BHC	0.010	U	53494-70-5 Endrin Ketone	0.010	U
319-85-7 beta-BHC	0.010	U	58-89-9 gamma-BHC	0.010	U
57-74-9 Chlordane	0.10	U	76-44-8 Heptachlor	0.010	U
319-86-8 delta-BHC	0.010	U	1024-57-3 Heptachlor Epoxide	0.010	U
60-57-1 Dieldrin	0.010	υ	72-43-5 Methoxychlor	0.010	U
959-98-8 Endosulfan I	0.010	U	72-54-8 p,p'-DDD	0.010	U
33213-65-9 Endosulfan II	0.010	υ	72-55-9 p,p'-DDE	0.010	U
1031-07-8 Endosulfan Sulfate	0.010	υ	50-29-3 p,p'-DDT	0.010	υ
72-20-8 Endrin	0.010	U	8001-35-2 Toxaphene	0.25	U

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample ID: AC43958-001

% Solid: 85

Lab Name: Veritech

Nras No:

Client Id: B-2 Matrix:

SOIL

Units: MG/KG

Date Rec: 4/14/2009

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	240	10000	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-38-2	Arsenic	2.4	5.3	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-39-3	Barium	12	52	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-41-7	Beryllium	0.71	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-43-9	Cadmium	0.71	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-70-2	Calcium	1200	10000	100	04/23/09	10131	S10131B	24	Р	PEICPRA
7440-47-3	Chromium	5.9	19	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-48-4	Cobalt	2.9	7.3	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-50-8	Copper	5.9	20	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-89-6	Iron	240	16000	100	04/23/09	10131	S10131B	24	Р	PEICPRA
7439-92-1	Lead	5.9	64	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-95-4	Magnesium	590	3000	100	04/23/09	10131	S10131B	24	Р	PEICPRA
7439-96-5	Manganese	12	260	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-97-6	Mercury	0.098	ND	167	04/22/09	10131	H10131S	25	cv	HGCV1
7440-02-0	Nickel	5.9	24	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-09-7	Potassium	590	1100	100	04/23/09	10131	S10131B	24	Р	PEICPRA
7782-49-2	Selenium	2.1	2.8	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-23-5	Sodium	290	450	100	04/23/09	10131	S10131B	24	Р	PEICPRA
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-62-2	Vanadium	12	27	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-66-6	Zinc	12	57	100	04/24/09	10131	S10131C	25	Р	PEICP1

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-002

Client Id: B-3

% Solid: 87 Units: MG/KG Lab Name: Veritech

Nras No:

Matrix: SOIL Level: LOW

Date Rec: 4/14/2009

Lab Code: Contract:

Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	230	7400	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-36-0	Antimony	2.3	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-38-2	Arsenic	2.3	4.0	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-39-3	Barium	11	45	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-41-7	Beryllium	0.69	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-43-9	Cadmium	0.69	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-70-2	Calcium	1100	2600	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7440-47-3	Chromium	5.7	15	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-48-4	Cobalt	2.9	9.6	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-50-8	Copper	5.7	54	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-89-6	Iron	230	20000	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7439-92-1	Lead	5.7	18	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-95-4	Magnesium	570	3500	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7439-96-5	Manganese	11	460	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-97-6	Mercury	0.096	ND	167	04/22/09	10131	H10131S	26	CV	HGCV1
7440-02-0	Nickel	5.7	24	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-09-7	Potassium	570	1200	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7782-49-2	Selenium	2.1	4.1	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-22-4	Silver	1.7	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-23-5	Sodium	290	1200	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-62-2	Vanadium	11	28	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-66-6	Zinc	11	44	100	04/24/09	10131	S10131C	26	Р	PEICP1

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-003

Client ld: B-6 Matrix: SOIL % Solid: 82

Units: MG/KG

Date Rec: 4/14/2009

Lab Name: Veritech Lab Code:

Contract:

Nras No:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	240	4100	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-38-2	Arsenic	2.4	4.1	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-39-3	Barium	12	18	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-41-7	Beryllium	0.73	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-43-9	Cadmium	0.73	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-70-2	Calcium	1200	1500	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7440-47-3	Chromium	6.1	11	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-48-4	Cobalt	3.0	4.6	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-50-8	Copper	6.1	8.8	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-89-6	Iron	240	9600	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7439-92-1	Lead	6.1	11	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-95-4	Magnesium	610	2100	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7439-96-5	Manganese	12	130	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-97-6	Mercury	0.10	ND	167	04/22/09	10131	H10131S	27	cv	HGCV1
7440-02-0	Nickel	6.1	12	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-09-7	Potassium	610	1200	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-23-5	Sodium	300	ND	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7440-28-0	Thallium	1.5	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-62-2	Vanadium	12	13	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-66-6	Zinc	12	34	100	04/24/09	10131	S10131C	27	Р	PEICP1

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-004

Client Id: B-7

% Solid: 76

Lab Name: Veritech

Nras No:

Matrix: SOIL

Units: MG/KG Date Rec: 4/14/2009 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	260	7600	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-36-0	Antimony	2.6	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-38-2	Arsenic	2.6	7.8	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-39-3	Barium	13	180	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-41-7	Beryllium	0.79	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-43-9	Cadmium	0.79	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-70-2	Calcium	1300	5400	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7440-47-3	Chromium	6.6	31	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-48-4	Cobalt	3.3	8.1	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-50-8	Copper	6.6	140	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-89-6	Iron	260	16000	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7439-92-1	Lead	6.6	1400	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-95-4	Magnesium	660	2500	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7439-96-5	Manganese	13	310	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-97-6	Mercury	0.11	2.6	167	04/22/09	10131	H10131S	28	CV	HGCV1
7440-02-0	Nickel	6.6	25	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-09-7	Potassium	660	920	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7782-49-2	Selenium	2.4	4.1	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-22-4	Silver	2.0	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-23-5	Sodium	330	ND	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7440-28-0	Thallium	1.6	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-62-2	Vanadium	13	24	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-66-6	Zinc	13	270	100	04/24/09	10131	S10131C	32	Р	PEICP1

Comments:				

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-005

% Solid: 84 Units: MG/KG Lab Name: Veritech

Nras No:

Client Id: B-10 Matrix: SOIL

Level: LOW

Date Rec: 4/14/2009

Lab Code:

Contract:

Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	240	11000	100	04/24/09	10131	S10131C	33	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1
7440-38-2	Arsenic	2.4	5.0	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-39-3	Barium	12	110	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-41-7	Beryllium	0.71	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-43-9	Cadmium	0.71	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-70-2	Calcium	1200	1400	100	04/23/09	10131	S10131B	32	Р	PEICPRAE
440-47-3	Chromium	6.0	27	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-48-4	Cobalt	3.0	16	100	04/24/09	10131	S10131C	33	Р	PEICP1
440-50-8	Copper	6.0	27	100	04/24/09	10131	S10131C	33	Р	PEICP1
7439-89-6	Iron	240	21000	100	04/23/09	10131	S10131B	32	Р	PEICPRAE
439-92-1	Lead	6.0	59	100	04/24/09	10131	S10131C	33	Р	PEICP1
7439-95-4	Magnesium	600	6300	100	04/23/09	10131	S10131B	32	Р	PEICPRAI
7439-96-5	Manganese	12	1600	100	04/24/09	10131	S10131C	33	Р	PEICP1
439-97-6	Mercury	0.099	ND	167	04/22/09	10131	H10131S	29	CV	HGCV1
7440-02-0	Nickel	6.0	61	100	04/24/09	10131	S10131C	33	P	PEICP1
7440-09-7	Potassium	600	7100	100	04/23/09	10131	S10131B	32	Р	PEICPRAI
7782-49-2	Selenium	2.1	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1
7440-23-5	Sodium	300	560	100	04/23/09	10131	S10131B	32	Р	PEICPRAI
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	33	P	PEICP1
7440-62-2	Vanadium	12	32	100	04/24/09	10131	S10131C	33	Р	PEICP1
7440-66-6	Zinc	12	100	100	04/24/09	10131	S10131C	33	Р	PEICP1

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-006

Client Id:

B-11

SOIL

% Solid: 83

Units: MG/KG Date Rec: 4/14/2009 Lab Name: Lab Code:

Contract:

Veritech

Nras No: Sdg No:

Case No:

Matrix: Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	240	6000	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-38-2	Arsenic	2.4	6.2	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-39-3	Barium	12	96	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-41-7	Beryllium	0.72	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-43-9	Cadmium	0.72	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-70-2	Calcium	1200	16000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7440-47-3	Chromium	6.0	16	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-48-4	Cobalt	3.0	6.5	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-50-8	Copper	6.0	96	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-89-6	Iron	240	14000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7439-92-1	Lead	6.0	180	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-95-4	Magnesium	600	3600	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7439-96-5	Manganese	12	260	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-97-6	Mercury	0.10	1.4	167	04/22/09	10131	H10131S	30	CV	HGCV1
7440-02-0	Nickel	6.0	25	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-09-7	Potassium	600	1000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1

100 04/24/09

100 04/23/09

100 04/24/09

100 04/24/09

100 04/24/09

10131

10131

10131

10131

10131

S10131C 34

S10131B 33

S10131C 34

S10131C 34

S10131C 34

Ρ

Ρ

Ρ

Р

Ρ

PEICP1

PEICPRAD1

PEICP1

PEICP1

PEICP1

Comments:	

ND

ND

ND

21

240

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

1.8

300

1.4

12

12

P - ICP-AES

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Silver

Sodium

Thallium

Vanadium

Zinc

CV -ColdVapor

Sample ID: AC43958-007

Client Id: B-12

% Solid: 81

Lab Name: Veritech

Nras No:

Matrix: SOIL

Units: MG/KG Date Rec: 4/14/2009

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7429-90-5	Aluminum	250	3200	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-36-0	Antimony	2.5	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-38-2	Arsenic	2.5	3.6	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-39-3	Barium	12	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-41-7	Beryllium	0.74	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-43-9	Cadmium	0.74	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-70-2	Calcium	1200	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7440-47-3	Chromium	6.2	8.6	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-48-4	Cobalt	3.1	3.5	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-50-8	Copper	6.2	7.3	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-89-6	Iron	250	9800	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7439-92-1	Lead	6.2	6.7	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-95-4	Magnesium	620	1300	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7439-96-5	Manganese	12	77	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-97-6	Mercury	0.10	ND	167	04/22/09	10131	H10131S	31	CV	HGCV1
7440-02-0	Nickel	6.2	8.7	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-09-7	Potassium	620	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-22-4	Silver	1.9	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-23-5	Sodium	310	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7440-28-0	Thallium	1.5	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-62-2	Vanadium	12	13	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-66-6	Zinc	12	29	100	04/24/09	10131	S10131C	35	Р	PEICP1

Comments:	_

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-008

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: B-11 GW

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/14/2009 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch		Seq Num:	м	Instr
7429-90-5	Aluminum	180	240000	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
7440-36-0	Antimony	12	ND	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-38-2	Arsenic	7.5	410	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-39-3	Barium	50	2500	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-41-7	Beryllium	4.0	28	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
7440-43-9	Cadmium	3.5	19	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-70-2	Calcium	2000	340000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-47-3	Chromium	50	770	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-48-4	Cobalt	20	350	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-50-8	Copper	50	1300	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-89-6	Iron	550	800000	2	04/23/09	10136	SW10136A2	24	Р	PEICP2
7439-92-1	Lead	4.0	2200	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-95-4	Magnesium	2000	160000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-96-5	Manganese	40	12000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-97-6	Mercury	0.70	17	1	04/22/09	10136	H10136SW	18	CV	HGCV1
7440-02-0	Nickel	50	820	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-09-7	Potassium	5000	65000	1	04/25/09	10136	SW10136C2	21	Р	PEICPRAD
7782-49-2	Selenium	40	ND	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
7440-22-4	Silver	20	ND	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-23-5	Sodium	5000	60000	1	04/25/09	10136	5W10136C2	21	Р	PEICPRAD
7440-28-0	Thallium	10	ND	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
440-62-2	Vanadium	50	1100	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-66-6	Zinc	50	4200	1	04/24/09	10136	SW10136B	22	Р	PEICP1

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/22/09

Data File: S10131B

Lab Name: Veritech Lab Code:

Prep Batch: 10131

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg)

Contract:

Instrument: PEICPRAD1

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Case No:

Analyte	ICB V-62945-7	CCB-19	CCB-30	CCB-39	CCB-46	MB 10131 (100)-10
Calcium	10 U	10 U	10 U	10 U	10 U	1000 U
Iron	2 U	2 U	2 U	2 U	2 U	200 U
Magnesium	5 U	5 U	5 U	5 U	5 U	500 U
Potassium	5 U	5 U	5 U	5 U	5 U	500 U
Sodium	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	250 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/23/09

Data File: SW10136A2

Lab Name: Veritech

Prep Batch: 10136

Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg)

Lab Code: Contract:

Instrument: PEICP2

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 9041403

Case No:

	ICB V-62945-8	CCB-18	CCB-30	CCB-40	CCB-50	MB 10136 (1)-
Analyte	10B V-023-13-0	000-10	OOD-30	000-40	OOD-50	11
Aluminum	.18 U	.18 U	.18 U	.18 U	.18 U	.18U
Beryllium	.004 U	.004 U	.004 U	.004 U	.004 U	,004U
Iron	.275 U	.275 U	.275 U	.275 U	.275 U	.28 U
Selenium	.04 U	.04 U	.04 U	.04 U	.04 U	.04U
Thallium	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/24/09

Data File: S10131C

Lab Name: Veritech

Prep Batch: 10131

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg)

Contract:

Instrument: PEICP1

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Case No:

Analyte	ICB V-62945-8	CCB-20	CCB-31	CCB-40	CCB-47	MB 10131 (100)-11
Aluminum	2 U	2 U	2 U	2 U	2 U	200 U
Antimony	.02 U	.02 U	.02 U	.02 U	.02 U	2U
Arsenic	.02 U	.02 U	.02 U	.02 U	.02 U	2U
Barium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U
Beryllium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U
Cadmium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	5U
Cobalt	.025 U	.025 U	.025 U	.025 U	.025 U	2.5U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	5υ
Lead	.05 U	.05 U	.05 U	.05 U	.05 U	5 U
Manganese	.1 U	.1 U	.1 U	.1 U	.1 U	10 U
Nickel	.05 U	.05 U	.05 U	.05 ∪	.05 U	5 U
Selenium	.018 U	.018 U	.018 U	.018 U	.018 U	1.8U
Silver	.015 U	.015 U	.015 U	.015 U	.015 U	1.5U
Thallium	.012 U	.012 U	.012 U	.012 U	.012 U	1.2U
Vanadium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U
Zinc	.1 U	.1 U	.1 U	.1 U	.1 U	10U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/24/09

Data File: SW10136B

Prep Batch: 10136

Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICP1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

Analyte	ICB V-62945-8	CCB-20	CCB-30	CCB-38	MB 10136 (1)- 11
Antimony	.012 U	.012 U	.012 U	.012 U	.012 U
Arsenic	.0075 U	.0075 U	.0075 U	.0075 U	.0075 U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U
Cadmium	.0035 U	.0035 U	.0035 U	.0035 U	.0035 U
Calcium	2 U	2 U	2 U	2 U	2 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U
Cobalt	.02 U	.02 U	.02 U	.02 U	.02 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U
Lead	.004 U	.004 U	.004 U	.004 U	.004 U
Magnesium	2 U	2 U	2 U	2 U	2 U
Manganese	.04 U	.04 U	.04 U	.04 U	.04 U
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/25/09

Data File: SW10136C2

Prep Batch: 10136

Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICPRAD2

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code: Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB V-62945-7	CCB-17	CCB-25	MB 10136 (1)- 10		
Potassium	5 U	5 U	5 U	5 U		
Sodium	5 U	5 U	5 U	5 U		

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/22/09

Data File: H10131S

Prep Batch: 10131

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg)

Instrument: HGCV1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

Analyte	ICB-10	CCB-22	CCB-34	CCB-42	MB 10131 (167)-11			
Mercury	.5 U	.5 U	.5 U	.5 U	84 U			

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/22/09

Data File: H10136SW

Prep Batch: 10136

Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg)

Instrument: HGCV1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICB-10 CCB-20 MB 10136 (1)- Analyte 11	
Mercury .7U .7U .7U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 5/FORM 7 SPIKE/LCS RECOVERY

Date Analyzed: 04/22/09

Data File: S10131B Prep Batch: 10131

Analytical Method: 6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICPRAD1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

MATRIX SPIKE SOURCE: VHG LABS

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No: Case No:

Matrix: SOIL

Level: Low

	Sp	ike Ar	nts	LCS	Non Spike									
Analyte	MS-Tclp MS-Aq MS-soil	LCS	LCS Aq	Rec Limits	Conc AC43975- 001-13	AC43975- 002-15-1X	%REC OR Conc	AC43975- 003-16-1X	%REC OR Conc	LCS 100- 11-1X	%REC OR Conc	LCS MR 100-12-1X	%REC OR Conc	%REC OR Conc
Calcium	50	98.7		82.0 - 115	10 U	51.8065	104	53.0271	106	102.02	102	108.157	108	
Iron	5	180		91.2 - 269	324.659	319.482	-100 b	335.765	222 b	195.135	195	190.227	190	
Magnesium	50	40.0		31.4 - 48.7	115.091	134.613	39 a	166.415	103	41.3245	41.3	42.3215	42.3	
Potassium	50	43.0		31,6 - 54.4	113.922	133.212	39 a	168.072	108	44.3102	44.3	43.819	43.8	
Sodium	50	10.2		7.52 - 12.9	9.27847	58.4579	98	58.3371	98	10.2637	10.3	10.1666	10.2	

	MS Qc Limits:	
EPA600:	SW846	CLP
MS: 70-130	MS TCLP: >50% MS soil/aqueous:75-125	MS:75-125

Note: All Elements analyzed by ICP(P) or ICP-MS except Mercury(CV)

Flags:

- U: Conc < Reporting Limit
- a: Recovery Failed Specified Limit
- b: Recovery Failed Specified Limit but Non Spike concentration > 4* spike amount

FORM 5/FORM 7 SPIKE/LCS RECOVERY

Date Analyzed: 04/24/09 Data File: \$10131C

Prep Batch: 10131

Analytical Method: 6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICP1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

MATRIX SPIKE SOURCE: VHG LABS

Lab Name: Veritech

Lab Code: Contract:

Nras No: Sdg No: Case No:

Matrix: SOIL

Matrix: SOIL Level: Low

	Sp	ike Ar	nts	LCS	Non Spike									
Analyte	MS-Tclp MS-Aq MS-soil	LCS	LCS Aq	Rec Limits	Conc AC43975- 001-14	AC43975- 002-16-1X	%REC OR Conc	AC43975- 003-17-1X	%REC OR Conc	LCS 100- 12-1X	%REC OR Conc	LCS MR 100-13-1X	%REC OR Conc	%RE OR Con
Aluminum	5.0	105		59.1 - 151	297.393	307.942	211 b	328.654	625 b	103.52	104	102.91	103	
Antimony	0.5	0.674		0.102 - 1.24	0.02 U	0.285551	57 a	0.295565	59 a	1.20057	1.2	1,2125	1.21	
Arsenic	0.5	1.04		0.807 - 1.28	0.02 U	0.49875	100	0.49608	99	1.12665	1.13	1.14574	1.15	
Barium	0.5	1.98		1.58 - 2.37	1.71562	1.90983	39 a	2.22344	102	2.10981	2.11	2.05894	2.06	
Beryllium	0.5	0.776		0.650 - 0.90	0.0128059	0.529433	103	0.534658	104	0.850593	.851	0.835002	.835	
Cadmium	0.5	0.607		0.491 - 0.724	0.006 U	0.509569	102	0.513092	103	0.635862	.636	0.661289	.661	
Chromium	0.5	2.36		1.88 - 2.84	0.520192	0.962722	89	1.03456	103	2.60566	2.61	2.61306	2.61	
Cobalt	0.5	0.912		0.739 - 1.09	0.182161	0.633501	90	0.681692	100	1.00913	1.01	1.02503	1.03	
Copper	0.5	1.74		1.40 - 2.06	0.139673	0.72627	117	0.662514	105	1.91539	1.92	1.93341	1.93	
Lead	0.5	0.860		0.678 - 1.05	0.0868843	0.576971	98	0.606817	104	0.923312	.923	0.909096	.909	
Manganese	0.5	5.58		4.53 - 6.64	5.46919	5.17787	-58 b	6.92819	292 b	5.99659	6	6.06307	6.06	
Nickel	0.5	1.34		1.04 - 1.65	0.389977	0.789882	80	0.870811	96	1.48178	1.48	1.51828	1.52	
Selenium	0.5	2.86		2.19 - 3.52	0.0277424	0.513603	97	0.499247	94	3.04125	3.04	3.15031	3.15	
Silver	0.1	0.301		0.200 - 0.402	0.015 U	0.10024	100	0.0994491	99	0.343751	.344	0.332955	.333	
Thallium	0.5	1.21		0.946 - 1.48	0,012 U	0.52653	105	0.52377	105	1.32409	1.32	1.34175	1.34	
Vanadium	0.5	1.15		0.913 - 1.39	0.735357	1.21017	95	1.2407	101	1.26834	1.27	1.23691	1.24	
Zinc	0.5	5.94		4.72 - 7.17	1.14894	1.40679	52 a	1.68957	108	6.75798	6.76	6.71457	6.71	

	MS Qc Limits:	
EPA600:	SW846	CLP
MS: 70-130	MS TCLP: >50%	MS:75-125
	MS soil/aqueous:75-125	

Note: All Elements analyzed by ICP(P) or ICP-MS except Mercury(CV)

Flags:

- U: Conc < Reporting Limit
- a: Recovery Failed Specified Limit
- b: Recovery Failed Specified Limit but Non Spike concentration > 4* spike amount

FORM6/FORM9 RPDS

Date Analyzed: 04/22/09 Lab Name: Veritech

Data File: S10131B Lab Code:
Prep Batch: 10131 Contract:

Analytical Method: 6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICPRAD1

Nras No:
Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb Case No:

Project Number: 9041403

	Qc Limits		Sample	mple Method Rep		LCS	LCS MR		Sample	Serial Dil	
Analyte	LCS/MR	SD	AC43975- 001-13	AC43975- 001-14	RPD	LCS 100-11	LCS MR 100-12	RPD	AC43975- 001-13	AC43975- 001-20	%Diff
Calcium	<=20	<=10	10 U	10 U					5,12501	4.519525	12 Sa
Iron	<=20	<=10	324.659	325.572	0.28				324.659	333.554	2.7
Magnesium	<=20	<=10	115.091	115.983	0.77				115.091	116.632	1.3
Potassium	<=20	<=10	113.922	115.060	0.99				113.922	115.596	1.5
Sodium	<=20	<=10	9.27847	8.86177	4.6				9.27847	9.26935	0.098

Flags:

Na::Method Rep outside of Qc Limits
Nb::Method Rep out but concentrations < 5* Reporting Limits
U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution)
Lm:Lcs Rpd Out

Sa:Serial Dilution outside of qc limits

Sb: Serial dilution out but concentration < 10 * IDL

E: Serial Dilution outside of qc limits CLP

FORM6/FORM9 RPDS

Date Analyzed: 04/24/09

Data File: S10131C Prep Batch: 10131

Analytical Method: 6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICP1

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

	Qc Lim	nits	Sample	Method Rep		LCS	LCS MR		Sample	Serial Dil	
Analyte	LCS/MR	SD	AC43975- 001-14	AC43975- 001-15	RPD	LCS 100-12	LCS MR 100-13	RPD	AC43975- 001-14	AC43975- 001-21	%Diff
Aluminum	<=20	<=10	297.393	304.988	2.5				297.393	297.084	0.1
Antimony	<=20	<=10	0.02 U	0.02 U					0.0114742	0.014798	29 St
Arsenic	<=20	<=10	0.02 U	0.02 U					0.0124262	0.0344765	177 St
Barium	<=20	<=10	1.71562	1.75504	2.3				1.71562	1.707875	0.45
Beryllium	<=20	<=10	0.0128059	0.0138557	7.9				0.0128059	0.0143755	12 Sa
Cadmium	<=20	<=10	0.006 U	0.006 U					0.0026387	0.00055 U	
Chromium	<=20	<=10	0.520192	0.513125	1.4				0.520192	0.521165	0.19
Cobalt	<=20	<=10	0.182161	0.181978	0.1			i	0.182161	0.1893585	4
Copper	<=20	<=10	0.139673	0.128256	8.5				0.139673	0.130746	6.4
Lead	<=20	<=10	0.0868843	0.0892254	2.7				0.0868843	0.094529	8.8
Manganese	<=20	<=10	5.46919	5.37052	1.8				5.46919	5.60075	2.4
Nickel	<=20	<=10	0.389977	0.389242	0.19				0.389977	0.4095475	5
Selenium	<=20	<=10	0.0277424	0.0287636	3.6				0.0277424	0.041322	49 Sb
Silver	<=20	<=10	0.015 U	0.015 U					0.000311 U	0.001555 U	
Thallium	<=20	<=10	0.012 U	0.0218933					0.0058158	0.0275935	374 St
Vanadium	<=20	<=10	0.735357	0.731701	0.5				0.735357	0.712035	3.2
Zinc	<=20	<=10	1.14894	1.14044	0.74	Î			1.14894	1.18142	2.8

Flags:

Na::Method Rep outside of Qc Limits
Nb::Method Rep out but concentrations < 5* Reporting Limits
U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution)
Lm:Lcs Rpd Out

Sa:Serial Dilution outside of qc limits

Sb: Serial dilution out but concentration < 10 * IDL

E: Serial Dilution outside of qc limits CLP

FORM6/FORM9 **RPDS**

Date Analyzed: 04/25/09

Lab Name: Veritech

Data File: SW10136C2

Lab Code:

Prep Batch: 10136 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Contract: Nras No:

Instrument: PEICPRAD2

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 9041403

	Qc Limits		Limits Sample Method Rep		LCS	LCS LCS MR		Sample	Serial Dil		
Analyte	LCS/MR	SD	AC43601- 001-13	AC43601- 001-14	RPD	LCSW-11	LCSW MR-12	RPD	AC43601- 001-13	AC43601- 001-20	%Diff
Potassium	<=20	<=10	5 U	5 U					4.85218	4.149735	14 Sa
Sodium	<=20	<=10	74.0301	73.5317	0.68				74.0301	71.887	2.9

Flags:

Na::Method Rep outside of Qc Limits Nb :Method Rep out but concentrations < 5* Reporting Limits U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution) Lm:Lcs Rpd Out

Sa:Serial Dilution outside of qc limits

Sb: Serial dilution out but concentration < 10 * IDL

E: Serial Dilution outside of qc limits CLP

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC43958 Matrix Soil Client SampleID: WC-1	3-009				Rec	ct Number: 9041 eived Date: 4/13/ ollect Date: 4/13/	2009
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
Ignitability	IGNITABILITY	1	NEG	mg/kg	10	0-1/10/00	04/16/09
рН	PH-SOIL	1	9.6	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09
Cumac (reactive)	OHLAOTIVE	<u> </u>	140	ilig/kg		04/10/09	04/10/09
Lab#: AC43958	3-010				Proje	ct Number: 9041	403
Matrix Soil						eived Date: 4/13/	
Client SampleID: WC-2					C	ollect Date: 4/10/	2009
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
Ignitability	IGNITABILITY	1	NEG	5 5			04/16/09
pΗ	PH-SOIL	1	9.9	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09
Lab#: AC43958	3-011				_	ct Number: 9041	
Matrix Soil Client SampleID: WC-3						eived Date: 4/13/	
Ollent Sampleib. WC-3						ollect Date: 4/10/	2009
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
lgnitability	IGNITABILITY	1	NEG				04/16/09
pH	PH-SOIL	1	9.5	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09
Lab#: AC43958 Matrix Soil	3-012				Rece	ct Number: 9041 eived Date: 4/13/	2009
Client SampleID: WC-4					C	ollect Date: 4/9/2	009
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
lgnitability	IGNITABILITY	1	NEG				04/16/09
pΗ	PH-SOIL	1	9.2	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09
Lab#: AC43958	-013				Proje	ct Number: 9041	403
Matrix Soil					•	eived Date: 4/13/	
Client SampleID: WC-5						ollect Date: 4/9/2	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
gnitability	IGNITABILITY	1	NEG	mg/kg	10	0-7/10/03	04/16/09
эн авту	PH-SOIL	1	8.6	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09
		•					
Lab#: AC43958	-014				-	ot Number: 9041	
Matrix Soil Client SampleID: WC-6						eived Date: 4/13/ ollect Date: 4/13/	
- Onlone Gampiero, 190-0						лест Date: 4/13/.	2009
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09
gnitability	IGNITABILITY	1	NEG				04/16/09
Н	PH-SOIL	1	9.2	Ph			04/16/09
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09

Analysis Type: PH-S

Batch Number: PH-S-348

Units: Ph

Francisco transcription of the contract of the	4500000
Calibration Curve Information	gran
Accounts.	Q
	T I
Section 1	000000000000000000000000000000000000000
Control of the Contro	000000000000000000000000000000000000000
	88

		Qc S	ummar	v Resi	ults			
Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
DHP	AC43845-011	n	NA	20	7 33	NA	26	
LCS	I CS-3	44	75-125	NA	4 37	99	NA	
LCS	1 CS-2	44	75-125	NA	4 48	102	NA	
LCS	I CS	44	75-125	NA	4 51	103	NA	

Analytical Method(s) 9040B/9045C

						Stenooner	120800000000000000000000000000000000000		Rest. Proc. and Control of Control	comment.
					Per	Raw	PH	Prep Prep Anal	Anal	
Sam #	Type	MB	Result	RL	Sol	Resul	t	Date By Date	Ву	
AC43845-011	DUP		7.3		100	7.33	7.33	04/09/	9 bct	800000000000000000000000000000000000000
AC43845-011	Sample		7.1		100	7.14	7.14	04/09/	9 bct	
AC43845-013	Sample		8.3		100	8.26	8.26	04/09	9 bct	
AC43845-015	Sample		8.4		100	8.44	8.44	04/09	9 bct	
LCS	LCS		4.5		100	4.51	4.51	04/09	9 bct	
AC43857-001	Sample		8.3		100	8.26	8.26	04/13	9 BCT	
AC43857-002	Sample		6.5		100	6.5	6.50	04/13	9 BCT	
AC43857-003	Sample		7.5		100	7.49	7.49	04/13	9 BCT	
AC43857-004	Sample		6.3		100	6.33	6.33	04/13	9 BCT	
AC43871-003	Sample		9		100	9.03	9.03	04/13	9 BCT	
AC43876-001	Sample		8.6		100	8.64	8.64	04/13	9 BCT	
AC43910-001	Sample		6.8		100	6.85	6.85	04/13	9 BCT	
AC43832-002	Sample		8		100	7.96	7.96	04/13	9 BCT	
AC43874-003	Sample		8.1		100	8.08	8.08	04/13	9 BCT	
AC43924-002	Sample		7.8		100	7.82	7.82	04/13	99 BCT	
LCS-2	LCS		4.5		100	4.48	4.48	04/13	9 BCT	
LCS-3	LCS		4.4		100	4.37	4.37	04/16	9 SDL	
AC43958-009	Sample		9.6		100	9.6	9.60	04/16	9 SDL	
AC43958-010	Sample		9.9		100	9.86	9.86	04/16	9 SDL	
AC43958-011	Sample		9.5		100	9.51	9.51	04/16	9 SDL	
AC43958-012	Sample		9.2		100	9.17	9.17	04/16	9 SDL	
AC43958-013	Sample		8.6		100	8.55	8.55	04/16	9 SDL	
AC43958-014	Sample		9.2		100	9.25	9.25	04/16	9 SDL	
AC43977-009	Sample		6.5		100	6.5	6.50	04/16	9 SDL	

Sman (ewis 4/16/09 Analysis Type: RCN

Batch Number: RCN-259

Cal Curve Date: 04/14/09

Units: mg/kg

	Service of the servic	
Calib	ration Curv	e Information
Concentration:	Abs/Area	Slope: 1.299907
0	0.002	Intercept: 0.0113931
0.01	0.021	Rsquared: 0.9996462
0.02	0.035	Date Performed: 04/14/09
0.04	0.063	
0.08	0.115	
0.2	0.28	
0.4	0.55	
0.8	1.04	

		Qc S	ummary	Res	ults			
Qc Туре	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
CAI -01	CAL-01-04/16/09	n na	90-110	NA	0.08354975	104	NA	
CAL-01	CAL-01-04/15/09	0.08	90-110	NA	0.08508832	106	NA	
CAL -02	CAL-02-04/16/09	NΑ	90-110	NA	O 851297	106	NA	
CAL-02	CAL-02-04/15/09	0.8	90-110	NA	0.856682	107	NA	
CCV	CCV-2	റ റമ	90-110	NA	0.08201118	103	NA	
CCV	CCV	0 N8	90-110	NA	0 0858576	107	NA	
DLIP	AC43940-002	n	NA	20	-0 06525659	NA	NA	Nr.
ICV	ICV-04/14/09	0.378	90-110	NA	0 4143426	110	NA	
LCS	I C.S-2	1000	1 504-2 036	NA	20 64776	21	NA	Ra
108	LCS	1000	1 504-2 036	NA	21 12857	21	NA	Ra
MS	AC43940-002	1000	1 478-1 942	NA NA	20 45544	2	NA	Ra
MSD	AC43940-002	1000	1 478-1 942	20	20 80162	21	17	Ra

Analytical Method(s)

EPA 7.3.3

						Bear cons	ers a remark to suggest at	CONTRACTOR CONTRACTOR CONTRACTOR	Mark Control of the C			MOTOR CONTRACTOR	CONTRACTOR CONTRACTOR	Samuel Comment
Sam #	Туре	MB	Result	RL	Per Sol	Raw Result		Sam Wt/Vol	DF	Scrb Vol	Prep Date	Prep By	Anal Date	Anal By
CAL-01-04/15/09	CAL-01	Carrioran Landonia mesa a segun pada 1910 dan	0.085	gorgogener verdegdele es k	100		0.122	1	none contraction of the largest	1		MARKANIA IN CARACA	04/15/09	iad
CAL-02-04/15/09	CAL-02		0.86		100	0.85668	1.125	î	î	i			04/15/09	
MB-1-04/15/09	MB	MB-1-04/15/09	ND	10	100		0.004	10	i	250	04/15/09	iad	04/15/09	
LCS	LCS	MB-1-04/15/09	21	10	100	21.129	1.110	10	Ī	250	04/15/09	iad	04/15/09	
AC43940-002	Sample	MB-1-04/15/09	ND	10	91	-0.084489	0.007	10	1	250	04/15/09	iad	04/15/09	
AC43940-002	DUP	MB-1-04/15/09	ND	10	91		0.008	10	1	250	04/15/09	iad	04/15/09	
AC43940-002	MS	MB-1-04/15/09	20	10	91	20.455	1.075	10	1	250	04/15/09		04/15/09	
AC43940-002	MSD	MB-1-04/15/09	21	10	91	20.802	1.093	10	1	250	04/15/09	iad	04/15/09	
AC43940-003	Sample	MB-1-04/15/09	ND	10	91	-0.10372	0.006	10	1	250	04/15/09	iad	04/15/09	
AC43940-004	Sample	MB-1-04/15/09	ND	10	95	-0.065257	0.008	10	1	250	04/15/09	iad	04/15/09	
AC43940-005	Sample	MB-1-04/15/09	ND	10	96	-0.084489	0.007	10	1	250	04/15/09	iad	04/15/09	jad
AC43940-006	Sample	MB-1-04/15/09	ND	10	97	-0.065257	0.008	10	1	250	04/15/09	iad	04/15/09	iad
AC43936-001	Sample	MB-1-04/15/09	ND	10	22	-0.026792	0.010	10	1	250	04/15/09	iad	04/15/09	
AC43936-002	Sample	MB-1-04/15/09	ND	10	9	-0.046024	0.009	10	1	250	04/15/09	iad	04/15/09	
AC43936-003	Sample	MB-1-04/15/09	ND	10	34	-0.065257	0.008	10	1	250	04/15/09	iad	04/15/09	
AC43936-004	Sample	MB-1-04/15/09	ND	10	23	-0.007560	0.011	10	1	250	04/15/09	iad	04/15/09	iad
AC43936-005	Sample	MB-1-04/15/09	ND	10	24	-0.026792	0.010	10	1	250	04/15/09	iad	04/15/09	iad
CCV	CCV	MB-1-04/15/09	ND	10	100	0.085858	0.123	1	1	1	04/15/09	iad	04/15/09	iad
CAL-01-04/16/09	CAL-01		0.084		100	0.08355	0.120	1	1	1			04/16/09	iad
CAL-02-04/16/09	CAL-02		0.85		100	0.8513	1.118	1	1	. 1			04/16/09	iad
MB-1-04/16/09	MB	MB-1-04/16/09	ND	10	100	-0.14219	0.004	10	1	250	04/16/09	iad	04/16/09	iad
LCS-2	LCS	MB-1-04/16/09	21	10	100	20.648	1.085	10	1	250	04/16/09	iad	04/16/09	iad
AC43984-001	Sample	MB-1-04/16/09	ND	10	44	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43997-001	Sample	MB-1-04/16/09	ND	10	100	-0.10372	0.006	10	1	250	04/16/09	iad	04/16/09	iad
AC43958-009	Sample	MB-1-04/16/09	ND	10	80	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43958-010	Sample	MB-1-04/16/09	ND	10	84	-0.10372	0.006	10	1	250	04/16/09	iad	04/16/09	iad
AC43958-011	Sample	MB-1-04/16/09	ND	10	85	-0.12295	0.005	10	1	250	04/16/09	iad	04/16/09	iad
AC43958-012	Sample	MB-1-04/16/09	ND	10	87	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43958-014	Sample	MB-1-04/16/09	ND	10	79	-0.065257	0.008	10	1	250	04/16/09	iad	04/16/09	iad
AC43977-009	Sample	MB-1-04/16/09	ND	10	84	-0.12295	0.005	10	1	250	04/16/09	iad	04/16/09	iad
AC43985-006	Sample	MB-1-04/16/09	ND	10	80	-0.10372	0.006	10	1	250	04/16/09	iad	04/16/09	iad
AC43958-013	Sample	MB-1-04/16/09	ND	10	86	-0.084489	0.007	10	1	250	04/16/09	iad	04/16/09	
CCV-2	CCV	MB-1-04/16/09	ND	10	100	0.082011	0.118	1	1	1	04/16/09	-	04/16/09	
ICV-04/14/09	ICV		ND	10	100	0.41434	0.550	1	1	1			04/14/09	

18 1/16/09 Analysis Type: RS

Batch Number: RS-259

Units: mg/kg

Calibration Curve Information

		Qc S	ummar	γ Res	ults	San Carlo	CONTRACTOR CONTRACTOR	
Qc Туре	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
CAL -01	CAL-01-04/15/09	16	90-110	NA	16.03	100	NA	
CAL-01	CAL-01-04/16/09	16	90-110	NA	16 43075	103	NA	
UILIE	AC43940-002	0	NA	20	40 075	NA	NA	No
LCS	LCS	500	44-80	NA	300 5625	60	NA	
LCS	LCS-2	500	44-80	NA	270 5063	54	NA	
MS	AC43940-002	500	22-81	NA	240 45	4R	NA	
MSD	AC43940-002	500	22-R1	20	250 4687	50	4 1	

Analytical Method(s)

EPA 7.3.4

Anal By 9 iad
1
2 1 - 4
9 jad
9 jad
⁹ jad
9 jad
9 jad
9 iad
9 iad
9 iad
9 jad
9 iad
9 jad
9 jad
9 iad
9 jad
9 iad
9 jad
9 iad
9 iad
9 jad
9 iad
9 jad
9 jad
9 iad
9 jad
9 iad
9 jad
9 iad
9 iad
5/09 5/09 5/09 5/09 5/09 5/09 5/09 5/09

Jon a Dan-4-16-04 Analysis Type: IGNIT

Batch Number: IGNIT-214

Units:

Calibration Curve Information

Qc Summary Results Rec Rpd Raw SpkAmt Qc Type Qc Name Rpd Flags Recov Lim Lim Result DUP AC43940-002 NΑ NΑ NΑ NA

Analytical Method(s)

EPA 1030

						Remo	Marine Consultation		or commen		************	
					Per	Raw	Pos/Ne	Pr	ер	Prep	Anal	Anal
Sam #	Type	MB	Result	RL	Sol	Resul	it g	Da	ite	Ву	Date	Ву
AC43940-002	Sample		NEG	***********************	100	0	NEG		CONTRACTOR CONTRACTOR	45000000000000000000000000000000000000	04/15/09	iad
AC43940-002	DUP		NEG		100	0	NEG				04/15/09	iad
AC43940-003	Sample		NEG		100	0	NEG				04/15/09	iad
AC43940-004	Sample		NEG		100	0	NEG				04/15/09	iad
AC43940-005	Sample		NEG		100	00	NEG				04/15/09	iad
AC43940-006	Sample		NEG		100	0	NEG				04/15/09	iad
AC43984-001	Sample		NEG		100	0	NEG				04/16/09	iad
AC43997-001	Sample		NEG		100	0	NEG				04/16/09	iad
AC43958-009	Sample		NEG		100	0	NEG				04/16/09	iad
AC43958-010	Sample		NEG		100	0	NEG				04/16/09	jad
AC43958-011	Sample		NEG		100	0	NEG				04/16/09	iad
AC43958-012	Sample		NEG		100	0	NEG				04/16/09	iad
AC43958-013	Sample		NEG		100	0	NEG				04/16/09	jad
AC43958-014	Sample		NEG		100	0	NEG				04/16/09	iad
AC43977-009	Sample		NEG		100	0	NEG				04/16/09	jad
AC43985-006	Sample		NEG		100	0	NEG				04/16/09	iad
AC44053-001	Sample		NEG		100	0	NEG				04/20/09	SDL
AC44068-001	Sample		NEG		100	0	NEG				04/20/09	SDL.

Sur Deux Asolog

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 6M40461.D

Analysis Date: 04/22/09 08:43

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	υ	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	υ
106-46-7 1,4-Dichlorobenzene	0.0010	υ	127-18-4 Tetrachloroethene	0.0010	υ
78-93-3 2-Butanone	0.0010	υ	79-01-6 Trichloroethene	0.0010	υ
71-43-2 Benzene	0.00050	υ	75-01-4 Vinyl Chloride	0.0010	υ
56-23-5 Carbon Tetrachloride	0.0010	υ			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M62146.D

Analysis Date: 04/27/09 08:19

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	υ	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	υ	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	υ	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 6M40649.D

Analysis Date: 04/28/09 11:20

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc	
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U	
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U	
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethe	ne 0.0010	U	
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U	
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U	
56-23-5 Carbon Tetrachloride	0.0010	U				

 $^{{\}it B}$ - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

â - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: EF-1-V-64326(042209)

Client Id:

Data File: 6M40496.D

Analysis Date: 04/22/09 18:46

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

			g· —		
Cas # Compound	RL	Conc	Cas # Compour	nd RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenz	ene 0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloro	ethene 0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroeth	nene 0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chlori	de 0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: EF-1-V64326(042409)

Client Id:

Data File: 6M40675.D

Analysis Date: 04/28/09 18:24

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-009(T)

Client Id: WC-1

Data File: 3M62152.D

Analysis Date: 04/27/09 10:01

Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-010(T)

Client Id: WC-2

Data File: 6M40492.D

Analysis Date: 04/22/09 17:42

Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	υ	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-011(T)

Client Id: WC-3

Data File: 6M40493.D

Analysis Date: 04/22/09 17:58

Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	υ	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-012(T)

Client Id: WC-4

Data File: 6M40494.D

Analysis Date: 04/22/09 18:14

Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-013(T)

Client Id: WC-5

Data File: 6M40495.D

Analysis Date: 04/22/09 18:30

Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

• · · · · · · · · · · · · · · · · · · ·						
RL	Conc	Cas # Co	mpound	RL	Conc	
0.0010	U	108-90-7 Chi	lorobenzene	0.0010	U	
0.00050	U	67-66-3 Chl	loroform	0.0010	U	
0.0010	υ	127-18-4 Tet	trachloroethene	0.0010	U	
0.0010	U	79-01-6 Tric	chloroethene	0.0010	U	
0.00050	U	75-01-4 Vin	yl Chloride	0.0010	U	
0.0010	U					
	0.0010 0.00050 0.0010 0.0010 0.00050	RL Conc 0.0010 U 0.00050 U 0.0010 U 0.0010 U 0.00050 U	RL Conc Cas # Co 0.0010 U 108-90-7 Ch 0.00050 U 67-66-3 Ch 0.0010 U 127-18-4 Te 0.0010 U 79-01-6 Tri 0.00050 U 75-01-4 Vir	RL Conc Cas # Compound 0.0010 U 108-90-7 Chlorobenzene 0.00050 U 67-66-3 Chloroform 0.0010 U 127-18-4 Tetrachloroethene 0.0010 U 79-01-6 Trichloroethene 0.00050 U 75-01-4 Vinyl Chloride	RL Conc Cas # Compound RL 0.0010 U 108-90-7 Chlorobenzene 0.0010 0.00050 U 67-66-3 Chloroform 0.0010 0.0010 U 127-18-4 Tetrachloroethene 0.0010 0.0010 U 79-01-6 Trichloroethene 0.0010 0.00050 U 75-01-4 Vinyl Chloride 0.0010	

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-014(T)

Client Id: WC-6

Data File: 3M62153.D

Analysis Date: 04/27/09 10:18

Date Rec/Extracted: 04/13/09-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	d RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenze	ne 0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroe	thene 0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethe	ene 0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chlorid	e 0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB4111

Client Id:

Data File: 5M50012.D

Analysis Date: 04/17/09 13:04

Date Rec/Extracted: NA-04/17/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0020	U	87-68-3 Hexachlorobutadiene	0.0020	U
88-06-2 2,4,6-Trichlorophenol	0.0020	U	67-72-1 Hexachloroethane	0.0020	U
121-14-2 2,4-Dinitrotoluene	0.0020	U	98-95-3 Nitrobenzene	0.0020	U
95-48-7 2-Methylphenol	0.0020	U	87-86-5 Pentachlorophenol	0.010	U
106-44-5 3&4-Methylphenol	0.0020	U	110-86-1 Pyridine	0.0020	U
118-74-1 Hexachlorobenzene	0.0020	U			

Worksheet #: 115692

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB4112

Client Id:

Data File: 7M40116.D

Analysis Date: 04/20/09 15:35 Date Rec/Extracted: NA-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Matrix: Aqueous

Method: EPA 8270C

Initial Vol: 1000ml Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0020	U	87-68-3 Hexachlorobutadiene	0.0020	U
88-06-2 2,4,6-Trichlorophenol	0.0020	U	67-72-1 Hexachloroethane	0.0020	U
121-14-2 2,4-Dinitrotoluene	0.0020	U	98-95-3 Nitrobenzene	0.0020	U
95-48-7 2-Methylphenol	0.0020	U	87-86-5 Pentachlorophenol	0.010	U
106-44-5 3&4-Methylphenol	0.0020	υ	110-86-1 Pyridine	0.010	U
118-74-1 Hexachlorobenzene	0.0020	υ			

Worksheet #: 115692

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: EF-1 V-64004(R)

Analysis Date: 04/20/09 11:26

Client Id:

Data File: 5M50051.D

Date Rec/Extracted: NA-04/17/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U		
88-06-2 2,4,6-Trichlorophenol	0.0080	υ	67-72-1 Hexachloroethane	0.0080	U		
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U		
95-48-7 2-Methylphenol	0.0080	υ	87-86-5 Pentachlorophenol	0.040	U		
106-44-5 3&4-Methylphenol	0.0080	υ	110-86-1 Pyridine	0.0080	U		
118-74-1 Hexachlorobenzene	0.0080	υ					

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-009(T)

Client Id: WC-1

Data File: 7M40117.D

Analysis Date: 04/20/09 15:58

Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 1ml Dilution: 1

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-010(T)

Client Id: WC-2 Data File: 7M40118.D

Analysis Date: 04/20/09 16:21 Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 1ml

Dilution: 1

Solids: 0

0111101 11191								
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc			
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U			
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U			
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U			
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U			
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U			
118-74-1 Hexachlorobenzene	0.0080	U						

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-011(T)

Client Id: WC-3

Data File: 7M40119.D

Analysis Date: 04/20/09 16:44

Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

IIIIai VOI. 23011

Final Vol: 1ml Dilution: 1

Dilation. 1

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U		
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U		
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U		
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U		
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U		
118-74-1 Hexachlorobenzene	0.0080	U					

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-012(T)

Client Id: WC-4

Data File: 5M50053.D

Analysis Date: 04/20/09 12:11 Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 25011

Dilution: 1

Solids: 0

Cas # Compound	RL	Conc	Cas # Compour	nd RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachloro	obutadiene 0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloro	pethane 0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzer	ne 0.0080	U
95-48-7 2-Methylphenol	0.0080	υ	87-86-5 Pentachlore	ophenol 0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.0080	U
118-74-1 Hexachlorobenzene	0.0080	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-013(T)

Client Id: WC-5

Data File: 7M40120.D Analysis Date: 04/20/09 17:07

Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 1ml

Dilution: 1

Solids: 0

		+	· • · ·		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-014(T)

Client Id: WC-6 Data File: 7M40121.D Analysis Date: 04/20/09 17:29

Date Rec/Extracted: 04/13/09-04/19/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Aqueous

Initial Vol: 250ml

Final Vol: 1ml Dilution: 1

Solids: 0

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: WMB3536

Client Id:

Data File: 5G21559.D Analysis Date: 04/16/09 13:23

Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: ma/L

			· 3 · –			
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc	
57-74-9 Chlordane	0.00010	U	1024-57-3 Heptachlor Epoxide	0.000010	U	
72-20-8 Endrin	0.000010	U	72-43-5 Methoxychlor	0.000010	U	
58-89-9 gamma-BHC	0.000010	U	8001-35-2 Toxaphene	0.00025	U	
76-44-8 Heptachlor	0.000010	U				

Worksheet #: 115537

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: EF-1 V-64004

Client Id:

Data File: 5G21591.D Analysis Date: 04/17/09 10:09

Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Solids: 0

	· · · · · · · · · · · · · · · · · · ·								
Ca	s # Compound	RL	Conc	Cas #	Compound	RL	Conc		
57	7-74-9 Chlordane	0.0010	U	1024-57-3	Heptachlor Epoxide	0.00010	U		
72	2-20-8 Endrin	0.00010	U	72-43-5	Methoxychlor	0.00010	U		
58	3-89-9 gamma-BHC	0.00010	U	8001-35-2	Toxaphene	0.0025	U		
76	6-44-8 Heptachlor	0.00010	U						
	•		U	0001-33-2	Тохарпене	0.0023	Ì		

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: WMB3539

Client Id:

Data File: 6G13976.D Analysis Date: 04/21/09 07:34

Date Rec/Extracted: NA-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: mg/L

			•	· g. –			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
57-74-9	Chlordane	0.00010	υ	1024-57-3	Heptachlor Epoxide	0.000010	U
72-20-8	Endrin	0.000010	U	72-43-5	Methoxychlor	0.000010	U
58-89-9	gamma-BHC	0.000010	U	8001-35-2	Toxaphene	0.00025	U
76-44-8	Heptachlor	0.000010	U				

Worksheet #: 115537

Total Target Concentration (

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-009(T)

Client Id: WC-1

Data File: 6G13982.D

Analysis Date: 04/21/09 09:06 Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: ma/L

		Omits. II	19 ⁷ L		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-010(T)

Client Id: WC-2

Data File: 6G13983.D Analysis Date: 04/21/09 09:21

Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: ma/L

Omia. mg/L						
Cas # Compound	RL	Conc	Cas # C	compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 He	eptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Me	lethoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 To	oxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U				

Worksheet #: 115537

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-011(T)

Client Id: WC-3

Data File: 6G13984.D

Analysis Date: 04/21/09 09:36 Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: ma/L

	+ · · · · · · · · · · · · · · · · · · ·						
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U		
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U		
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U		
76-44-8 Heptachlor	0.00010	U					

Worksheet #: 115537

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-012(T)

Client Id: WC-4

Data File: 5G21633.D

Analysis Date: 04/21/09 08:46

Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Solids: 0

Units: mg/L

omo. mg/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	_
57-74-9	Chlordane	0.0010	U	1024-57-3	Heptachlor Epoxide	0.00010	U	
72-20-8	Endrin	0.00010	U	72-43-5	Methoxychlor	0.00010	U	
58-89-9	gamma-BHC	0.00010	U	8001-35-2	Toxaphene	0.0025	U	
76-44-8	Heptachlor	0.00010	U					

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-013(T)

Client Id: WC-5

Data File: 5G21634.D

Analysis Date: 04/21/09 09:04

Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml Dilution: 1

Solids: 0

Units: mg/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
57-74-9	Chlordane	0.0010	U	1024-57-3	Heptachlor Epoxide	0.00010	U	
72-20-8	Endrin	0.00010	U	72-43-5	Methoxychlor	0.00010	U	
58-89-9	gamma-BHC	0.00010	U	8001-35-2	Toxaphene	0.0025	U	
76-44-8	Heptachlor	0.00010	U					

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-014(T)

Client Id: WC-6

Data File: 5G21635.D

Analysis Date: 04/21/09 09:22

Date Rec/Extracted: 04/13/09-04/20/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 5ml

Dilution: 1

Dilution: 1

Solids: 0

Units: mg/L

	omto: mg/L						
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
57-74-9	Chlordane	0.0010	U	1024-57-3	Heptachlor Epoxide	0.00010	U
72-20-8	Endrin	0.00010	U	72-43-5	Methoxychlor	0.00010	U
58-89-9	gamma-BHC	0.00010	U	8001-35-2	Toxaphene	0.0025	U
76-44-8	Heptachlor	0.00010	U				

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: WMB3537

Client Id:

Data File: 3G45143.D Analysis Date: 04/16/09 19:28

Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

• · · · · · · · · · · · · · · · · · · ·							
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
94-75-7 2,4-D	0.00020	U	93-72-1 Silvex	0.00020	U		

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: EF-1 V-64004

Client Id:

Data File: 3G45150.D Analysis Date: 04/16/09 21:24

Date Rec/Extracted: NA-04/16/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U		

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: WMB3540

Client Id:

Data File: 3G45218.D Analysis Date: 04/22/09 09:20

Date Rec/Extracted: NA-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

		Omto. I	119/-		
Cas # Compound	RL	Conc	Cas # Compound	RLRL	Conc
94-75-7 2,4-D	0.00020	U	93-72-1 Silvex	0.00020	U

Worksheet #: 115796

Total Target Concentration

0 R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-009(T)

Client Id: WC-1

Data File: 3G45229.D Analysis Date: 04/22/09 12:23

Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

omis. mg/2								
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc			
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U			

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-010(T)

Client Id: WC-2

Data File: 3G45230.D

Analysis Date: 04/22/09 12:40 Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

Ome. mg/L							
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U		

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-011(T)

Client Id: WC-3

Data File: 3G45231.D

Analysis Date: 04/22/09 12:57 Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml Final Vol: 10ml

Dilution: 1

Solids: 0

Units: mg/L

Conc Cas # Compound Cas # Compound RL RL Conc 0.0020 93-72-1 Silvex 94-75-7 2,4-D 0.0020

Worksheet #: 115796

Total Target Concentration

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-012(T)

Client Id: WC-4

Data File: 3G45232.D

Analysis Date: 04/22/09 13:14 Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

ome. mgr							
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U		

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-013(T)

Client Id: WC-5

Data File: 3G45233.D Analysis Date: 04/22/09 13:30

Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

5111.51 11.9/L							
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc		
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U		

Worksheet #: 115796

Total Target Concentration

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS HERBICIDE REPORT

Sample Number: AC43958-014(T)

Client Id: WC-6

Data File: 3G45234.D Analysis Date: 04/22/09 13:47

Date Rec/Extracted: 04/13/09-04/21/09

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A

Matrix: Aqueous

Initial Vol: 100ml

Final Vol: 10ml

Dilution: 1

Solids: 0

Units: ma/L

		Oilito	9. –		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U

Worksheet #: 115796

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample ID: AC43958-009

Client Id: WC-1

Matrix: TCLP

% Solid: 0

Units: MG/L Date Rec: 4/14/2009 Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

Level:	LOW
--------	-----

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch		Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-39-3	Barium	0.25	0.32	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7439-92-1	Lead	0.15	0.26	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	19	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-010 Client Id:

WC-2

% Solid: 0 Units: MG/L

Date Rec: 4/14/2009

Lab Name: Veritech

Contract:

Lab Code:

Nras No: Sdg No:

Case No:

Matrix: TCLP Level: LOW

Cas No.	Analyte	RL	Conc		Analysis Date:	Prep Batch		Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-39-3	Barium	0.25	0.34	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	20	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2

Comments:		 		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-011

Client Id: WC-3

% Solid: 0 Units: MG/L

Date Rec: 4/14/2009

Lab Name: Veritech

Nras No:

Lab Code: Contract:

Sdg No: Case No:

Matrix: TCLP Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	M	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-39-3	Barium	0.25	0.60	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-43-9	Cadmium	0.050	ИD	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7439-92-1	Lead	0.15	1.2	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	23	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2

Comments:				

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-012

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: WC-4

Matrix: TCLP

Units: MG/L Date Rec: 4/14/2009 Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-39-3	Barium	0.25	0.33	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	24	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-013

Client Id: WC-5

% Solid: 0 Units: MG/L Lab Name: Veritech

Nras No: Sdg No:

Matrix: TCLP Level: LOW

Date Rec: 4/14/2009

Contract:

Lab Code: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch		Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-39-3	Barium	0.25	0.39	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	25	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC43958-014

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: WC-6 Matrix: TCLP

Units: MG/L Date Rec: 4/14/2009 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-39-3	Barium	0.25	0.34	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	26	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/17/09

Data File: T10132A2

Prep Batch: 10132

Reporting Limits Used: TCLP,6010B(ICP)/7470A,7471A(Hg)

Instrument: PEICP2

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code:

Contract: Nras No:

\$dg No:

Case No:

Analyte	ICB V-62945-8	CCB-18	CCB-30	CCB-38	MB 10132 (1)- 11	EF-V-64004-34
Arsenic	.2 U	.2 U	.2 U	.2 U	.2 U	.2U
Barium	.25 U	.25 U	.25 U	.25 U	.25 U	.25 U
Cadmium	.05 U	.05 U	.05 U	.05 U	.05 U	.05U
Chromium	.2 U	.2 U	.2 U	.2 U	.2 U	.2U
Copper	.2 U	.2 U	.2 U	.2 U	.2 U	.2U
Lead	.15 U	.15 U	.15 U	.15 U	.15 U	.15U
Nickel	.2 U	.2 U	.2 U	.2 U	.2 U	.2U
Selenium	.2 U	.2 U	.2 U	.2 U	.2 U	.2U
Silver	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Zinc	.2 U	.2 U	.2 U	.2 U	.2 U	.2U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/20/09

Data File: H10132T

Prep Batch: 10132
Reporting Limits Used: TCLP,6010B(ICP)/7470A,7471A(Hg)

Instrument: HGCV2

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 9041403

Lab Name: Veritech

Lab Code: Contract:

Nras No: Sdg No:

Case No:

Analyte	ICB-10	CCB-22	CCB-30	MB 10132 (1)- 11	EF-V-64004-28		
Mercury	.7 U	.7 U	.7 U	.7 U	.7 U		

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

ZERO HEADSPACE EXTRACTION- SAMPLE ENTRY

0 7 SW FO			}										,		
)-			7												
)-			7												
)-			•		万									_	+
)-		,	->	5W							·				
۵			->	۴									_		
0;0			->	5:00										Ĭ,	•
4-72	-			12-17										-	
مهندور			-	11,06										_	
	an-m		3	42.7											
75/2001				Sooml	7535										
	$\bar{\rangle}$			64336 EFIV-				¥						_	7
16	18	81	18	80	14	90 /	8/	91	0/	7/	9/	14	9	-	MEP = M
70	_	10-1	9	20											A SPLP=S of extraction
23	hZ	Je ur) J	76	rJ.	2	2	7	7	01	15	J	30	01	ASTM=/
		13 458-012	413954-013		458-609	1958 -014	4023-004	4023-005	4023-006	13485-006	14017-003	300-110 h	4026-003	44626 -004	
	20 10 16 Ethan 25	20 70 16 Etimon 26 com which of 12 2	20 20 16 Extra 35, 600m which 422 122 18 18 18 18 18 18 18 18 18 18 18 18 18	20 20 16 Extra 35 600m 2724 12200 4-22 24 18 18 19 40 11 21 22 19 19 19 19 19 19 19 19 19 19 19 19 19	20 20 16 Exivan 35 600m 22 4-22 24 18 64.3 600m 4.22 11:00 4-22 26 20 18 6AV- 500ml 4-22 11:00 4-24	20 20 16 Eximal 25 Geometry 1220 4-22 24 (18 64.38 500M 4-23, 11/26 4-23) 5 14 2 15 500M 4-23, 11/26 4-23	20 20 16 Emina 25 Leon 272 122 24 18 EFIVE 500M 4-22 11/26 4-22 26 20 18 EFIVE 500M 4-22 11/26 4-22 25 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	20 20 16 Existent 25 500ml 2724 1220 4-22 24 18 6517- 500ml 4-22 11:06 4-22 3 19 40 18 6517- 2590ml 4-22 11:06 4-22 3 18 6617- 2590ml 4-22 11:06 4-22 3 18 6617- 1590ml 4-22 11:06 4-22	20 20 16 Eximally Leonal 27454 1220 6-72 24 18 64736 500M 4-23, 11,00 4-23 26 20 18 6AV-2500M 4-23, 11,00 4-23 3 16 18 6AV-2500M 4-23, 11,00 4-23 3 16 18 6AV-2500M	20 20 16 Ethin 25 600m 27250 1220 4-72 24 18 64.7 500m 4-22 1120 4-72 26 20 18 64.7 500m 4-22 1120 4-72 3 19 6 18 64.7 500m 4-22 1120 4-72 21 16 18 21 120 1-24	20 20 16 Etymo 25 600ml 4-22 1220 4-22 24 18 647- 500ml 4-22 1120 4-22 26 20 18 661- 2550/m 3 19 6 18 6 10 12 2 10 12	20 20 16 ETWARS COM 77245 4220 4-72 24 18 6476 500M 4-23, 11:26 4-72 3 19 4 18 661. 2550M 4-23, 11:26 4-72 3 18 661. 2550M 4-23, 11:26 4-72 3 18 16 17 5 10 16 17 8 15 16 16	26 20 16 Ethin 25 Complete 4:22 120 4:22 24 18 64:32 500ml 4:22 1120 4:22 11	20 10 16 Etylon 25 foom 4-22 12 12 15 15 15 15 1-22 15 15 15 15 15 15 15 15 15 15 15 15 15	20 10 16 Etylor 25 60ml 4-27 120 4-22 24 18 64-36 500ml 4-27 120 4-22 26 20 18 667- 2500ml 4-27 120 4-24 3 16 18 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10

TCLP EXTRACTION LOG

Starting Date:	:	04-1	5-21	D 9	Endi	ng	Date:		04-	16	-36	09	Aci	d L	ot#	_		
			рΗ										`	any)				*.
Sample #	рΗ	pH in HCL	to Ext.	На	Ext Flui	d	Wt./V of San	nple	Sta Tir		Fin Tir		Ana (s		Ext.		Comme	nts
43977-009	6.93	1.45	489	4.94	EF. N-/H	1	1009/	ລາ	13:	45	092	10	0	4	7	T		
43985-006							1509	3L							1			
43984-001							1009/	2L							П			
43958-009	594	144	4.26	4.98			1509	/3L							П	1		
43958-010	9.26	1.47	4.87	5.11												T		
43958-011																T		
43958-012																		
43958-013		1													П			
43958-014	9.37	1.47	4.87	5.60														
43962-001 V-64004	6.78	1.51	4.89	4.95			第写	×/11	+									
EF-1 V-64004			488	488			31											
,												,						
													w ·		ζ,			
Ext Type:	TCLP SPLP		ASTM LAMP															

ZHE = Z

MEP = M