Economic heavy minerals on the continental shelf offshore of Virginia - new insights into the mineralogy, particle sizes, and critical element chemistry

1 H Hydrogen Normats																	2 He Helium Nobio Gas
3 Li Lithium Akai Mela	4 Be Beryllium Akaline Carli Mean											5 B Boron Weatord	6 C Carbon Nametal	7 N Nitrogen Namral	8 O Oxygen horrela	9 F Fluorine Halcon	10 Ne Neon Notre Gas
11 Na Sodium Alai Neta	12 Mg Magnesium Alclina Fatti Maca											13 Al Aluminum Fot-Familier Vota	14 Silicon Method	15 P Phosphorus Norrised	16 S Sulfur	17 Cl Chlorine Hstogen	18 Ar Argon Mico Car
19 K Potassium Akai Meta	20 Ca Calcium victine tarth Mica	21 Sc Scandium Irenal on Metel	22 Ti Titanium Iteration Model	23 V Vanadium retsikon Mitta	24 Cr Chromium Perdion Mittel	25 Mn Manganese ransitor Metal	26 Fe Iron ransition Mctal	27 Co Cobalt Itersition Motel	28 Ni Nickel Innistion Vetal	29 Cu Copper ransfor Motal	30 Zn Zinc Itensit on Motel	31 Ga Gallium Fost Fonsition Mote	32 Ge Germanium Methioc	33 As Arsenic Mats lok	34 Se Selenium	35 Br Bromine Habigon	36 Kr Krypton Nobiolasi
37 Rb Rubidium Akai Ne.u	38 Sr Strontium Alcline Earth Mean	39 Y Yttnum Tricel or Metal	40 Zr Zirconium Terretor Meal	41 Nb Niobium	42 Mo Molybdenum Tersitor Metal	43 Tc Technetium Tansition Metal	44 Ru Ruthenium Pamilion Metal	45 Rh Rhodium Tersitor Metal	46 Pd Palladium Trans for Metal	47 Ag Silver Paniltor Metal	48 Cd Cadmium Trimition Metal	49 In Indium Frittranilia Vola	50 Sn Tin Net-Tartidar Mea	51 Sb Antimony Web Kic	52 Te Tellurium Meutod	53 lodine Halcon	54 Xe Xenon NobeGa
55 Cs Cesium Alai Neta	56 Ba Barium Alcelina Fatth Maca		72 Hf Hafnium Iteration Metal	73 Ta Tantalum	74 W Tungsten TransformMats	75 Re Rhenium Thattlar Meta	76 OS Osmium Tatalier Mital	77 Ir Iridium Traston Metal	78 Pt Platinum Transfor Motal	79 Au Gold Tanalice Matal	80 Hg Mercury Tetration Metti	81 TI Thellium Fist-Travelier Vota	82 Pb Lead	83 Bi Bismuth I Vet-Transfor Meral	84 Po Polonium Weblaut	85 At Astatine Halogon	86 Rn Radon Notio Eas
87 Fr Francium Akai Fica	88 Ra Radium Alceline Lath Micra		104 Rf Rutherfordium Iteration Vical	105 Db Dubnium Tensition Mctal	106 Sg Seaborgium Iteration Motel	107 Bh Bohrium rans tion Medal	108 Hs Hassium ransition tectal	109 Mt Meitnerium Iteration Mctel	110 Ds Darmstadtium Irans for Mod	111 Rg Roentgenium ramition Motal	112 Cn Copernicium Itensition Metal	113 Nh Nihonium Fat Frenition Vale	114 Fl Flerovium Act Harsidon Mose	115 Mc Moscovium Ast instant/cal	116 LV Livermorium Fast Familion Mats	117 Ts Tennessine	118 Og Oganesson Noborises
			57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium Lantianco	60 Nd Neodymium unitatico	61 Pm Promethium antaride	62 Sm Samanum Lartherice	63 Eu Europium Larbarez	64 Gd Gadolinium anitaride	65 Tb Terbium Latheride	66 Dy Dysprosium artterice	67 Ho Holmium	68 Er Erbium Letterids	69 Tm Thulium Letterco	70 Yb Ytterbium	71 LU Lutebum Letteriik
			89 Ac Actinium	90 Th Thorium Attrice	91 Pa Protactinium Actorde	92 U Uranium Activitie	93 Np Neptunium Attrice	94 Pu Plutonium Aco de	95 Am Americium Aclinice	96 Cm Curium Activite	97 Bk Berkelium Acin de	98 Cf Californium Actinute	99 Es Einsteinium Atlinke	100 Fm Fermium Konde	101 Md Mendelevium Adinide	102 No Nobelium Adirice	103 Lr Lawrendum Acrille

William L. Lassetter¹ Jessi S. Blanchette²

OPEN FILE REPORT 2019-03

July, 2019

Prepared under BOEM Cooperative Agreement M14AC00013 Award period: May 28, 2014 – May 16, 2019

¹Corresponding author Virginia Department of Mines, Minerals and Energy Division of Geology and Mineral Resources 900 Natural Resources Drive Charlottesville, VA 22903

²AECOM 4840 Cox Road Glen Allen, VA 23060

U.S. Department of the Interior Bureau of Ocean Energy Management Leasing Division Marine Minerals Program Sterling, VA 20166

DISCLAIMER

Funding for this project was provided by the U.S. Bureau of Ocean Energy Management under Cooperative Agreement M14AC00013 with additional funding contributions from the Virginia Department of Mines, Minerals and Energy. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names and commercial products does not constitute their endorsement by the U.S. Government.

CITATION

Lassetter, W.L., and Blanchette, J.S., 2019, Economic heavy minerals on the continental shelf offshore of Virginia - new insights into the mineralogy, particle sizes, and critical element chemistry: Virginia Division of Geology and Mineral Resources Open-File Report 2019-03, 33 pp and Appendices.

Table of Contents

DISCLAIMER	i
CITATION	i
ABSTRACT	1
INTRODUCTION	2
PURPOSE AND RELEVANCE	4
METHODS AND ANALYSES	5
Acquisition of marine sediment samples	5
Sample preparation	5
Grain size statistics	7
Heavy mineral concentration using the three-turn Humphrey spiral	7
Laboratory analysis	9
RESULTS	16
Grain size statistics	16
Grain size and compositional characteristics of heavy mineral concentrates	
Geochemistry of heavy mineral concentrates	
DISCUSSION	
CONCLUSIONS	30
ACKNOWLEDGEMENTS	32
CITED AND RELEVANT REFERENCES	32
APPENDIX A. Grain size scales and sieve sizes for sediment classification	34
APPENDIX B. ActLabs Reports	35

Tables

Table 1.	Heavy minerals (sp.gr. >3.2) identified in marine sand deposits offshore of Virginia 4
Table 2.	Marine sediment samples analyzed for economic heavy minerals 10
Table 3.	Grain size statistics for marine sediment samples analyzed for economic heavy minerals
Table 4.	Summary of the modal mineralogy of economic heavy minerals reported in weight percent of the total heavy mineral concentrate (wt% THM). THM is reported as weight percent of the total sample
Table 5.	Summary of the modal mineralogy of sub- and non-economic heavy minerals reported in weight percent of the total heavy mineral concentrate (wt% THM)

Figures

Figure 1.	Marine mineral resource assessment areas evaluated as part of ASAP
Figure 2.	Locations of sediment samples analyzed for heavy minerals
Figure 3.	Washing a large volume sediment sample into the top hopper of the three-turn Humphrey spiral for heavy mineral separation
Figure 4.	Grain size classification of sediment samples analyzed for heavy minerals, after Folk (1954), n=58
Figure 5.	Higher THM values are associated with fine to very fine sandy sediments (n=58) 17
Figure 6.	Average composition of the THM concentrates (n=62). Economic minerals are shown as color pie slices. "Pyroboles" is the combined wt% amphibole and pyroxene 18
Figure 7.	ϕ size distributions and mean values for Ti- and Zr-enriched heavy minerals
Figure 8.	Comparison of major oxides content in THM concentrates to continental crustal rocks (Rudnick and Gao, 2003)
Figure 9.	Critical mineral commodities that exceed 5X enrichment in THM concentrates compared to continental crustal rocks (Rudnick and Gao, 2003)
Figure 10	0. Comparison of Y, Sc and REE concentrations in THM concentrates to continental crustal rocks (Rudnick and Gao, 2003)
Figure 11	. Comparison of chondrite-normalized REE in THM concentrates from the Sandbridge and Wallops resource areas
Figure 12	2. Sediment samples analyzed for economic heavy minerals along Virginia's coastline.

ABSTRACT

Since 2014, the Virginia Department of Mines, Minerals and Energy's Division of Geology and Mineral Resources (DGMR) and the U.S. Bureau of Ocean Energy Management (BOEM) have worked through a cooperative agreement to assess sand and economic heavy mineral resources on the continental shelf offshore of Virginia. Beach-quality sand deposits have been identified as potential resources for coastal remediation needs. Heavy minerals deposited with the sand include ilmenite (FeTiO₃), rutile (TiO₂), leucoxene (altered ilmenite), monazite (Ce,La,Y,Th)(PO₄), chromite (Fe,Mg)Cr₂O₄, zircon (Zr,Hf,U)(SiO₄), and others that occur in quantities ranging from trace amounts to over 10 weight percent. These minerals contain critical elemental commodities such as titanium, zirconium, chromium, and rare earth elements (REE) that have commercial value and are potentially recoverable as an integral part of beach restoration operations. Laboratory analysis of total heavy mineral (THM) concentrates from offshore samples has allowed for the quantification of the compositional variability of economic minerals, and the concentrations of the critical commodities they contain. The results also provide new information about grain size characteristics that, together with specific gravity and magnetic susceptibility, are important for the evaluation of recovery and separation methods.

A total of 63 marine sediment samples were analyzed for heavy minerals during 2016-19. The samples were gathered as part of the BOEM-sponsored Atlantic Sand Assessment Project (ASAP) and the Virginia Offshore Wind Technology Advancement Project (VOWTAP). Grain size analysis of the bulk samples provided mean ϕ values for the sediments, which averaged $\phi M = 2.45$, indicating predominantly fine grained sand textures that are suitable for beach nourishment. The preparation of the relatively large-volume samples for laboratory analysis included a pre-concentration procedure using a three-turn Humphrey spiral. Heavy liquid separation in the laboratory further refined the concentrates, producing a sink fraction containing minerals with specific gravity greater than about 3.2. For all samples, the THM content averaged 0.60 wt% (dry weight percent of the total sample), with individual samples ranging from 0.01 wt% up to 1.94 wt%. Modal mineralogical analysis showed ilmenite to be the predominant heavy mineral, averaging 23.5 wt% of THM, followed by rutile 8.7 wt%, and zircon 3.7 wt%. The sum of economic minerals in the concentrates averaged 40.5 wt% of THM.

Major-oxide and trace element geochemical analysis of the THM concentrates indicated significant enrichments in critical elemental commodities including Ti, Zr, REE, Cr, Hf, In, Nb, Sn, Ta, U, V, and W. The chondrite-normalized patterns of REE concentrations in particular provide valuable insight for further investigations of the geospatial distributions and transport processes of the minerals in the offshore environment.

INTRODUCTION

Following the devastating erosional impacts of Hurricane Sandy along the Atlantic coastline in 2012, the U.S. Bureau of Ocean Energy Management (BOEM) initiated cooperative agreements with 13 coastal states, including Virginia, to identify sand resources on the Outer Continental Shelf (OCS) suitable for beach nourishment and other coastal protection and restoration projects. In the initial cooperative agreement that extended from May 2014 to May 2016, the Department of Mines, Minerals and Energy's Division of Geology and Mineral Resources (DGMR) created an inventory of existing offshore geophysical surveys and geotechnical data from vibracore logs and seafloor grab samples, and a geodatabase containing analytical results for new samples characterizing sand and heavy mineral resources. The results are summarized in *Cooperative Agreement M14AC00013: Virginia Summary Report 2016 – Assessment of Offshore Sand Resources for Virginia Beachfront Restoration* (available on-line, https://www.boem.gov/Virginia-Projects/).

Virginia's State Cooperative Agreement was renewed for the period extending from August 2016 to May 2019 (M14AC00013 Modification 2) to conduct site-specific assessments of sand and heavy mineral resources using geologic data collected as part of the BOEMsponsored Atlantic Sand Assessment Project (ASAP). From 2015 to 2017, BOEM contracted the Chicago Bridge and Ironworks Company (CB&I) to collect geophysical data and sediment cores in resource areas located in Federal waters 3 nautical miles (nm) to 8 nm off the Virginia coast (Figure 1). In the Wallops resource area, located offshore of Assateague and Wallops Island, reconnaissance scale geophysical surveys and 10 vibracores (including 2 twinned holes) were completed in an area encompassing about 245 square kilometers, km² (72 nm²). In the Sandbridge area, located offshore of Sandbridge Beach and False Cape State Park, geophysical surveys and 5 vibracores (including 2 twinned holes) were completed in an area covering about 187 km² (54 nm²). In the Delmarva area, offshore of the "Chincoteague Bight", 14 vibracores were completed in 2016-17 to evaluate sand deposits and heavy mineral occurrences. Heavy mineral resources were tested in the Smith Island area by 4 vibracores completed in 2017.

The ASAP offshore work provided a valuable opportunity to leverage sample collection activities for the evaluation of heavy minerals. For this report, heavy minerals are those generally characterized by specific gravity greater than about 3.2. Previous studies have recognized the potential economic value of marine sediment deposits containing heavy minerals such as ilmenite (FeTiO₃), rutile (TiO₂), zircon (ZrSiO₄), monazite (CePO₄), among others (Berquist and others, 1990; USBM, 1987). Since 1985, over 600 samples collected offshore of Virginia have been analyzed for total heavy minerals (THM) content, with the results indicating about 44 percent of the samples containing greater than 2.5 wt% THM (of the dry weight total sample), and 2 percent of the samples containing greater than 10 wt% THM (Berquist and Hobbs, 1986; Berquist and others, 1990; Luepke, 1990; Berquist and others, 2016; present report). These concentrations compare favorably with the known economic grades of onshore deposits mined by Iluka Resources LLC in Dinwiddie and Greenville Counties, Virginia. In the last full year of

production in 2015, over 272 thousand short tons of titanium- and zirconium-enriched heavy mineral concentrates were produced from placer deposits in Pliocene-age beach sand. The estimated value was over \$27 million (DMME, 2016). These ancient beach sand deposits may represent an onshore analog to similar deposits located offshore.

This report summarizes the results of analyses of recently acquired samples and provides new insights concerning the modal composition, geochemistry, and concentrations of critical commodities contained in heavy minerals offshore of Virginia. The future recovery of economically valuable heavy minerals as part of offshore sand mining operations for beach restoration could provide value-added benefits.

Figure 1. Marine mineral resource assessment areas evaluated as part of ASAP. Volumetric assessments of beach-quality sand were conducted in the brown-shaded areas at Wallops and Sandbridge.

PURPOSE AND RELEVANCE

A priority objective of the BOEM-Virginia State Cooperative is to assess occurrences of "value-added" heavy mineral resources that could provide positive economic offsets to the costs of sand dredging and beach restoration projects in Virginia. Economic heavy minerals include those containing critical mineral (elemental) commodities listed in U.S. Geological Survey Open-File 2018-1021 that are identified as "essential to the economic and national security of the United States" (Fortier and others, 2018). To date, nine economic minerals (or mineral groups) have been identified in heavy mineral concentrates from offshore Virginia (Table 1), including ilmenite, leucoxene, rutile, titanite, zircon, monazite, xenotime, apatite, and chromite. Minerals of the sillimanite group, garnet group, and staurolite potentially have non-critical economic value. Other heavy minerals that commonly occur in sample concentrates, but have little or no economic value include magnetite and other iron-oxides, pyrite, epidote, amphibole, pyroxene, among others.

Vibracore samples collected in 2015, 2016, and 2017 to support the ASAP sand resource assessments were leveraged for economic heavy minerals analysis. This report presents DGMR's findings in partial fulfilment of the work product deliverables for Cooperative Agreement M14AC00013. Recommendations from this assessment may assist BOEM's policy decisions if the demand for non-traditional marine mineral resources increases.

Mineral name	Composition	¹ Specific gravity	² Critical mineral commodities	Non-critical economic value
Ilmenite	FeTiO ₃	4.7	Ti	
Leucoxene	altered FeTiO ₃	3.6 - 4.3	Ti	
Rutile	TiO ₂	4.2 - 4.3	Ti	
Titanite	CaTiO(SiO ₄)	3.3 - 3.6	Ti	
Zircon	ZrSiO ₄	4.7	Zr, U, Hf, REE	Th, refractory
Monazite	(Ce, La, Y, Th)PO ₄	4.6 - 5.4	REE, Y	Th
Xenotime	YPO ₄	4.4 - 5.1	Y, REE, U	
Apatite	Ca(PO ₄) ₃ (F,OH)	3.2	REE, U, Sr	fertilizer
Chromite	(Fe, Mg)Cr ₂ O ₄	4.6	Cr	refractory
Sillimanite minerals	Al ₂ SiO ₅	3.2 - 3.7		Al, refractory
Garnet group	(Ca, Fe, Mg, Al)(SiO ₄) ₃	3.4 - 4.6		abrasive sand
Staurolite	Fe ₂ Al ₉ (Si, Al) ₄ O ₂₂ (OH) ₂	3.6		abrasive, cement
Magnetite / Hematite	Fe ₂ O ₃ / Fe ₃ O ₄	5.2-5.3		
Goethite	<i>a</i> FeO·OH	4.4		
Pyrite	FeS ₂	5.0		
Epidote	Ca ₂ (Al, Fe) ₃ (SiO ₄) ₃ (OH)	3.4		
Spinel	MgAl ₂ O ₄	3.5 - 4.1		
Pyroxene	(NaCa)(Mg,Fe,Al)(Al,Si) ₂ O ₆	3.5 - 3.7		
Amphibole	Ca2(Mg,Fe,Al)5(Si,Al)8O22(OH)2	2.9 - 3.6		

Table 1. Heavy minerals (sp.gr. >3.2) identified in marine sand deposits offshore of Virginia

¹ Sources: Van Gosen and others, 2014; Garner, 1978.

² Source: Fortier and others, 2018

METHODS AND ANALYSES

Acquisition of marine sediment samples

The findings presented in this report include results of analysis for 63 sediment samples collected in the offshore project area (Figure 2). Thirty-five of these samples were collected as part of the BOEM-sponsored ASAP vibracoring activities in 2015-17. Details concerning the vibracore locations, dates of collection, total depths, logs, etc. are provided in a separate deliverable report entitled: *BOEM Cooperative Agreement M14AC00013, Assessment of offshore sand resources for beach remediation in Virginia*.

In addition to the ASAP samples, 28 marine sediment samples received by DGMR in 2014 were analyzed. These seafloor grab and core samples were taken in 2013 in association with the Virginia Offshore Wind Technology Advancement Project (VOWTAP). As part of the VOWTAP geotechnical studies, Tetra Tech Inc. (Tetra Tech) conducted sediment sampling and geophysical surveys in the planned wind turbine demonstration area of the Wind Energy Area (WEA) and along the proposed cable route to Camp Pendleton, Virginia Beach. Tetra Tech provided DGMR with 69 grab samples and 90 bagged sample intervals from 17 vibracore locations. The results of grain size analyses and other geotechnical data are available in the final VOWTAP report (Tetra Tech, 2014).

Table 2 provides a complete list of the samples by field sample identification, the assigned DGMR rock repository number, the source, resource area, sample type, collection date, geographic coordinates, and laboratory report identification number.

Sample preparation

The ASAP vibracores were split by the contractor and sampled for grain size analysis by CB&I and the Delaware Geological Survey (DGS). The DGS also selected shell samples for amino acid racemization (AAR) dating. Lithologic logs for the ASAP cores were provided by CB&I and DGS. Lithologic logs for the VOWTAP vibracores were provided by Tetra Tech. After logging and sampling for grain size and AAR were completed, the ASAP core halves were transferred from the DGS facilities in Newark, DE to DGMR in Charlottesville, VA. Separate geologic examinations and sampling for heavy minerals analysis were performed by DGMR geoscientists at facilities located at the College of William and Mary in Williamsburg. The selection of core intervals for heavy minerals analysis was guided by visual estimates of the percent of opaque minerals. In some cases, the sample intervals for ASAP grain size analysis and heavy minerals analysis varied slightly, but this report generally utilizes the DGS logs and grain size data as the primary source for stratigraphic and lithologic characterizations.

The ASAP and Tetra Tech vibracore samples for heavy minerals were typically composites of five-foot sections; some intervals were less than five feet depending on the original recovered length of the core.

Figure 2. Locations of sediment samples analyzed for heavy minerals.

8 nm project boundary

- BOEM Admin boundary

The Tetra Tech grab and vibracore samples were delivered to DGMR in large sealed Ziplock bags and typically consisted of several kilograms of wet sediment. The samples were air dried in large plastic shallow tubs, a process that took about two weeks on average to remove all of the moisture. The dry weights of the bulk samples were recorded for later calculations of the dry-weight percent of total heavy minerals (THM). Each sample was then saturated in water for a minimum of eight hours to flocculate the fine sediment particles. This was followed by wet sieving through ASTM 10- and 230-mesh sieves. The plus 2-mm fraction retained on the 10mesh screen was separated, air-dried, and the weight recorded as the "oversize" fraction for each sample. The fraction retained on the 230-mesh sieve, the "sand" fraction was air-dried in a large open-air plastic container, and the total dry weight recorded. The minus 0.062-mm fraction that passed the 230-mesh sieve was generally not significant and was discarded. The air-dry bulk sand fractions were prepared for heavy mineral separation using the three-turn Humphrey spiral apparatus.

Grain size statistics

Granularmetric reports were provided by CB&I for samples taken from the ASAP vibracores completed in 2015. The Delaware Geological Survey also completed grain size analyses for different sample intervals from the 2015 cores, as well as for samples from the ASAP vibracores taken in 2016 and 2017. Several samples selected by DGMR for heavy mineral analysis consisted of silty sediments; grain size analysis was not performed on these.

Grain size statistics were evaluated for the sand fraction particle distributions using the base two logarithmic phi (ϕ) scale. For those samples for which moment statistics were not provided, the mean sand grain size (ϕ M) was calculated as the average of the ϕ size at 16%, 50%, and 84% taken from the arithmetic-scaled cumulative weight percent curve:

$$\oint \mathbf{M} = \frac{\oint 16 + \oint 50 + \oint 84}{3}$$

Grain size statistics, water depths, sample depths below the sea floor (bsf), and ASTM classifications are summarized in Table 3.

Heavy mineral concentration using the three-turn Humphrey spiral

Heavy mineral concentrates were prepared from the bulk sand fractions by passing the entire sample through the three-turn Humphrey spiral. The sample was introduced into the top of the spiral under a steady, low pressure stream of water (Figure 3). The rate of sample input was somewhat subjective and grain-size dependent; samples that contained mainly fine particles were introduced at a slower rate than samples with coarser material. Water flowed through the spiral from two sources: from a hose at the top used to wash the sediment from the sample container into the top hopper, and from small jets located along the length of the spiral. The combined

flow rate was maintained at about 1 gallon per minute and checked periodically to ensure consistency.

In operation, the sediment-water mixture flowed down the spiral and the heavy minerals (grains with specific gravity generally greater than about 2.9) were separated by gravity towards the inside of the spiral while the lighter materials (shell, quartz, phosphate, etc.) were carried in the water stream towards the outside of the stream. A splitter at the bottom of the spiral was adjusted in the water stream as needed to ensure the separation of the heavy minerals, which were collected in a separate container. The concentrate was washed into the top of the spiral again to eliminate as much quartz and lighter weight minerals as possible. The heavy mineral concentrates were air dried and the weights recorded. The light-density sand fractions were either discarded or archived for future reference.

Figure 3. Washing a large volume sediment sample into the top hopper of the three-turn Humphrey spiral for heavy mineral separation.

Laboratory analysis

For each spiraled sample concentrate, a minimum 100-g split was submitted to Activation Laboratories, Ltd. (ActLabs) located in Ancaster, Ontario, Canada for heavy minerals analysis. At the lab, the samples were further concentrated using heavy liquid separation methods that produced a heavy (sink) fraction with specific gravity generally greater than about 3.2. The lab provided the final dry weights of the sink and light (float) sediment fractions. The percent sinks reported by the lab was multiplied by the dry weight of the spiral concentrate to calculate the THM concentration as the dry weight percent of the total bulk sample:

 $\frac{\% Sinks * HMC_t}{Sample_b} = THM$

where: $HMC_t = dry$ weight of heavy mineral concentrate recovered by spiral, in g Sinks = heavy liquid separation sink fraction reported by lab, in g Float = heavy liquid separation float fraction reported by lab, in g %Sinks = calculated percent dry weight Sinks Sample_b = dry weight of bulk sample, in g THM = total heavy minerals, as weight percent of total dry-weight sample

Mineral identifications were completed using the FEI FEG QEMSCAN scanning electron microscope Mineral Liberation Analysis (MLA) method. Two modes of measurement were used: BMA or line scan to produce modal mineralogy data, and particle mapping to determine grain size distributions. The laboratory reported the mass weight percent for up to 11 titanium-enriched minerals, 5 REE-enriched minerals, 6 oxide/hydroxide minerals, 12 silicates, and a variety of other minerals that occurred in low trace amounts or were unclassified.

Twenty-seven heavy mineral concentrate samples were also analyzed for major oxides and trace elements using the ActLabs 4LITHO RESEARCH whole rock analytical package. This package utilizes lithium metaborate/tetraborate fusion ICP for the whole rock analysis and ICP/MS analytical methods for trace elements including the rare earth elements (REE) at the lowest detection limits available. The analyses were performed on the "sink" fraction resulting from the heavy liquid separation performed at the lab.

Sample ID	DGMR Repository ID	Source	Area	¹ Type	Collection date	Longitude dec deg W NAD83	Latitude dec deg N NAD83	Lab Report
REF-002	R-11031	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/20/13	-75.86700	36.81215	A16-03579
GS-021	R-11032	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.90069	36.81946	A16-03579
GS-022	R-11033	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.89147	36.81952	A16-03579
GS-023	R-11034	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.87816	36.81944	A16-03579
GS-024	R-11035	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/20/13	-75.86786	36.81905	A16-03579
GS-025	R-11036	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/20/13	-75.86131	36.81794	A16-03579
GS-026	R-11037	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/20/13	-75.84834	36.81544	A16-03579
GS-027	R-11038	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.83873	36.81415	A16-03579
GS-028	R-11039	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.83258	36.81293	A16-03579
GS-029	R-11040	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.82635	36.81175	A16-03579
GS-030	R-11041	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.81243	36.80933	A16-03579
GS-031	R-11042	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.80282	36.80897	A16-03579
GS-032	R-11043	Tetra Tech VOWTAP	Sandbridge	grab, conc	6/19/13	-75.79487	36.80842	A16-03579
VC-01 1/3	R-11350a	BOEM-ASAP 2015	Sandbridge	core, conc	9/16/15	-75.80410	36.60230	A18-05577
VC-01 3/3	R-11350c	BOEM-ASAP 2015	Sandbridge	core, conc	9/16/15	-75.80410	36.60230	A18-05577
VC-04 1/3	R-11351a	BOEM-ASAP 2015	Sandbridge	core, conc	9/16/15	-75.75324	36.65378	A18-05577
VC-04 1/3	R-11351ab	BOEM-ASAP 2015	Sandbridge	core, bulk	9/16/15	-75.75324	36.65378	A18-05577
VC-04A 1/2	R-11352a	BOEM-ASAP 2015	Sandbridge	core, bulk	9/16/15	-75.75325	36.65378	A18-05577
VC-04A 2/2	R-11352b	BOEM-ASAP 2015	Sandbridge	core, bulk	9/16/15	-75.75325	36.65378	A18-05577
VC-05A 1/2	R-11354a	BOEM-ASAP 2015	Sandbridge	core, conc	9/16/15	-75.74899	36.68914	A18-05577
VC-05A 2/2	R-11354b	BOEM-ASAP 2015	Sandbridge	core, conc	9/16/15	-75.74899	36.68914	A18-05577
VC-06 1/3	R-11355	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18973	37.93084	A17-11430
VC-06 2/3	R-11356	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18973	37.93084	A17-11430
VC-06 3/3	R-11357	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18973	37.93084	A17-11430

Table 2. Marine sediment samples analyzed for economic heavy minerals.

Sample ID	DGMR Repository ID	Source	Area	¹ Type	Collection date	Longitude dec deg W NAD83	Latitude dec deg N NAD83	Lab Report
VC-08 1/3	R-11358	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.24478	37.79299	A17-11430
VC-08 2/3	R-11359	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.24478	37.79299	A17-11430
VC-08 3/3	R-11360	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.24478	37.79299	A17-11430
VC-09 1/3	R-11361	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.29728	37.81161	A17-11430
VC-09 2/3	R-11362	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.29728	37.81161	A17-11430
VC-09 3/3	R-11363	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.29728	37.81161	A17-11430
VC-09A 1/2	R-11364	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.29730	37.81162	A17-11430
VC-09A 2/2	R-11365	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.29730	37.81162	A17-11430
VC-06A 1/3	R-11366	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18983	37.93084	A17-11430
VC-06A 2/3	R-11367	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18983	37.93084	A17-11430
VC-06A 3/3	R-11368	BOEM-ASAP 2015	Wallops	core, conc	9/17/15	-75.18983	37.93084	A17-11430
VC-001A 1/3	R-11369	Tetra Tech VA WEA	Sandbridge	core, conc	6/27/13	-75.93936	36.81728	A17-03131
VC-001A 2/3	R-11370	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.93936	36.81728	A17-03131
VC-001A 3/3	R-11371	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.93936	36.81728	A17-03131
VA-001A core tip	R-11372	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.93936	36.81728	A17-11430
VC-002B 1/2	R-11373	Tetra Tech VOWTAP	Sandbridge	core, conc	6/22/13	-75.89520	36.81933	A17-03131
VC-002B 2/2	R-11374	Tetra Tech VOWTAP	Sandbridge	core, conc	6/22/13	-75.89520	36.81933	A17-03131
VA-002 core tip	R-11375	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.89520	36.81933	A17-11430
VC-003 1/2	R-11376	Tetra Tech VOWTAP	Sandbridge	core, conc	6/22/13	-75.88418	36.81906	A17-03131
VC-003 2/2	R-11377	Tetra Tech VOWTAP	Sandbridge	core, conc	6/22/13	-75.88418	36.81906	A17-03131
VC-004 1/3	R-11378	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.87606	36.81928	A17-03131
VC-004 2/3	R-11379	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.87606	36.81928	A17-03131
VC-004 3/3	R-11380	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.87606	36.81928	A17-03131
VC-005 2/3	R-11382	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.86445	36.81847	A17-03131
VC-005 2/3 red	R-11382	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.86445	36.81847	A17-03131
VC-005 3/3	R-11383	Tetra Tech VOWTAP	Sandbridge	core, conc	6/27/13	-75.86445	36.81847	A17-03131

Sample ID	DGMR Repository ID	Source	Area	¹ Type	Collection date	Longitude dec deg W NAD83	Latitude dec deg N NAD83	Lab Report
VA-2017-09 1/3	R-11434	BOEM-ASAP 2017	Delmarva	core, bulk	12/3/17	-75.51400	37.52700	A18-05577
VA-2017-10 1/3	R-11441	BOEM-ASAP 2017	Delmarva	core, bulk	12/3/17	-75.50779	37.61752	A18-05577
VA-2017-05 1/3	R-11462	BOEM-ASAP 2017	Smith Island	core, bulk	12/5/17	-75.72999	37.07900	A18-05577
VA-2017-06 1/3	R-11466	BOEM-ASAP 2017	Smith Island	core, bulk	12/5/17	-75.75600	37.10300	A18-05577
VA-2017-08 1/3	R-11470	BOEM-ASAP 2017	Smith Island	core, bulk	12/5/17	-75.73102	37.12901	A18-05577
VA-2017-07 1/3	R-11474	BOEM-ASAP 2017	Smith Island	core, bulk	12/5/17	-75.77499	37.13100	A18-05577
VA-2017-03 1/3	R-11478	BOEM-ASAP 2017	Wallops	core, bulk	12/4/17	-75.19899	37.83901	A18-05577
VA-2017-02 1/3	R-11482	BOEM-ASAP 2017	Wallops	core, bulk	12/4/17	-75.24102	37.85601	A18-05577
VA-2017-04 1/3	R-11486	BOEM-ASAP 2017	Wallops	core, bulk	12/4/17	-75.21997	37.88700	A18-05577
VA-2017-01 1/3	R-11488	BOEM-ASAP 2017	Wallops	core, bulk	12/4/17	-75.23902	37.89898	A18-05577
VA-2016-04 1/3	R-11494	BOEM-ASAP 2016	Delmarva	core, bulk	8/20/16	-75.48265	37.67709	A18-05577
VA-2016-06 1/3	R-11498	BOEM-ASAP 2016	Delmarva	core, bulk	8/20/16	-75.50089	37.64635	A18-05577
VA-2016-02 1/3	R-11500	BOEM-ASAP 2016	Delmarva	core, bulk	8/20/16	-75.44757	37.73616	A18-05577

¹ Type: grab is seafloor grab sample, core is vibracore, conc is spiral concentrate submitted to lab, bulk is bulk sample submitted to lab (not pre-concentrated).

DGMR Repository ID	¹ Water depth m MLLW	Sample depth m ² bsf	Gravel %	Sand %	³ Mud %	ASTM D2487 classification	Sand fraction Фм
R-11031	13.8	0.0	0.1	87.6	12.3	SM	2.72
R-11032	11.0	0.0	0.3	98.4	1.3	SP	1.75
R-11033	11.0	0.0	4.6	94.3	1.1	SP	0.66
R-11034	14.0	0.0	0.0	73.3	26.7	SM	3.53
R-11035	14.8	0.0	0.2	97.5	2.3	SP	1.89
R-11036	15.8	0.0	0.0	82.8	17.2	SM	3.41
R-11037	16.0	0.0	0.1	95.2	4.7	SP	1.98
R-11038	15.7	0.0	0.0	84.9	15.1	SM	3.28
R-11039	15.8	0.0	0.1	84.8	15.1	SM	3.27
R-11040	16.2	0.0	0.1	86.7	13.2	SM	3.06
R-11041	16.1	0.0	0.0	84.8	15.2	SM	3.24
R-11042	16.6	0.0	0.1	84.8	15.1	SM	3.33
R-11043	18.4	0.0	12.3	79.6	8.1	SP-SM	-0.23
R-11350a	14.0	0.0-1.5	1.4	98.6	0.1	SW	1.21
R-11350c	14.0	3.7-5.2	⁴ nd	nd	nd	ML	nd
R-11351a	16.0	0.0-1.8	0.0	99.9	0.1	SP	1.51
R-11351ab	16.0	0.0-1.8	0.0	99.9	0.1	SP	1.51
R-11352a	16.0	4.3-5.2	0.2	98.7	1.2	SP	2.01
R-11352b	16.0	5.2-6.7	0.4	37.8	61.8	ML	3.61
R-11354a	14.0	3.4-4.9	0.0	98.7	1.3	SP	2.30
R-11354b	14.0	4.9-6.4	0.1	99.4	0.5	SP-SW	1.87
R-11355	16.7	0.0-1.5	0.9	99.0	0.2	SP	1.26
R-11356	16.7	1.5-3.0	0.2	99.4	0.5	SP	1.47
R-11357	16.7	3.0-4.6	0.0	80.5	19.5	SM	2.50
R-11358	18.4	0.0-1.5	0.4	99.0	0.6	SP-SW	1.47

Table 3. Grain size statistics for marine sediment samples analyzed for economic heavy minerals.

DGMR Repository ID	¹ Water depth m MLLW	Sample depth m ² bsf	Gravel %	Sand %	³ Mud %	ASTM D2487 classification	Sand fraction Φ_{M}
R-11359	18.4	1.5-3.0	0.1	97.5	2.4	SP-SM	2.86
R-11360	18.4	3.0-4.6	nd	nd	nd	ML	nd
R-11361	15.5	0.0-1.5	0.2	95.3	4.5	SP-SM	2.62
R-11362	15.5	1.5-3.0	0.1	98.4	1.5	SW	2.40
R-11363	15.5	3.0-4.6	0.0	93.5	6.5	SP-SM	2.84
R-11364	15.5	3.2-4.1	1.1	97.1	1.8	SP-SM	2.70
R-11365	15.5	4.1-5.6	0.0	97.8	2.2	SP-SM	2.64
R-11366	16.7	3.1-4.2	nd	nd	nd	ML	nd
R-11367	16.7	4.2-5.7	0.0	86.0	14.0	SC-ML	2.15
R-11368	16.7	5.7-7.2	0.2	97.4	2.4	SP	1.64
R-11369	8.1	0.0-0.9	0.1	85.6	14.3	SM	3.29
R-11370	8.1	0.9-1.8	0.1	86.2	13.7	SM	3.33
R-11371	8.1	1.8-2.4	0.1	85.6	14.3	SM	3.30
R-11372	8.1	2.4-2.4	0.1	85.6	14.3	SM	3.30
R-11373	9.7	0.0-0.9	6.0	93.6	0.4	SP-SM	1.31
R-11374	9.7	0.9-1.8	34.5	63.6	1.9	SP	-0.28
R-11375	9.7	1.8-1.8	nd	nd	nd	SM	nd
R-11376	12.6	0.0-0.9	0.2	90.9	8.9	SP-SM	2.76
R-11377	12.6	0.9-2.1	0.3	84.0	15.7	SM	3.32
R-11378	14.1	0.0-0.9	0.9	88.3	10.8	SP-SM	3.26
R-11379	14.1	0.9-1.5	0.0	68.8	31.2	SM	3.38
R-11380	14.1	1.5-2.6	0.2	80.4	19.4	SM	3.32
R-11382	15.1	0.9-1.5	0.0	80.7	19.3	SM	3.40
R-11382	15.1	1.5-1.6	25.3	73.4	1.3	SP	-0.07
R-11383	15.1	1.6-2.6	25.6	71.4	3.0	SP-SW	-0.13
R-11434	9.1	0.0-1.5	1.0	97.5	1.5	SP	2.08

DGMR Repository ID	¹ Water depth m MLLW	Sample depth m ² bsf	Gravel %	Sand %	³ Mud %	ASTM D2487 classification	Sand fraction Фм
R-11441	11.1	0.0-1.5	0.4	66.6	33.0	SC-ML	3.94
R-11462	15.0	0.0-1.5	0.0	80.4	19.7	SM	3.63
R-11466	12.3	0.0-1.5	0.3	92.2	7.5	SP-SM	3.25
R-11470	13.1	0.0-1.5	0.0	85.8	14.2	SM	3.36
R-11474	11.3	0.0-1.5	0.0	88.0	12.0	SM	3.56
R-11478	20.8	0.0-1.5	1.4	86.7	11.9	SM	2.76
R-11482	17.5	0.0-1.5	0.2	95.7	4.1	SP-SM	2.78
R-11486	15.2	0.0-1.5	0.0	94.8	5.2	SP-SM	2.77
R-11488	17.4	0.0-1.5	nd	nd	nd	ML	nd
R-11494	15.7	0.0-1.5	0.1	95.8	3.9	SP-SM	2.15
R-11498	12.3	0.0-1.5	0.6	98.0	1.4	SP	1.98
R-11500	15.0	0.0-1.5	0.4	41.0	55.9	ML	3.86
Mean	14.4		2.1	87.4	10.5		2.45
Standard deviation	2.9		6.6	13.0	12.3		1.06
Median	15.1		0.1	88.2	7.0		2.74
Median abs dev.	1.3		0.1	8.6	6.5		0.66
Max	20.8		34.5	99.9	61.8		3.94
Min	8.1		0.0	37.8	0.1		-0.28
Count	63		58	58	58		58

¹ MLLW is mean lower low water National Tidal Datum Epoch from the U.S. National Oceanic and Atmospheric Administration (NOAA).
² bsf = below sea floor.
³ mud fraction in the Tetra Tech samples are minus 200-mesh (0.075 mm), all others are minus 230-mesh (0.063 mm).
⁴ nd = no data available.

RESULTS

Grain size statistics

The results of grain size analysis performed by CB&I, DGS, and Tetra Tech indicate the range of sediment textures in the samples selected for heavy minerals analysis (Table 3). For reference, Appendix A provides a comparison of grain size scales and sieve sizes for sediment classification. Overall, the sediments averaged 2.1% gravel, 87.4% sand, and 10.5% mud (silt+clay) fractions, and generally are classified as muddy sand to sand (Figure 4). It is noted that the sample grain size analyses received from Tetra Tech defined the "mud" fraction as sediment passing the 200-mesh sieve (ϕ =3.75, 0.07 mm) whereas all other samples delineated the "mud" fraction as sediment passing the 230-mesh sieve (ϕ =4, 0.06 mm). Although not greatly significant, the overall average percent mud is probably somewhat overstated and the overall average percent sand fraction understated. One of the criteria in sample selection was the co-occurrence of opaque minerals with potentially beach-quality sand. The mean ϕ value (ϕ M) for 58 samples was 2.45, which confirmed the visual observation of predominantly fine- to very fine sand textures.

Figure 4. Grain size classification of sediment samples analyzed for heavy minerals, after Folk (1954), n=58.

Grain size and compositional characteristics of heavy mineral concentrates

The ActLabs reports for 63 heavy mineral concentrates are included in Appendix B, and include details concerning modal mineralogy, grain size distribution and mineral compositional mapping of representative particles. Table 4 summarizes the total heavy mineral (THM) fractions as the weight percent of the bulk dry weight of each sample. Also listed are the weight percents of the individual heavy minerals with economic importance, which are those listed in Table 1 containing critical commodities (ilmenite, rutile, leucoxene, titanite, zircon, monazite, xenotime, apatite, and chromite). The sum of the economic heavy minerals in each sample is given as Σ EHM as the weight percent of THM. Table 5 summarizes the weight percents of minerals with non-critical value or are non-economic minerals included in the THM fractions.

Overall, the mean value for THM was 0.60 wt%, with individual samples ranging from as low as 0.01 wt% up to 1.94 wt%. Note that one anomalous sample, VC-04A 2/2 (R-11352b), collected from core in the Sandbridge area, was not used in the statistical compilations. This was due to an unusual mineral composition that included relatively high pyrite content (61 wt%). No explanation for this lab result is evident in the core log or grain size data.

The highest THM concentrations (greater than 1 wt%) were associated with bulk sediments characterized by mean ϕ values ranging from about 2.0 to 3.6, corresponding to fine to very fine sand fractions (Figure 5). Although this study was constrained by the relatively small number of samples, the apparent link between higher THM content and depositional settings that favor finer grain sandy sediments might be an important guide to identifying economic deposits.

Figure 5. Higher THM values are associated with fine to very fine sandy sediments (n=58).

The results for modal mineralogical analysis show that titanium-bearing ilmenite was by far the most abundant of the economic minerals in the THM concentrates (mean values shown as color pie slices in Figure 6) with the mean value of 23.5 wt% of THM. Next most abundant were titanium-bearing rutile (8.7 wt%) and zirconium-bearing zircon (3.7 wt%). Minerals enriched in rare earth elements (REE) including monazite and xenotime were generally low in abundance averaging 0.2 wt% and 0.02 wt%, respectively. Apatite, also a potential source of REE, averaged 1.6 wt%. Chromite, a source of the critical commodity chromium, averaged 0.1 wt%. The mean values for titanium-bearing leucoxene and titanite were 1.4 wt% and 1.5 wt%, respectively. Overall, the average sum of the economic minerals, Σ EHM, was 40.5 wt% of THM.

Figure 6. Average composition of the THM concentrates (n=62). Economic minerals are shown as color pie slices. "Pyroboles" is the combined wt% of amphibole and pyroxene.

The laboratory results include cumulative grain size distributions for the titanium- and zirconium-enriched minerals in the THM concentrates (Figure 7). This data allows for the calculation of the mean ϕ values for the individual mineral species. The largest detrital grains of those assessed in the THM concentrates were zircon and titanite, with mean ϕ sizes of 3.4 and 3.9 respectively (equivalent to the very fine sand fraction, 0.062 - 0.125 mm). Mean ϕ values for ilmenite and rutile, 4.3 and 4.8 respectively, indicated the size of these mineral grains typically in the range of coarse silt (0.031 - 0.062 mm). It is interesting to note the cumulative particle size distributions and mean ϕ values for leucoxene and pseudorutile, which place these minerals in the very fine silt particle size range (0.004 - 0.008 mm). These minerals occur as alteration

products of the more abundant titanium-oxides and are typically more enriched in the critical commodity titanium. As part of the economic heavy mineral assemblage, the very fine grain nature of these detrital minerals may present special challenges in the methods used for separation and recovery. We also recognize the need to re-evaluate our sample preparation methods using the Humphrey spiral to ensure that these very small particle size fractions containing economic minerals are not being overlooked and discarded.

Figure 7. ϕ size distributions and mean values for Ti- and Zr-enriched heavy minerals.

The sub-economic heavy minerals include those that contain very low quantities of critical commodities, but may potentially have value depending upon mineral recovery grade, separation methods, and market conditions. These minerals and the average abundances found in THM concentrates of the present study include garnet (12.7 wt%) used for commercial abrasive sands, kyanite (1.4 wt%) as a source of aluminum and refractories, and staurolite (1.1 wt%) used for cement manufacture and abrasives.

DGMR Repository ID	THM wt% total sample	¹ ΣΕΗΜ wt% THM	² Ilmenite wt% THM	³ Rutile wt% THM	Leucoxene wt% THM	Titanite wt% THM	Zircon wt% THM	Monazite wt% THM	Xenotime wt% THM	Apatite wt% THM	Chromite wt% THM
R-11031	0.85	20.84	6.74	4.82	2.22	2.17	1.24	0.09	0.00	3.56	0.01
R-11032	0.23	38.24	26.11	7.50	2.09	0.20	2.26	0.00	0.00	0.07	0.19
R-11033	0.47	56.92	41.98	10.40	1.23	0.09	2.94	0.17	0.01	0.10	0.06
R-11034	0.48	23.30	9.92	4.72	2.21	1.89	1.61	0.14	0.01	2.81	0.09
R-11035	0.31	29.98	15.86	7.47	1.28	1.15	2.05	0.03	0.00	2.15	0.03
R-11036	1.04	28.69	13.47	4.50	1.48	1.97	3.72	0.13	0.04	3.39	0.01
R-11037	0.77	39.69	26.25	6.05	1.35	1.08	3.33	0.07	0.02	1.55	0.03
R-11038	0.72	24.52	10.03	4.39	1.56	2.00	2.26	0.12	0.00	4.16	0.04
R-11039	0.94	29.09	13.97	4.56	1.20	2.42	3.52	0.15	0.01	3.26	0.11
R-11040	0.31	37.68	20.21	4.52	1.30	2.24	6.20	0.27	0.01	2.90	0.06
R-11041	1.21	30.12	14.69	4.19	1.20	2.48	3.83	0.13	0.02	3.57	0.08
R-11042	1.51	33.17	15.84	4.11	2.50	2.12	5.03	0.33	0.02	3.23	0.04
R-11043	0.04	33.27	18.14	4.61	1.17	1.96	4.19	0.37	0.01	2.83	0.01
R-11350a	0.31	79.88	58.15	13.14	0.96	0.29	7.08	0.21	0.02	0.04	0.18
R-11350c	0.05	61.76	33.44	17.67	2.28	1.70	5.93	0.47	0.04	0.23	0.14
R-11351a	0.34	67.88	47.60	13.35	1.16	0.66	4.88	0.21	0.01	0.01	0.06
R-11351ab	0.40	64.60	45.55	13.38	1.14	0.57	3.73	0.21	0.01	0.01	0.16
R-11352a	0.59	63.19	41.82	13.81	1.27	0.78	5.10	0.32	0.02	0.08	0.15
⁴ R-11352b	0.05	7.53	3.96	2.12	0.32	0.30	0.62	0.05	0.01	0.02	0.01
R-11354a	0.44	62.24	40.03	13.90	1.91	1.10	4.93	0.27	0.02	0.08	0.08
R-11354b	0.33	68.61	44.66	14.86	1.33	0.67	6.76	0.29	0.01	0.04	0.10
R-11355	0.49	54.36	35.30	11.89	0.91	0.65	5.42	0.06	0.01	0.14	0.02
R-11356	0.54	39.54	21.60	10.54	1.15	1.33	3.65	0.25	0.01	1.00	0.09

Table 4. Summary of the modal mineralogy of economic heavy minerals reported in weight percent of the total heavy mineral concentrate (wt% THM). THM is reported as weight percent of the total sample.

DGMR Repository ID	THM wt% total sample	¹ ΣΕΗΜ wt% THM	² Ilmenite wt% THM	³ Rutile wt% THM	Leucoxene wt% THM	Titanite wt% THM	Zircon wt% THM	Monazite wt% THM	Xenotime wt% THM	Apatite wt% THM	Chromite wt% THM
R-11357	1.19	43.76	24.82	12.09	1.10	1.07	4.19	0.23	0.01	0.25	0.04
R-11358	0.56	31.28	16.63	6.15	1.06	1.84	3.31	0.15	0.02	2.13	0.06
R-11359	0.47	28.11	13.64	6.40	1.24	1.77	2.66	0.25	0.07	2.07	0.06
R-11360	0.69	28.37	15.28	6.06	0.59	1.80	2.64	0.18	0.02	1.80	0.03
R-11361	0.67	34.67	18.34	8.36	1.11	1.57	3.34	0.24	0.05	1.65	0.10
R-11362	0.26	27.96	13.84	7.42	1.54	1.29	2.17	0.14	0.01	1.55	0.11
R-11363	0.56	32.05	16.42	7.99	1.56	1.55	2.81	0.22	0.01	1.50	0.03
R-11364	0.52	29.35	13.40	8.80	1.63	1.59	2.25	0.13	0.03	1.52	0.03
R-11365	0.46	28.11	13.03	8.77	1.52	1.62	1.80	0.13	0.01	1.23	0.02
R-11366	0.10	31.06	14.03	12.26	1.04	1.23	2.00	0.14	0.01	0.36	0.03
R-11367	0.77	62.98	40.66	12.07	0.73	0.32	8.86	0.22	0.01	0.10	0.26
R-11368	0.36	43.89	24.43	13.75	0.84	0.81	3.67	0.23	0.01	0.15	0.08
R-11369	0.03	21.87	8.09	4.96	1.18	2.35	1.35	0.08	0.00	3.86	0.03
R-11370	0.57	24.88	10.47	5.07	1.02	2.27	2.37	0.19	0.02	3.47	0.06
R-11371	0.83	28.06	12.77	5.68	0.95	2.45	2.33	0.12	0.00	3.76	0.10
R-11372	1.69	18.53	5.33	4.94	1.35	2.03	0.59	0.04	0.01	4.25	0.02
R-11373	0.65	55.73	37.16	9.90	1.14	1.11	4.69	0.20	0.01	1.52	0.02
R-11374	0.70	41.39	24.16	8.91	1.33	1.08	3.83	0.33	0.03	1.72	0.04
R-11375	0.65	35.92	18.70	9.09	2.53	1.44	2.06	0.14	0.01	1.96	0.05
R-11376	1.30	24.27	11.04	5.77	1.17	1.85	1.51	0.06	0.00	2.87	0.06
R-11377	0.85	39.42	22.21	7.75	1.19	1.68	3.85	0.11	0.03	2.60	0.07
R-11378	0.64	22.87	9.41	4.90	1.08	2.23	1.67	0.05	0.01	3.52	0.08
R-11379	1.94	18.14	5.40	4.42	1.17	2.04	0.63	0.10	0.00	4.38	0.03
R-11380	0.41	18.34	6.73	4.03	1.11	1.95	0.92	0.03	0.00	3.57	0.02
R-11382	0.45	18.23	6.19	4.55	1.09	2.26	0.99	0.02	0.00	3.13	0.02
R-11382	0.03	42.15	25.17	10.24	1.22	0.80	3.36	0.02	0.00	1.34	0.08

DGMR Repository ID	THM wt% total sample	¹ ΣΕΗΜ wt% THM	² Ilmenite wt% THM	³ Rutile wt% THM	Leucoxene wt% THM	Titanite wt% THM	Zircon wt% THM	Monazite wt% THM	Xenotime wt% THM	Apatite wt% THM	Chromite wt% THM
R-11383	0.04	45.22	30.06	9.15	1.03	0.32	3.21	0.25	0.07	1.13	0.16
R-11434	0.54	58.84	35.43	14.48	1.42	1.78	5.19	0.48	0.05	0.02	0.13
R-11441	0.06	22.49	12.45	4.98	0.74	1.50	2.25	0.15	0.01	0.41	0.05
R-11462	0.30	35.69	21.17	5.67	1.67	1.80	4.41	0.18	0.02	0.77	0.13
R-11466	0.82	43.47	26.88	6.17	1.22	2.40	6.00	0.26	0.04	0.50	0.15
R-11470	0.40	47.31	30.62	6.84	1.34	2.01	5.88	0.30	0.02	0.29	0.18
R-11474	1.13	32.98	19.56	4.34	1.25	2.21	4.20	0.20	0.06	1.17	0.14
R-11478	0.44	60.81	37.37	12.27	1.98	1.02	7.46	0.61	0.04	0.06	0.12
R-11482	0.72	47.77	26.37	11.97	1.51	2.19	5.36	0.20	0.04	0.12	0.06
R-11486	0.49	70.25	42.27	15.63	1.81	1.87	8.07	0.57	0.00	0.02	0.20
R-11488	0.01	62.73	37.44	14.92	2.36	0.89	5.79	1.32	0.00	0.01	0.05
R-11494	0.74	72.75	52.17	12.90	1.08	0.35	6.04	0.18	0.02	0.01	0.16
R-11498	1.84	57.77	34.52	15.65	1.18	1.09	5.18	0.12	0.01	0.02	0.15
R-11500	0.01	34.31	22.10	6.61	1.69	0.54	3.02	0.25	0.00	0.10	0.02
Mean	0.60	40.51	23.50	8.65	1.37	1.48	3.73	0.21	0.02	1.55	0.08
Standard dev.	0.43	16.32	13.05	3.85	0.43	0.67	1.90	0.19	0.02	1.43	0.06
Median	0.53	35.81	20.69	7.63	1.23	1.60	3.58	0.18	0.01	1.42	0.06
Median abs dev.	0.22	10.93	8.24	2.91	0.17	0.52	1.41	0.07	0.01	1.35	0.04
Max	1.94	79.88	58.15	17.67	2.53	2.48	8.86	1.32	0.07	4.38	0.26
Min	0.01	18.14	5.33	4.03	0.59	0.09	0.59	0.00	0.00	0.01	0.01
Count	62	62	62	62	62	62	62	62	62	62	62

 $^{1}\Sigma$ EHM is the sum of the wt% of economic minerals, including ilmenite, rutile, leucoxene, titanite, zircon, monazite, xenotime.

² Ilmenite is the sum of wt% reported by the lab as ilmenite, ilmenite (lower Ti), pseudobrookite, ilmenite-silicate mix.
³ Rutile is the sum of wt% reported by the lab as rutile, rutile (altered leucoxene), pseudorutile, rutile-quartz.

⁴ sample R-11352b (VC-04A 2/2): lab reported anomalously high pyrite content and is not included in statistical calculations.

DGMR Repository ID	Kyanite wt% THM	Garnet wt% THM	¹ Magnetite wt% THM	Staurolite wt% THM	Epidote wt% THM	² Pyroboles wt% THM	³ Other wt% THM
R-11031	1.63	16.17	2.64	0.58	0.55	51.31	6.26
R-11032	4.08	21.23	2.58	1.13	0.33	26.18	6.03
R-11033	3.88	13.03	3.17	3.47	0.19	12.36	6.92
R-11034	1.12	14.95	3.04	0.61	0.70	44.20	11.98
R-11035	4.17	17.82	2.46	2.78	0.67	33.90	8.18
R-11036	1.04	18.94	7.72	0.37	0.55	38.16	4.54
R-11037	1.34	17.49	8.34	0.51	0.35	27.15	5.11
R-11038	1.18	17.97	4.94	0.35	0.67	45.00	5.33
R-11039	0.95	19.10	7.43	0.30	0.39	37.45	5.18
R-11040	0.93	19.54	12.14	0.27	0.36	25.08	3.93
R-11041	0.79	19.52	7.86	0.30	0.62	36.80	3.91
R-11042	0.85	18.48	8.89	0.37	0.47	32.83	4.89
R-11043	0.87	15.82	5.82	0.32	0.41	35.10	8.39
R-11350a	1.17	5.57	1.75			9.18	2.28
R-11350c	0.80	9.27	0.85			19.69	7.47
R-11351a	1.61	13.19	1.85			12.65	2.77
R-11351ab	2.09	16.98	1.66			12.07	2.44
R-11352a	1.62	7.83	5.02			11.56	10.64
⁴ R-11352b	0.13	0.88	0.96			3.74	86.89
R-11354a	1.36	11.92	4.04			16.58	3.78
R-11354b	1.04	12.56	2.51			12.79	2.39
R-11355	1.86	11.37	1.16	3.71	0.14	18.90	8.51
R-11356	2.05	13.38	0.62	2.47	0.31	31.25	10.30
R-11357	1.48	11.65	0.26	1.35	0.34	29.90	11.27

Table 5. Summary of the modal mineralogy of sub- and non-economic heavy minerals reported in weight percent of the total heavy mineral concentrate (wt% THM).

DGMR Repository ID	Kyanite wt% THM	Garnet wt% THM	¹ Magnetite wt% THM	Staurolite wt% THM	Epidote wt% THM	² Pyroboles wt% THM	³ Other wt% THM
R-11358	1.20	13.62	1.82	0.86	0.38	42.86	7.94
R-11359	1.38	13.06	1.87	0.65	0.36	47.28	7.22
R-11360	1.46	13.91	2.21	0.78	0.28	45.16	7.79
R-11361	1.67	13.61	0.73	1.07	0.32	41.11	6.74
R-11362	1.84	11.26	0.56	0.94	0.34	48.44	8.57
R-11363	1.18	11.85	0.86	0.79	0.32	45.51	7.44
R-11364	1.37	11.14	0.60	1.01	0.41	48.51	7.59
R-11365	1.34	9.63	0.63	0.90	0.43	52.23	6.73
R-11366	2.25	11.61	0.26	1.86	0.26	45.09	7.60
R-11367	1.36	8.57	0.41	1.70	0.16	16.23	8.35
R-11368	2.14	12.74	0.15	2.68	0.25	30.99	7.11
R-11369	1.17	18.48	2.29	0.56	0.19	47.18	8.22
R-11370	0.86	17.27	4.51	0.41	0.18	44.80	7.03
R-11371	0.80	20.22	2.32	0.50	0.19	42.19	5.65
R-11372	1.47	11.04	1.03	0.46	0.59	57.97	8.92
R-11373	1.67	12.35	2.05	1.50	0.08	21.76	4.85
R-11374	2.17	15.34	2.27	1.41	0.12	30.83	6.44
R-11375	2.45	12.69	1.29	1.18	0.77	37.40	8.25
R-11376	1.13	19.26	2.07	0.99	0.22	44.57	7.46
R-11377	1.03	17.17	2.73	0.87	0.14	33.65	4.92
R-11378	1.00	19.17	3.46	0.39	0.23	46.68	6.13
R-11379	1.27	16.87	0.90	0.52	0.29	55.05	6.93
R-11380	1.43	15.02	1.48	0.55	0.26	51.28	11.67
R-11382	1.35	15.83	2.28	0.49	0.33	52.45	9.04
R-11382	3.02	11.99	2.39	1.23	0.15	30.81	8.17
R-11383	3.17	10.62	3.15	0.94	0.16	26.42	10.17

DGMR Repository ID	Kyanite wt% THM	Garnet wt% THM	¹ Magnetite wt% THM	Staurolite wt% THM	Epidote wt% THM	² Pyroboles wt% THM	³ Other wt% THM
R-11434	1.20	7.82	2.07			26.19	3.75
R-11441	0.18	3.98	10.54			22.22	40.54
R-11462	0.69	7.18	15.40			33.01	7.88
R-11466	0.53	7.42	13.79			29.49	5.15
R-11470	0.46	5.86	14.54			25.34	6.30
R-11474	0.43	7.71	19.09			33.23	6.41
R-11478	0.64	5.59	2.82			23.22	6.81
R-11482	0.66	8.28	1.96			36.11	5.17
R-11486	0.78	4.71	0.98			17.45	5.62
R-11488	0.27	2.19	2.74			14.24	17.77
R-11494	1.65	5.44	0.33			15.64	4.04
R-11498	1.22	8.91	1.62			26.03	4.30
R-11500	0.67	3.99	1.94			17.24	41.83
Mean	1.43	12.70	3.69	1.05	0.34	32.68	7.98
Standard deviation	0.84	4.80	4.12	0.85	0.18	13.08	6.65
Median	1.25	12.71	2.28	0.82	0.32	32.92	6.93
Median abs dev.	0.39	4.16	1.25	0.53	0.19	11.65	1.60
Max	4.17	21.23	19.09	3.71	0.77	57.97	41.83
Min	0.18	2.19	0.15	0.27	0.08	9.18	2.28
Count	62	62	62	42	42	62	62

¹ Magnetite is the sum of wt% reported by the lab as hematite-Ti, magnetite-hematite, goethite, and boehmite.
² Pyroboles is the sum of the wt% of amphiboles and pyroxene minerals.
³ Other is the sum of the wt% of quartz, feldspars, spinel, mica, wollastonite, tourmaline, chlorite, carbonates, pyrite, and other trace minerals.
⁴ sample R-11352b (VC-04A 2/2): lab reported anomalously high pyrite content and is not included in statistical calculations.

Geochemistry of heavy mineral concentrates

Laboratory whole rock analytical results show enrichments and depletions in the major oxide components when compared to the average concentrations found in rocks of the continental crust (Figure 8). The mean value of TiO₂ in the ilmenite- and rutile-rich concentrates is 20.6 wt%, over 32 times higher than the average abundance in crustal rocks, 0.64 wt% (Rudnick and Gao, 2003). Similarly, enrichments in total Fe₂O₃ and MnO are nearly 6 and 8 times greater, respectively, than the average crustal abundances due to the higher percentages of magnetite, hematite, pyrolusite and other oxides in the concentrates. The mean P₂O₅ content is 0.4 wt% in the concentrates, about 3 times greater than the average in crustal rocks, 0.15 wt%, due to the presence of the heavy phosphate minerals monazite and apatite. In contrast, lower concentrations of SiO₂, Al₂O₃, Na₂O, and K₂O in the concentrates reflect the lower percentages of aluminum-silicate minerals compared to crustal rocks. These lighter density minerals have specific gravities less than about 2.9, and were removed during spiral concentration and during the laboratory heavy liquid separation.

Figure 8. Comparison of major oxides content in THM concentrates to continental crustal rocks (Rudnick and Gao, 2003).

Trace element analytical results show that the heavy mineral concentrates are significantly enriched in critical mineral commodities. Of the 35 critical commodities listed by Fortier and others (2018), our results indicate average concentrations for 11 commodities that exceed 5 times enrichment compared to the crustal averages (Figure 9). Notably, the average concentrations of Hf, Nb, Ta, W, and Zr are each over 20 times higher than the mean abundances in crustal rocks. The relatively high values for Hf and Zr can be accounted for by the abundances of zircon reported in the laboratory modal mineral analyses. The enrichments of Nb, Ta, and W might be accounted for as trace components within the economic minerals identified in Table 1, or possibly indicate the presence of heavy minerals that have not been recognized previously in Virginia's offshore samples. These might include minerals of the columbite-tantalite group (Fe,Mn,Mg)(Nb,Ta)₂O₆, and tungstate group such as wolframite (Fe,Mn)WO₄ or Hübnerite MnWO₄.

Figure 9. Critical mineral commodities that exceed 5X enrichment in THM concentrates compared to continental crustal rocks (Rudnick and Gao, 2003).

The rare earth elements (REE), together with scandium (Sc) and yttrium (Y) also show up to 11 times enrichment compared with the average crustal abundances. The likely sources of these trace metals in the heavy mineral concentrates include monazite, xenotime, zircon, and apatite. As a geochemically coherent group of elements with similar chemical properties, and a uniform pattern of decreasing ionic radius from La^{3+} to Lu^{3+} , the relative abundances of REE in detrital sediments can provide insight into provenance and other sedimentary processes.

Figure 10. Comparison of Y, Sc and REE concentrations in THM concentrates to continental crustal rocks (Rudnick and Gao, 2003).

DISCUSSION

The modal mineralogical results from this study and previous investigations provide a valuable dataset to examine geospatial distributions that provide insight into provenance, the geologic framework of the Delmarva Peninsula, and sediment transport and concentration processes. This topic is addressed in a separate report by Berquist and Boon, 2019, as part of the BOEM-VA State Cooperative M14AC00013, entitled *Heavy mineral distributions in offshore sediments using Q-mode factor analysis*.

The whole rock and trace element geochemical results reported herein are also useful for geospatial analysis, although constrained by the limited number of samples, n=27. Nevertheless, the REE diagram shown in Figure 11 provides compelling insight into the nature of mineral occurrences in the two main areas from which samples were collected, Sandbridge and Wallops. The diagram was constructed using the chondrite-normalized method from Taylor and McLennan (1985). Heavy mineral concentrates are uniformly enriched in the light rare earth elements (LREE; La-Sm), showing the relative depletion of europium (Eu) that is typically

observed in the average REE pattern of upper continental crustal rocks. In the Sandbridge area, LREE enrichment appears to be somewhat higher (as depicted by the green-shaded range of sample results in Figure 11) compared to the Wallops area (red-shaded range). One explanation for this difference may be the limited number of samples from both areas. Another more compelling explanation may be that there is a greater proportion of LREE-selective minerals such as monazite, xenotime, and allanite (Ce,Ca,Y)₂(Al,Fe³⁺)₃(SiO₄)₃(OH) in the Sandbridge area. Allanite has not been specifically identified in Virginia's heavy mineral concentrates, yet it is a member of the common epidote mineral group that presently comprises 0.34 wt% of the average THM fraction, and is otherwise considered non-economic.

The normalized contents of heavy rare earth elements (HREE; Gd-Lu) in our mineral concentrates show an unusual pattern of higher enrichment in both the Sandbridge and Wallops areas compared to average crustal rocks (Figure 11). This is likely due to higher proportions of HREE-selective minerals such as garnet and possibly zircon (McLennan, 1989).

Figure 11. Comparison of chondrite-normalized REE in THM concentrates from the Sandbridge and Wallops resource areas.

CONCLUSIONS

The 63 sediment core and grab samples analyzed for heavy minerals as part of this study contained lower THM concentrations compared to previous studies. The mean THM content was 0.60 wt% (dry weight percent of the total sample), with individual samples ranging from 0.01 wt% to the maximum value of 1.94 wt%. The sum of economic minerals in the concentrates (Σ EHM) averaged 40.5 wt% of THM.

In earlier investigations, Berquist and others (2016) reported a revised mean value of 1.11 wt% for 60 samples and a maximum value 9.88 wt%. Berquist and others (1990) reported 3.3 wt% as the mean THM for 390 core and grab samples, with the highest value 14.7 wt%. Luepke (1990) reported the average THM in 72 core samples to be 2.14 wt%, with the maximum value of 6.3 wt%. Altogether, the offshore database containing 629 sample results averages 2.6 wt% THM, with individual samples ranging from 0.01 wt% to 14.7 wt% (Figure 12). The mean value for Σ EHM is 31.9 wt% of THM.

Economic heavy minerals identified in sample concentrates from offshore Virginia include: ilmenite, leucoxene, rutile, titanite, zircon, monazite, xenotime, apatite, and chromite. These contain the critical mineral commodities titanium, zirconium, REE, uranium, yttrium, and chromium. Geochemical analysis has provided new insight concerning additional critical commodities including niobium, tantalum, and tungsten. Future laboratory analysis will seek to identify the specific mineral sources that might include allanite, columbite, tantalite, and wolframite.

REE concentration patterns in heavy minerals, together with compositional Q-mode factor analysis may help identify specific mineral assemblages and transport processes in the offshore environment. In this regard, more work is needed to understand the geological evolution of the Chesapeake Bay, the Delmarva Peninsula, and paleo-drainage pathways.

Finally, all of the heavy minerals studies to date have indicated that the highest THM concentrations are associated with relatively clean (i.e. low mud content) marine sands that are typically fine to very-fine grained in texture (0.250 - 0.062 mm). These sand resources are suitable for beach restoration projects and thus provide a valuable opportunity to recover value-added heavy minerals to offset dredging costs.

Figure 12. Sediment samples analyzed for economic heavy minerals along Virginia's coastline.

ACKNOWLEDGEMENTS

The authors greatly appreciate the technical contributions provided by Rick Berquist, retired DMME geologist, now retired/emeritus faculty at the College of William and Mary Department of Geology. Kelvin Ramsey and Robin Mattheus at the Delaware Geological Survey graciously provided grain size analytical data, lithologic logs, and valuable technical support. Thanks to the College of William and Mary Geology Department for allowing access to the "geobarn" facility in Williamsburg for the Humphrey spiral work. Patti Burton, Eleanor Worthington, and Mike Enomoto assisted with preparing samples, creating mineral concentrates, and managing the offshore databases. Dr. Mahdi Ghobadi at ActLabs answered many of our questions concerning modal mineral analytical methods and the results. Thanks to the U.S. Bureau of Ocean Energy Management for funding support through State Cooperative Agreement M14AC00013.

CITED AND RELEVANT REFERENCES

- ASTM Standard D2487, 2000, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System): ASTM International, West Conshohocken, PA, 2000, DOI: 10.1520/D2487-00, <u>www.astm.org</u>
- Berquist, C.R., Jr., W.L. Lassetter, and M.H. Goodwyn, 2016, Grain size distribution and heavy mineral content of marine sands in Federal waters offshore of Virginia: Virginia Division of Geology and Mineral Resources Open-File Report 16-01, 34 p.
- Berquist, C.R., Jr., and C.H. Hobbs, III, 1986, Assessment of economic heavy minerals of the Virginia inner shelf: Virginia Division of Mineral Resources Open-File Report 86-1.
- Berquist, C.R., Jr. and C.H. Hobbs, III, 1988, Study of economic heavy minerals of the Virginia Inner Continental Shelf: Virginia Division of Mineral Resources Open-File Report 88-4, 149 pp.
- Berquist, C.R., Jr., C.T Fischler, L.J. Calliari, S.M. Dydak, H. Ozalpasan, and S.A. Skrabal, 1990, Heavy-mineral concentrations in sediments of the Virginia Inner Continental Shelf: *in* Berquist, C.R., Jr. [ed.], 1990, Heavy-mineral studies – Virginia inner continental shelf, Virginia Division of Mineral Resources Publication 103, 124 pp.
- Blanchette, J., and W.L. Lassetter, 2018, Marine mineral resources on Virginia's outer continental shelf: quantifying sand deposits for coastal restoration and occurrences of economic heavy minerals [abs]: Geological Society of America Northeastern Sectional Annual Meeting, 17-20 March 2018, Burlington, VT.
- DMME (Department of Mines, Minerals and Energy), 2012, Sand resource evaluation on Virginia's outer continental shelf – Final Technical Report: Prepared for U.S. Bureau of Ocean Energy Management, Cooperative Agreement M10AC20021 for the performance period Sept 14, 2010 to Oct 31, 2011: 19p.
- DMME, 2016, Annual production data reported to DMME: Division of Mineral Mining databases.
- Folk, R. L., 1954, The distinction between grain size and mineral composition in sedimentary rock nomenclature: Jour. Geology 62, p. 344–359.
- Fortier, S.M., Nassar, N.T., Lederer, G.W., Brainard, J., Gambogi, J., and McCullough, E.A., 2018, Draft critical mineral list Summary of methodology and background information U.S. Geological Survey technical input document in response to Secretarial Order No. 3359: U.S. Geological Survey Open-File Report 2018-1021, 15 p., https://doi.org/10.3133/ofr20181021
- Garner, T.E., Jr., 1978, Geological classification and evaluation of heavy mineral deposits: Georgia Geological Survey Informational Circular 49, p. 25-36.
- Lassetter, W.L., Blanchette, J.S., and Holm-Denoma, C., Marine mineral resources on the continental shelf offshore of Virginia: new insights concerning economic heavy minerals: [abs]: Geological Society of America Southeastern Sectional Annual Meeting, 28-29 March 2019, Charleston, SC.
- Luepke, G., 1990, Economic heavy minerals in sediments from an offshore area east of Cape Charles, Virginia: U.S. Geological Survey Open File Report 90-451, 10 pp.
- McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, *in*: Geochemistry and Mineralogy of Rare Earth Elements. Lipin, B.R., and McKay, G.A., (Ed.): The Mineralogical Society of America, Reviews in Mineralogy, Vol 21, p. 169-200.
- McNeilan, T.W., K.R. Smith, and J.E. Fisher, 2013, Regional geophysical survey and interpretive report: Virginia Wind Energy Area offshore southeastern Virginia: Prepared by Fugro Consultants, Inc., for U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Herndon. OCS Study BOEM 2013-220, 240 pp.
- Rudnick, R.L. and Gao, S., 2003, The composition of the continental crust, *in*: Treatise on Geochemistry The Crust. Rudnick, R.L., Holland, H.D. and Turekian, K.K. (Ed.): Elsevier, Oxford, p.1-64.
- Taylor S. R. and McLennan S. M., 1985, The continental crust: its composition and evolution. Blackwell, Oxford, 312 p.
- Tetra Tech, Inc., 2014, Marine site characterization survey report, Virginia Offshore Wind Technology Advancement Project (VOWTAP): Prepared for Dominion Resources, Glen Allen, VA, submitted December 2013, revised February 2014 and June 2014, 758 pp.
- USBM (U.S. Bureau of Mines), 1987, An economic reconnaissance of selected heavy mineral placer deposits in the U.S. exclusive economic zone: U.S. Bureau of Mines Open File Report 4-87, 112 p.
- Van Gosen, B.S., D.L. Fey, A.K. Shah, P.L. Verplanck, and T.M. Hoefen, 2014, Deposit model for heavy-mineral sands in coastal environments: U.S. Geological Survey Scientific Investigations Report 2010-5070-L, 51 p., <u>http://dx.doi.org/10.3133/sir20105070L</u>.

Рhi (ф)	millimeters (mm)	inches (in)	ASTM No. (U.S. Standard)	Size Class (Wentworth, 1922)
<u>></u> -8	>256	> 10.1		boulders
-6 to -8	64-256	2.5 - 10.1		cobbles
-5 to -6	32 - 64	1.26 - 2.5		very coarse pebbles
-4 to -5	16 - 32	0.63 - 1.26		coarse pebbles
-3 to -4	8-16	0.31 - 0.63		medium pebbles
-2 to -3	4 - 8	0.157 - 0.31 5		fine pebbles
-1 to -2	2 - 4	0.079 - 0.157	10	granules (gravel) very fine pebbles
0 to -1	1 – 2	0.039 - 0.079	18	very coarse sand
0.25	0.84	0.033	20	
1 to 0	0.5 - 1	0.020 - 0.039	35	coarse sand
1.25	0.42	0.017	40	
2 to 1	0.25 - 0.5	0.010 - 0.020	60	medium sand
2.75	0.149	0.0059	100	
3 to 2	0.125 - 0.25	0.0049 - 0.010	120	fine sand
4 to 3	0.0625 - 0.125	0.0025 - 0.0049	230	very fine sand
5 to 4	0.031 - 0.0625	0.0012 - 0.0025		coarse silt (mud)
6 to 5	0.0156 - 0.031	0.0006 - 0.0012		medium silt
7 to 6	0.0078 - 0.0156	0.0003 - 0.0006		fine silt
8 to 7	0.0039 - 0.0078	0.00015 - 0.0003		very fine silt
>8	<0.0039	< 0.00015		clay

APPENDIX A. Grain size scales and sieve sizes for sediment classification.

APPENDIX B. ActLabs Reports

A16-03579 May 2016 A17-03131 April 2017

A17-11430 December 2017

A18-05577 June 2018

Actlabs Code: A16-03579 Date: May, 2016 Attention: Rick Berquist

Report and Analysis:

Mahdi Ghobadi, PhD; MahdiGhobadi@Actlabs.com

Objective:

To charcaterize the mineralogy of the samples on the heavy liquid concentrated portion of the sample.

Samples:

13 samples were submitted for HLS. The results for concentrating the sink portion of the samples are presented in the corrosponding sheet. Around 2 grams materials from each sink portion was split using Rotary Micro Riffle Splitter, to prepare 30 mm transverse polished section.

Mineralogy Methods:

The mineralogical analysis was done using FEI FEG QEMSCAN.

The QEMSCAN instrument at Actlabs is based on the scanning electron microscope FEI QUANTA 650F, that is equipped with a field-emission gun (FEG) as an electron source. FEG enables high spatial resolution and sensitivity by decreasing the spot size of the focused electron beam to values as small as 0.3 µm and providing significant target currents, in the range of tens of nA. For imaging and X-ray based micro-chemical analysis the instrument is equipped with a four-quadrant, solid state back-scattered electron (BSE) detector and two Bruker XFlash 5030 detectors. For enhanced mineral identification capabilities, energy dispersive spectroscopy (EDS) spectra with a larger than standard number of photon counts per pixel were used in this project (3000 counts per pixel vs. the standard 1000 counts per pixel). The raw X-Ray data were evaluated using a customized SIP file for this project. The modal mineralogy data as well as particle data were generated using iDiscover software.

The data for this project were produced using two modes of measurements:

1. BMA or line scan which produced modal mineralogy data.

2. PMA or particle mapping which was used to determine size distribution.

Results:

For this report modal mineralogy data and size distribution for Ti minerals are provided. Also representative mapped particle are provided, demonstrating major Ti mineral.

Note:

Particle Definition: A particle is a piece of material, and can contain one or more minerals.

Grain Definition: A grain is a piece of mineral matter contained within a particle.

Actlabd ID: A15-03579-	1	2	3	4	5	6	
Client ID	GS-021R-11032	GS-022R-11033	GS-023R-11034	GS-024R-11035	GS-025R-11036	GS-026R-11037	
Actlabd ID: A15-03579-	7	8	9	10	11	12	
Client ID	GS-027R-11038	GS-028R-11039	GS-029R-11040	GS-030R-11041	GS-031R-11042	GS-032R-11043	RE

	Actlabd ID: A15-03579-	1	2	3	4	5	6	7	8	9	10	11	12	13
	Client ID	GS-021	GS-022	GS-023	GS-024	GS-025	GS-026	GS-027	GS-028	GS-029	GS-030	GS-031	GS-032	REF-002
	MASS %													
	Ilmenite	25.38	40.97	8.90	14.89	11.84	24.24	8.95	12.40	18.05	13.07	13.92	16.70	5.93
	Ilmenite-Lower Ti	0.59	0.71	0.77	0.63	1.21	1.26	0.80	1.14	1.66	1.18	1.45	1.02	0.63
	Pseudobrookite	0.09	0.26	0.16	0.27	0.36	0.69	0.23	0.39	0.42	0.38	0.36	0.37	0.14
	Rutile	1.44	1.60	1.52	2.26	1.76	1.73	1.51	1.93	1.67	1.53	1.45	1.48	1.53
	Rutile-Altered(Leucoxene)	3.78	3.86	2.56	3.38	2.11	1.98	2.35	2.05	2.11	1.99	2.08	2.03	2.83
Ti Minerals	Pseudorutile	2.22	4.88	0.41	1.73	0.50	2.26	0.38	0.46	0.61	0.56	0.39	0.95	0.23
	Leucoxene	2.09	1.23	2.21	1.28	1.48	1.35	1.56	1.20	1.30	1.20	2.50	1.17	2.22
	Ilmenite-Silicate Mixed	0.05	0.04	0.08	0.07	0.06	0.05	0.05	0.05	0.08	0.06	0.11	0.05	0.04
	Rutile-Qz Texture	0.07	0.06	0.23	0.10	0.13	0.08	0.15	0.12	0.12	0.10	0.19	0.14	0.23
	Hematite-Ti	0.45	1.39	0.80	1.19	2.04	3.67	1.07	1.99	2.84	1.86	2.14	2.09	0.71
	Titanite	0.20	0.09	1.89	1.15	1.97	1.08	2.00	2.42	2.24	2.48	2.12	1.96	2.17
	Mag/Hema	0.35	0.77	1.50	0.69	4.09	3.34	2.85	3.94	6.94	4.18	4.81	2.81	1.33
	Goethite	1.77	0.90	0.72	0.58	1.59	1.33	1.01	1.49	2.35	1.80	1.93	0.91	0.60
Ovidos/Hudrovidos	Boehmite	0.01	0.10	0.02	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.01	0.00	0.00
Oxides/ Hydroxides	Chromite	0.19	0.06	0.08	0.01	n.d.	0.03	0.03	0.08	0.04	0.02	0.02	0.00	n.d.
	Chromite with low AI-Mg	0.00	0.00	0.01	0.02	n.d.	0.00	0.01	0.02	0.03	0.06	0.03	0.00	n.d.
	Spinel	n.d	n.d.	0.00	n.d.	n.d.	0.02							
	Zircon	2.26	2.94	1.61	2.05	3.72	3.33	2.26	3.52	6.20	3.83	5.03	4.19	1.24
	Monazite	0.00	0.17	0.14	0.03	0.13	0.07	0.12	0.15	0.27	0.13	0.33	0.37	0.09
REE Minerals	Xenotime	0.00	0.01	0.01	n.d.	0.04	0.02	0.00	0.01	0.01	0.02	0.02	0.01	0.00
	Florencite	n.d.	0.00	0.00	0.03	n.d.	0.00	0.03	0.08	0.00	0.01	0.00	0.00	0.02
	Apatite	0.07	0.10	2.81	2.15	3.39	1.55	4.16	3.26	2.90	3.57	3.23	2.83	3.56
	Kyanite	4.08	3.88	1.12	4.17	1.04	1.34	1.18	0.95	0.93	0.79	0.85	0.87	1.63
	Quartz	3.75	4.93	5.92	3.60	1.06	1.56	1.34	1.41	1.08	0.84	1.37	3.27	1.89
	K-Feldspar	0.29	0.26	0.86	0.61	0.15	0.46	0.24	0.19	0.18	0.12	0.20	0.71	0.18
	Plagioclase	0.10	0.29	1.82	1.18	0.39	0.55	0.57	0.70	0.40	0.43	0.44	1.14	0.70
	Garnet	21.23	13.03	14.95	17.82	18.94	17.49	17.97	19.10	19.54	19.52	18.48	15.82	16.17
Silicator	Pyroxene	1.45	0.63	4.35	3.56	4.40	2.89	5.16	4.38	2.33	4.02	3.37	5.04	5.12
Silicates	Amphibole	24.73	11.73	39.85	30.34	33.75	24.25	39.84	33.08	22.75	32.78	29.46	30.06	46.20
	Mica	0.14	0.17	0.18	0.24	0.18	0.24	0.22	0.16	0.19	0.20	0.12	0.34	0.26
	Staurolite	1.13	3.47	0.61	2.78	0.37	0.51	0.35	0.30	0.27	0.30	0.37	0.32	0.58
	Wollastonite	0.01	0.01	0.36	0.21	0.37	0.24	0.41	0.36	0.23	0.36	0.31	0.43	0.50
	Schorl-Tourmaline	1.11	0.90	1.72	1.63	1.56	1.36	1.71	1.61	1.19	1.35	1.46	1.68	1.74
	Epidote	0.33	0.19	0.70	0.67	0.55	0.35	0.67	0.39	0.36	0.62	0.47	0.41	0.55
	Carbonates	0.01	0.02	0.31	0.05	0.19	0.14	0.19	0.19	0.16	0.11	0.10	0.20	0.08
Mixed Upplaceifichte	HiBSE	0.01	0.01	0.02	0.01	0.02	0.06	0.02	0.02	0.03	0.03	0.04	0.05	0.05
Spectro	Low Counts	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Spectra	Others	0.59	0.32	0.79	0.60	0.61	0.49	0.59	0.45	0.46	0.45	0.85	0.56	0.80
	Sum	100	100	100	100	100	100	100	100	100	100	100	100	100

Background
Ilmenite
Ilmenite-Lower Ti
Pseudobrookite
Rutile
Rutile-Altered(Leucoxene
Pseudorutile
Leucoxene
Ilmenite-Silicate Mixed
Rutile-Qz Texture
Hematite-Ti
Titanite
Mag/Hema
Goethite
Chromite
Chromite with low AI-Mg
Spinel
Zircon
Monazite
Xenotime
Florencite
Apatite
Kyanite
Silicate Gangue
Others

Background Ilmenite Ilmenite-Lower Ti Pseudobrookite Rutile Rutile-Altered(Leucoxene) Pseudorutile Leucoxene Ilmenite-Silicate Mixed Rutile-Qz Texture Hematite-Ti **Titanite** Mag/Hema Goethite Chromite Chromite with low Al-Mg Spinel Zircon Monazite Xenotime Florencite 📃 Apatite 📃 Kyanite Silicate Gangue Others

	1 GS-021	2 GS-022	3 GS-023	4 GS-024	5 GS-025	6 GS-026	7 GS-027	8 GS-028	9 GS-029	10 GS-030	11 GS-031	12 GS-032	13 REF-002
Size Distribution of Ilmenite S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=53 S<=75 S<=106 S<=106 S<=212 S<=300 S<=424	1 GS-021 1 4 6 8 12 17 26 43 68 94 98 100	2 GS-022 2 5 7 9 11 15 20 32 55 78 96 100	3 GS-023 2 8 12 21 33 56 83 94 100 100 100 100 100	4 GS-024 2 6 9 12 18 29 42 67 87 99 100 100	5 GS-025 2 6 11 18 33 57 87 99 100 100 100 100 100	6 GS-026 2 6 8 11 15 21 33 53 75 94 100 100	7 GS-027 2 6 9 16 27 47 77 93 100 100 100 100	8 GS-028 2 6 9 14 24 47 76 94 100 100 100 100 100	9 GS-029 1 4 7 13 24 47 77 96 100 100 100 100 100	10 GS-030 2 6 8 14 26 47 80 96 100 100 100 100 100	11 GS-031 2 6 9 17 33 57 85 98 100 100 100 100 100 100	12 GS-032 1 4 6 9 16 27 45 61 80 96 100 100	13 REF-002 2 9 14 23 34 52 81 99 100 100 100 100 100 100
$\begin{array}{c} Size Distribution of Ilmenite lower Ti \\ S<=5 \\ S<=10 \\ S<=13.25 \\ S<=13.25 \\ S<=18.75 \\ S<=26.5 \\ S<=26.5 \\ S<=37.5 \\ S<=53 \\ S<=75 \\ S<=106 \\ S<=106 \\ S<=150 \\ S<=150 \\ S<=212 \\ S<=300 \\ S<=424 \\ \end{array}$	01 01 71 97 98 100 100 100 100	02 02 77 98 100 100 100 100	03 03 63 96 99 100 100 100 100	04 04 68 97 99 100 100 100	05 63 96 99 100 100 100 100	06 66 95 98 100 100 100	07 07 61 93 98 99 100 100 100	08 08 62 96 99 100 100 100 100	09 62 94 98 100 100 100	10 10 61 93 97 98 98 100 100	11 11 61 94 99 99 100 100 100 100	12 64 95 98 100 100 100	13 13 57 90 94 96 100 100 100
Size Distribution of Pseudobrookite S<=5 S<=10 S<=13.25 S<=13.25 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=106 S<=106 S<=100 S<=100 S<=212 S<=300 S<=424	01 63 91 96 99 99 99 100 100	02 56 89 96 99 100 100 100	03 56 87 91 98 100 100 100	04 53 88 94 99 100 100 100	05 59 91 97 99 100 100 100	06 60 91 96 99 100 100 100	07 49 82 88 99 100 100 100 100	08 54 82 89 93 99 100 100 100	09 58 90 95 100 100 100 100	10 56 90 97 100 100 100 100	11 53 88 97 99 99 100 100 100	12 53 87 91 97 99 100 100 100	13 56 84 90 99 99 100 100 100
Size Distribution of Rutile S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=106 S<=106 S<=150 S<=212 S<=300 S<=424	01 4 10 14 16 22 30 32 54 87 87 100	02 5 17 24 32 39 44 52 65 72 92 100	03 5 16 25 34 49 62 86 100 100 100 100	04 4 11 15 21 29 38 49 60 82 87 100	05 4 13 18 30 42 60 81 100 100 100 100	06 3 8 11 18 25 30 37 44 56 90 100	07 4 14 23 33 48 64 81 97 100 100 100	08 4 11 16 23 31 50 84 97 100 100 100	09 4 12 17 27 39 57 77 95 100 100 100	10 5 15 22 31 45 63 87 98 100 100 100	11 4 13 20 28 39 58 87 100 100 100 100	12 4 13 18 26 38 62 84 87 91 100 100	13 6 18 30 46 53 71 88 93 100 100 100
$\begin{array}{c} Size Distribution of Rutile-\\ Altered \\ S<=5 \\ S<=10 \\ S<=13.25 \\ S<=13.25 \\ S<=13.25 \\ S<=13.25 \\ S<=26.5 \\ S<=26.5 \\ S<=37.5 \\ S<=37.5 \\ S<=53 \\ S<=53 \\ S<=75 \\ S<=106 \\ S<=106 \\ S<=106 \\ S<=212 \\ S<=300 \\ S<=424 \\ \end{array}$	01 8 24 32 39 49 52 58 74 79 94 100	02 10 26 33 41 48 57 60 78 91 100 100	03 12 35 46 57 67 73 81 96 100 100 100	04 10 27 35 43 47 58 67 87 96 100 100	05 15 43 56 68 78 83 88 97 100 100 100	06 16 39 50 59 65 77 82 91 96 100 100	07 12 34 43 52 59 65 71 85 96 100 100	08 15 40 51 64 72 78 83 91 95 100 100	09 16 42 52 59 66 74 82 95 100 100 100	10 14 38 49 62 72 79 87 98 100 100 100	11 15 42 54 66 76 79 84 95 100 100 100	12 14 40 49 61 69 78 83 93 100 100 100	13 10 34 44 57 66 74 80 88 100 100 100
Size Distribution of Pseudorutile S<=5 S<=10 S<=13.25 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=53 S<=75 S<=106 S<=106 S<=106 S<=120 S<=212 S<=300 S<=424	01 37 79 88 92 94 99 100 100	02 25 54 63 68 72 72 86 97 100	03 40 82 91 97 100 100 100 100	04 31 69 77 80 84 91 100 100	05 45 84 96 99 100 100 100 100	06 28 63 72 79 85 97 100 100	07 52 92 99 100 100 100 100	08 52 89 98 99 100 100 100 100	09 50 87 95 100 100 100 100	10 42 76 87 91 96 96 100 100	11 50 86 95 98 100 100 100	12 39 79 89 92 100 100 100	13 57 91 94 100 100 100 100
Size Distribution of Leucoxene S<=5 S </th <th>01 01 18 43 54 63 78 83 89 91 100 100 100</th> <th>02 02 34 64 74 80 85 85 85 85 85 93 100</th> <th>03 03 19 49 62 74 88 96 98 100 100 100 100</th> <th>04 04 28 61 73 85 93 95 96 100 100 100 100</th> <th>05 30 66 79 88 93 94 95 97 100 100 100</th> <th>06 27 54 67 78 85 94 100 100 100 100 100</th> <th>07 07 22 49 60 73 78 87 96 98 100 100 100</th> <th>08 08 30 62 74 85 89 96 97 100 100 100 100</th> <th>09 09 35 67 77 85 95 97 97 100 100 100 100</th> <th>10 10 31 63 73 80 87 93 97 100 100 100 100</th> <th>11 11 20 47 59 69 76 85 94 97 100 100 100</th> <th>12 12 33 69 82 91 95 96 98 100 100 100 100</th> <th>13 13 16 41 55 67 78 88 98 100 100 100 100 100 100</th>	01 01 18 43 54 63 78 83 89 91 100 100 100	02 02 34 64 74 80 85 85 85 85 85 93 100	03 03 19 49 62 74 88 96 98 100 100 100 100	04 04 28 61 73 85 93 95 96 100 100 100 100	05 30 66 79 88 93 94 95 97 100 100 100	06 27 54 67 78 85 94 100 100 100 100 100	07 07 22 49 60 73 78 87 96 98 100 100 100	08 08 30 62 74 85 89 96 97 100 100 100 100	09 09 35 67 77 85 95 97 97 100 100 100 100	10 10 31 63 73 80 87 93 97 100 100 100 100	11 11 20 47 59 69 76 85 94 97 100 100 100	12 12 33 69 82 91 95 96 98 100 100 100 100	13 13 16 41 55 67 78 88 98 100 100 100 100 100 100
$\begin{array}{llllllllllllllllllllllllllllllllllll$	01 6 14 17 30 42 69 79 100 100 100	02 2 8 10 12 16 35 46 78 95 100	03 6 21 31 45 71 95 100 100 100 100	04 5 17 24 33 51 65 87 93 100 100	05 6 17 26 41 65 86 96 100 100 100	06 3 7 10 18 24 53 67 93 100 100	07 7 23 34 54 73 91 93 100 100 100	08 6 19 26 43 66 82 93 94 97 100	09 6 20 31 47 69 86 98 99 100 100	10 7 23 30 50 75 91 99 100 100 100	11 5 18 27 39 60 82 94 100 100 100	12 5 16 21 27 41 50 64 87 100 100	13 7 20 29 49 68 86 100 100 100 100
Size Distribution of Titanite S<=5 S<=10 S<=13.25 S<=13.25 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=106 S<=106 S<=106 S<=106 S<=212 S<=300 S<=424	01 5 13 19 21 37 55 60 60 100 100 100	02 4 10 12 12 33 39 39 100 100 100 100 100	03 1 3 6 10 16 32 48 84 100 100 100 100	04 1 3 4 7 10 22 32 66 89 100 100	05 1 3 6 9 15 27 51 89 100 100 100	06 1 3 4 5 9 18 37 56 75 82 100	07 1 3 4 7 10 17 39 80 95 100 100 100	08 1 4 6 8 11 21 39 85 100 100 100	09 1 3 4 7 14 22 44 85 100 100 100 100	10 1 3 5 8 12 20 49 85 100 100 100	11 1 3 4 7 11 21 46 85 98 100 100	12 1 3 5 7 16 34 55 85 100 100 100	13 1 3 5 9 15 27 50 79 97 100 100
Size Distribution of Zircon S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=106 S<=106 S<=106 S<=150 S<=150 S<=300 S<=424	01 0 1 1 1 2 9 18 58 84 100 100	02 0 0 1 1 1 1 3 11 26 55 88 100	03 0 1 4 7 17 55 87 100 100 100 100	04 0 0 1 2 4 12 40 65 88 100 100	05 0 1 3 9 18 55 98 100 100 100 100 100	06 0 0 0 1 4 8 19 45 86 100 100	07 0 1 3 7 18 50 80 96 100 100 100	08 0 1 2 5 16 48 88 100 100 100 100 100	09 0 1 1 4 10 41 88 99 100 100 100 100	10 0 1 2 6 17 57 88 100 100 100 100	11 0 1 3 7 18 58 94 99 100 100 100 100	12 0 1 1 2 4 13 24 46 69 100 100	13 0 1 3 6 15 36 77 93 100 100 100

Sample 07-Sorted to Area% of Ilmenite 9-2-1-1-10-10 10--10119-100 | 2 💊 🗞 🗫 🕶 🗢 🍁 🔊 🛯 🖉 🕈 🖉 🐂 🍎 🖘 🗹 🔩 🖉 " *******

Sample 32-Sorted to Area% of Ilmenite

Parado Paddab Baravesa Cana Baladora Blaga - Adar and a war _□►৵~*↓▼*₩₫**↓₹**▲**`**↓<u></u>►↓**₽**↓**₽**↓*₽*↓ -6A88-22026-08-0666666868 >>>>

Sample 33-Sorted to Area% of Ilmenite

Sample 03-Sorted to Area% of Ilmenite 6444499-0407-1100-D-200000000 10-10000000-100000000000000 M € ₽×< │ **▓[▶] ▶ ▶ / ____** & **₩ (* à @ * √ ● * @** \$ **>** } @ *↓***₩** { ¥ **⋋**∽≠**┭**↓**⋎**≠⋠⋟⋩⋩⋡⋛⋷⋡<u></u>⋡*⋧*⋌⋠⋖⋌⋠⋖ ▏[▶] Æ [@] ▓**₩ ᠕** [©] [™] ⋘ ♥ [©] [™] Æ Ø ∥ ↓ **A** Ø Ø **N V** ↓ **A** - | 🛷 🜡 🔥 🔌 🦓 🧐 🥖

-----101-1008-1-002-000-000-000-1 Pardyand day not aller be -- 10 1001-100 24+200-001-100-000 │**◇**♪**◇***◇*^{*×*}*◇◇×◇◇×✓∅◆××∅♦×∨∕∕∕∧×∕* ****

Sample 34-Sorted to Area% of Ilmenite

Que. Vise d' 100-berrout De. C. 2010 0 - 300 V 21 230 4/\^/****^/****^'/****

Sample 04-Sorted to Area% of Ilmenite

Sample 10-Sorted to Area% of Ilmenite

Hematite-Ti Titanite Mag/Hema bestool and be you and do sand had \$ 1002 - OVERBUILDED ALS AND ALS 0.4/21000.871-4-101-40400006

 Image: State Gangue
 Image: State Gangue

 Image: State Gangue
 Image: State Gangue

 Image: State Gangue
 Image: State Gangue
 9-2+2+2+24240-148+92-29-29-29-2

Sample 35-Sorted to Area% of Ilmenite

Ilmenite Ilmenite-Lower Ti Pseudobrookite Rutile

Zircon Monazite Xenotime Florencite Apatite Kyanite Silicate Gangue Others

Pseudobrookite

Goethite

Monazite Xenotime Florencite Apatite

----Pseudobrookite
Rutile
Rutile-Altered(Leucoxene)
Pseudorutile
Leucoxene
Ilmenite-Silicate Mixed
Rutile-Qz Texture
Hematite-Ti
Titanite
Mag/Hema
Goethite
Chromite
Chromite with low Al-Mg
Spinel
Zircon 11000842 Branner 12-20 84400348441×v~10~004-401. 👌 🄗 🍈 A 🍐 📎 炎 🐎 🌮 🌽 🦉 🗮 🗞 📎

Rutile Rutile-Altered(Leucoxene) Pseudorutile

Sample 11-Sorted to Area% of Ilmenite

Leucoxene Ilmenite-Silicate Mixed Rutile-Qz Texture Humetite Ti \$10->>>>+0>>>> Chromite with low Al-Mg
Spinel
Zircon

8~8~~~~~<u></u>\$1\$>\$44~~\$}15~9}97 ◆♥《**ኈ**♪₽*@*∮*⊳* ● / + / ≜ r / ~0♥{ _ \$

Sample 36-Sorted to Area% of Ilmenite

17301-2-0 38822-0 (D-1 05-0000-0000 0000 Sample 12-Sorted to Area% of Ilmenite

Sample 06-Sorted to Area% of Ilmenite

61-210491 - 60- 8+ L 6191 18° @1~ 6 @ 40 ~ 6 ^ 20 @ ~ 4 / 6 4 ~ 20 @

Sample 37-Sorted to Area% of Ilmenite

Background Ilmenite Ilmenite-Lower Ti Pseudobrookite Rutile Rutile-Altered(Leucoxene) Pseudorutile Leucoxene Ilmenite-Silicate Mixed Ilmenite-Silicate Mixed Rutile-Qz Texture Hematite-Ti Titanite Mag/Hema Goethite Chromite Chromite with low Al-Mg Spinel Zircon Monazite Xenotime Florencite Apatite Silicate Gangue Others

Sample 13-Sorted to Area% of Ilmenite ****************************** \$ \$ 7 **\ 8** 4 4 **\ 4 0 \ 1** 4 7 4 **\ 6 \ 8** 4 **** | 🍥 🍽 🔶 🥗 🎱 🍆 🎽 💊 🛸 💊 🐃 🕷 🏈 🏈 🥔 🥔 🎺 🆓 🌒 🌡 🎙 🆕 |

4 5 N D C 7 V C A S C

62,444+49869+6+#\$69558994+#94P\$

Client ID	Sinks wt (g)	Float wt (g)	% Sinks (>2.95 SG)		
GS-021 R-11032	1.87	38.50	4.6%		
GS-022 R-11033	4.06	35.99	10.1%		
GS-023 R-11034	5.53	34.85	13.7%		
GS-024 R-11035	2.87	37.56	7.1%		
GS-025 R-11036	10.89	29.37	27.0%		
GS-026 R-11037	5.51	34.88	13.6%		
GS-027 R-11038	7.47	32.73	18.6%		
GS-028 R-11039	10.88	29.16	27.2%		
GS-029 R-11040	10.61	17.78	37.4%		
GS-030 R-11041	15.68	24.58	38.9%		
GS-031 R-11042	16.02	24.47	39.6%		
GS-032 R-11043	0.92	13.4%			
REF-002 R-1031	9.67	30.49	24.1%		

Actlabs Code: A16-03131 Date: April, 2017

Report and Analysis:

Mahdi Ghobadi, PhD; MahdiGhobadi@Actlabs.com Rino Bindi, BSc

Objective:

To charcaterize the mineralogy of the sink fraction of the samples.

Samples:

13 samples were submitted for HLS. The results for concentrating the sink portion of the samples are presented in the corrosponding sheet. Around 2 grams materials from each sink portion was split using Rotary Micro Riffle Splitter, to prepare 30 mm transverse polished section.

Mineralogy Methods:

The mineralogical analysis was done using FEI FEG QEMSCAN.

The QEMSCAN instrument at Actlabs is based on the scanning electron microscope FEI QUANTA 650F, that is equipped with a field-emission gun (FEG) as an electron source. FEG enables high spatial resolution and sensitivity by decreasing the spot size of the focused electron beam to values as small as 0.3 µm and providing significant target currents, in the range of tens of nA. For imaging and X-ray based micro-chemical analysis the instrument is equipped with a four-quadrant, solid state back-scattered electron (BSE) detector and two Bruker XFlash 5030 detectors. For enhanced mineral identification capabilities, energy dispersive spectroscopy (EDS) spectra with a larger than standard number of photon counts per pixel were used in this project (3000 counts per pixel vs. the standard 1000 counts per pixel). The raw X-Ray data were evaluated using a customized SIP file for this project. The modal mineralogy data as well as particle data were generated using iDiscover software.

The data for this project were produced using two modes of measurements:

1. BMA or line scan which produced modal mineralogy data.

2. PMA or particle mapping which was used to determine size distribution.

Results:

For this report modal mineralogy data and size distribution for Ti minerals are provided. Also representative mapped particle are provided, demonstrating major Ti mineral, as well as representative BSE images.

Note:

or more minerals.

Grain Definition: A grain is a piece of mineral matter contained within a particle.

This report is subject to the following terms and conditions: 1. This report relates only to the specimen provided and there is no representation or warranty that it applies to similar substances or materials or the bulk which this specimen is a part of 2. The contents of this report is for the information of the customer identified above only and it shall not be represented or published in whole or in part or disclosed to any other party without prior consent of ACTLABS 3. The name ACTLABS shall not be used in connection with the specimens reported or any substance or materials similar to that specimen without prior written consent of ACTLABS 3b. Any tests outsourced to an accredited subcontractor are identified as follows: (*) 4. Neither ACTLABS nor its employees shall be responsible for any claims, loss or damages arising in consequence of reliance on this report or any error or

Particle Definition: A particle is a piece of material, and can contain one

follows: (*) 4. Neither ACTLABS nor its employees shall be responsible for any claims, loss or damages arising in consequence of reliance on this report or any error or omissions in its preparation or the test conducted 5.Specimens are retained for 90 days. Samples which are critical or the subject of litigation should be retrieved as soon as possible. Actlabs will not be responsible for loss or damage however caused. Test reports and test data are retained 10 years from date of final test report and then disposed of, unless instructed otherwise in writing. 6. Micrograph magnification based on a photo size of approximately 3.5"x5" unless otherwise noted. QA Forms Revision 4.2 Effective Date: March 22, 2006.

Actlab ID	Client ID	
A17-0313117	VC-001A 1/3 Sinks	
A17-0313118	VC-001A 2/3 Sinks	
A17-0313119	VC-001A 3/3 Sinks	
A17-0313120	VC-002B 1/2 Sinks	
A17-0313121	VC-002B 2/2 Sinks	
A17-0313122	VC-003 1/2 Sinks	
A17-0313123	VC-003 2/2 Sinks	
A17-0313124	VC-004 1/3 Sinks	
A17-0313125	VC-004 2/3 Sinks	
A17-0313126	VC-004 3/3 Sinks	
A17-0313127	VC-005 2/3 Sinks	
A17-0313128	VC-005 2/3 RED Sink	kS
A17-0313129	VC-005 3/3 Sinks	
A17-0313130	GS-109-03 Sinks	
A17-0313131	GS-500-03 Sinks	
A17-0313132	GS-501-01 Sinks	

	Actlabd ID: A16-03131-	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	Client ID	VC-001A 1/3 s	VC-001A 2/3 s	VC-001A 3/3 s	VC-002B 1/2 s	VC-002B 2/2 s	VC-003 1/2 s	VC-003 2/2 s	VC-004 1/3 s	VC-004 2/3 s	VC-004 3/3 s	VC-005 2/3 s	/C-005 2/3 RED	VC-005 3/3 s	GS-109-03 s	GS-500-03 s	GS-501-01 s
	MASS %																
	Ilmenite	7.35	9.33	11.87	35.94	23.15	10.17	20.95	8.46	4.89	6.18	5.60	24.03	28.95	2.60	1.01	0.87
	Ilmenite lower Ti	0.57	0.87	0.73	0.94	0.78	0.62	0.99	0.75	0.38	0.41	0.40	0.93	0.88	0.30	0.05	0.06
	Pseudobrookite	0.14	0.21	0.15	0.21	0.19	0.21	0.22	0.17	0.10	0.11	0.15	0.15	0.19	0.08	0.01	0.02
	Rutile	1.88	1.86	1.86	2.25	2.02	1.89	2.23	1.75	1.55	1.30	1.53	2.33	1.99	0.70	0.75	0.93
	Rutile-Altered(Leucoxene)	2.55	2.68	3.02	4.50	4.59	2.93	3.73	2.67	2.46	2.22	2.59	5.24	4.32	3.05	2.21	1.73
Ti Minerals	Pseudorutile	0.41	0.41	0.65	3.05	2.18	0.81	1.69	0.33	0.26	0.34	0.27	2.55	2.76	0.23	0.14	0.06
	Leucoxene	1.18	1.02	0.95	1.14	1.33	1.17	1.19	1.08	1.17	1.11	1.09	1.22	1.03	0.86	0.86	0.97
	Ilmenite-Silicate Mixed	0.03	0.06	0.02	0.07	0.04	0.04	0.05	0.03	0.03	0.03	0.04	0.06	0.04	0.10	0.01	0.02
	Rutile-Qz Texture	0.12	0.12	0.15	0.10	0.12	0.14	0.10	0.15	0.15	0.17	0.16	0.12	0.08	0.08	0.12	0.13
	Hematite-Ti	0.57	1.09	0.68	0.92	0.99	0.90	0.99	0.83	0.45	0.61	0.66	0.48	1.03	0.38	0.05	0.12
	Titanite	2.35	2.27	2.45	1.11	1.08	1.85	1.68	2.23	2.04	1.95	2.26	0.80	0.32	0.35	1.08	0.50
	Mag/Hema	1.05	2.09	0.97	0.67	0.77	0.61	1.08	1.58	0.25	0.52	0.87	0.52	0.58	0.39	0.06	0.04
	Goethite	0.63	1.32	0.66	0.45	0.49	0.55	0.65	1.04	0.19	0.34	0.71	1.34	1.54	7.41	0.05	0.05
Ovidos /Hudrovidos	Boehmite	0.04	0.01	n.d.	n.d.	0.02	0.00	n.d.	0.00	0.00	0.01	0.04	0.05	0.00	0.22	0.01	0.00
Oxides/Hydroxides	Chromite	0.02	0.03	0.01	0.01	0.04	0.02	0.03	0.01	0.03	0.02	0.00	0.03	0.15	n.d.	n.d.	n.d.
	Chromite with AI-Mg	0.01	0.03	0.09	0.01	0.00	0.04	0.04	0.07	0.00	0.00	0.01	0.05	0.01	n.d.	n.d.	n.d.
	Spinel	0.02	n.d.	n.d.	0.03	0.02	n.d.	0.00	n.d.	n.d.	n.d.	0.01	n.d.	0.01	0.07	n.d.	n.d.
	Zircon	1.35	2.37	2.33	4.69	3.83	1.51	3.85	1.67	0.63	0.92	0.99	3.36	3.21	0.75	0.18	0.24
	Xenotime	0.00	0.02	n.d.	0.01	0.03	0.00	0.03	0.01	n.d.	n.d.	n.d.	n.d.	0.07	n.d.	n.d.	n.d.
REE Minerals	Monazite	0.08	0.19	0.12	0.20	0.33	0.06	0.11	0.05	0.10	0.03	0.02	0.02	0.25	n.d.	0.00	n.d.
	Florencite	0.00	0.01	n.d.	0.00	0.02	0.00	0.05	0.02	0.01	0.03	0.02	n.d.	n.d.	n.d.	0.03	n.d.
	Apatite	3.86	3.47	3.76	1.52	1.72	2.87	2.60	3.52	4.38	3.57	3.13	1.34	1.13	0.71	1.93	0.94
	Kyanite	1.17	0.86	0.80	1.67	2.17	1.13	1.03	1.00	1.27	1.43	1.35	3.02	3.17	6.18	2.09	3.06
	Quartz	2.92	2.43	1.22	1.73	2.33	2.78	1.26	1.44	1.33	4.84	3.22	3.67	4.89	7.95	9.26	12.21
	K-Feldspar	0.17	0.18	0.09	0.08	0.17	0.16	0.10	0.12	0.10	0.42	0.35	0.32	0.49	0.85	0.76	0.97
	Plagioclase	0.96	0.75	0.47	0.40	0.59	0.76	0.53	0.47	0.67	1.51	1.19	0.96	1.32	1.41	2.39	2.81
	Pyroxene	5.01	4.80	4.05	2.16	2.72	4.44	2.97	5.17	5.98	6.22	6.09	2.81	2.71	8.02	7.40	7.14
Silicates	Garnet	18.48	17.27	20.22	12.35	15.34	19.26	17.17	19.17	16.87	15.02	15.83	11.99	10.62	10.85	10.33	6.89
Sincutes	Amphibole	42.17	40.00	38.14	19.60	28.11	40.13	30.68	41.51	49.07	45.06	46.36	28.00	23.71	35.30	53.60	55.50
	Mica	0.40	0.39	0.26	0.25	0.34	0.38	0.29	0.43	0.45	0.55	0.53	0.30	0.37	2.11	0.88	0.93
	Staurolite	0.56	0.41	0.50	1.50	1.41	0.99	0.87	0.39	0.52	0.55	0.49	1.23	0.94	2.90	0.69	0.48
	Wollastonite	0.45	0.45	0.37	0.19	0.22	0.36	0.25	0.45	0.52	0.45	0.48	0.17	0.16	0.32	0.45	0.36
	Schorl-Tourmaline	1.86	1.78	2.11	1.33	1.89	1.86	1.54	1.99	2.31	2.21	2.00	1.84	1.89	2.63	2.17	1.65
	Epidote	0.19	0.18	0.19	0.08	0.12	0.22	0.14	0.23	0.29	0.26	0.33	0.15	0.16	0.26	0.27	0.32
	Calcite	0.46	0.11	0.24	0.11	0.10	0.12	0.06	0.21	0.27	0.35	0.34	0.11	0.08	0.19	0.17	0.15
	Pyrite	0.00	0.02	0.02	0.07	0.00	0.09	0.09	0.00	0.01	0.03	0.01	0.00	n.d.	0.01	0.00	n.d.
Mixed-	Silicates-Altered to Clays	0.27	0.26	0.21	0.16	0.21	0.28	0.20	0.31	0.28	0.33	0.26	0.32	0.35	1.97	0.32	0.32
Unclassifiable	Low Counts	0.03	0.02	0.04	0.05	0.05	0.03	0.03	0.04	0.19	0.27	0.03	0.06	0.05	0.01	0.02	0.02
Spectra	Others	0.68	0.63	0.62	0.45	0.50	0.64	0.52	0.65	0.79	0.68	0.60	0.42	0.55	0.77	0.61	0.51
	Sum	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

29	30	31	32
-005 3/3	G-109-03	G-500-03	G-501-01
round			
te			
te-Lowe	er Ti		
brooki	te		
Altered	(Leucoxe	ene)	
orutile			
ene			
te-Silica	ate Mixed		
Qz Tex	ture		
ite-Ti			
5			
ema			
te			
ite			
iosphat	e		
2			
e			
e Gangi	Je		

		17 VC-001A 1/3	18 VC-001A 2/3	19 VC-001A 3/3	20 VC-002B 1/2	21 VC-002B 2/2	22 VC-003 1/2	23 VC-003 2/2	24 VC-004 1/3	25 VC-004 2/3	26 VC-004 3/3	27 VC-005 2/3	28 C-005 2/3 REI	29 VC-005 3/3	<u>30</u> G-109-03	31 G-500-03	32 G-501-01
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212	17 VC-001A 1/3 2 3 9 13 19 32 52 77 96 100 100 100	18 VC-001A 2/3 1 2 8 12 18 34 60 87 99 100 100 100	19 VC-001A 3/3 1 2 8 11 17 24 49 72 90 98 100 100	20 VC-002B 1/2 1 2 6 7 8 13 20 34 56 80 98 100	21 VC-002B 2/2 1 2 7 9 13 18 29 45 69 45 69 87 95 99	22 VC-003 1/2 1 2 6 8 13 19 39 58 77 87 94 100	23 VC-003 2/2 2 3 8 9 15 22 36 64 82 91 98 100	24 VC-004 1/3 1 2 7 10 15 26 50 80 96 100 100 100 100	25 VC-004 2/3 2 3 9 12 16 29 55 80 98 100 100 100	26 VC-004 3/3 2 3 9 12 18 26 53 79 90 100 100 100 100	27 VC-005 2/3 2 3 10 14 22 35 53 87 99 100 100 100 100	28 C-005 2/3 REI 1 2 8 10 13 18 25 34 51 77 97 100	29 VC-005 3/3 1 2 6 8 11 14 20 28 46 72 96 100	30 G-109-03 10 16 35 36 43 51 59 73 92 100 100 100 100	31 G-500-03 2 4 17 20 27 29 43 58 67 83 100 100	32 G-501-01 4 6 20 23 25 29 29 55 93 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Ilmenite lower Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53	VC-001A 1/3 64 80 98 99 100 100 100 100	VC-001A 2/3 58 75 99 100 100 100 100	VC-001A 3/3 56 71 96 100 100 100 100	VC-002B 1/2 67 80 96 97 97 100 100 100	VC-002B 2/2 66 79 96 97 100 100 100 100	VC-003 1/2 61 78 99 100 100 100 100	VC-003 2/2 64 79 98 100 100 100 100	VC-004 1/3 56 73 96 97 98 100 100 100	VC-004 2/3 56 73 98 100 100 100 100	VC-004 3/3 62 78 98 99 100 100 100 100	VC-005 2/3 54 71 99 100 100 100 100	C-005 2/3 REI 67 79 98 99 100 100 100 100	VC-005 3/3 62 77 96 99 100 100 100 100	G-109-03 40 57 98 100 100 100 100 100	G-500-03 61 71 91 100 100 100	G-501-01 54 73 96 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Pseudobrookite S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75	VC-001A 1/3 49 66 92 100 100 100	VC-001A 2/3 57 74 97 98 100 100 100	VC-001A 3/3 51 68 97 100 100 100 100	VC-002B 1/2 53 68 94 98 98 99 100	VC-002B 2/2 55 73 97 99 100 100 100	VC-003 1/2 51 64 96 98 99 99 100	VC-003 2/2 51 65 96 100 100 100 100	VC-004 1/3 51 67 95 99 100 100 100	VC-004 2/3 47 59 97 100 100 100 100	VC-004 3/3 55 73 97 99 99 99 99 99 100	VC-005 2/3 51 65 96 99 100 100	C-005 2/3 REI 51 62 91 96 100 100	VC-005 3/3 49 66 89 99 100 100	G-109-03 60 70 97 99 100 100	G-500-03 57 82 100 100	G-501-01 73 79 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Rutile S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 Size Distribution of Rutile-	VC-001A 1/3 3 6 20 27 37 53 70 85 100 100 100 100 100	VC-001A 2/3 4 5 18 26 38 54 72 90 98 100 100 100	VC-001A 3/3 2 4 10 16 23 39 50 78 95 100 100 100 100	VC-002B 1/2 3 5 12 18 25 31 46 58 78 85 90 100	VC-002B 2/2 4 7 18 26 35 44 56 86 100 100 100 100	VC-003 1/2 4 7 22 30 38 47 63 80 89 100 100 100 100	VC-003 2/2 3 4 15 20 28 35 48 61 84 88 100 100	VC-004 1/3 4 6 20 24 33 43 59 92 100 100 100 100 100	VC-004 2/3 4 6 19 27 34 48 67 92 100 100 100 100 100	VC-004 3/3 4 7 25 39 54 65 82 100 100 100 100 100 100 100	VC-005 2/3 4 6 18 26 41 62 79 93 100 100 100 100 100	C-005 2/3 REI 3 5 15 20 26 35 46 65 83 100 100 100	VC-005 3/3 4 6 20 25 43 49 58 67 74 83 100 100	G-109-03 5 9 25 37 55 65 79 100 100 100 100 100 100 100	G-500-03 7 13 41 50 57 75 100 100 100 100 100 100	G-501-01 4 8 22 33 54 61 76 88 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Altered S<=3 S<=5 S<=10 S<=13.25 S<=13.25 S<=13.25 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=212	VC-001A 1/3 10 16 39 48 58 67 73 79 98 100 100 100	VC-001A 2/3 10 16 41 49 58 65 78 90 97 100 100 100	VC-001A 3/3 9 15 38 46 56 65 68 76 96 100 100 100	VC-002B 1/2 10 16 37 48 55 63 66 74 82 95 100 100	VC-002B 2/2 6 10 24 29 36 41 52 61 78 92 97 100	VC-003 1/2 8 14 40 48 57 60 67 81 94 100 100 100	VC-003 2/2 8 13 35 44 55 63 68 73 90 100 100 100	VC-004 1/3 8 14 40 47 54 63 67 77 93 100 100 100	VC-004 2/3 8 14 39 49 56 62 78 86 94 100 100 100	VC-004 3/3 7 13 37 45 57 63 71 88 97 100 100 100	VC-005 2/3 9 17 45 55 64 69 77 94 100 100 100 100	C-005 2/3 REI 8 13 32 38 47 56 65 77 90 100 100 100	VC-005 3/3 7 11 31 41 48 54 64 75 84 92 97 100	G-109-03 4 7 18 20 24 24 24 24 51 66 66 83 100	G-500-03 6 10 32 45 52 60 63 73 77 100 100 100	G-501-01 6 11 30 43 56 80 85 85 94 100 100 100
Sieve Size in Micron/ Cumulative Passing	Pseudorutile S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75 S<=106	VC-001A 1/3 37 53 92 94 95 95 100 100 100 100	VC-001A 2/3 42 56 91 99 100 100 100 100 100	VC-001A 3/3 34 47 83 95 99 100 100 100 100 100	VC-002B 1/2 27 39 75 80 88 90 92 96 100 100	VC-002B 2/2 29 43 79 89 93 96 98 100 100 100	VC-003 1/2 34 47 76 77 92 100 100 100 100 100	VC-003 2/2 27 38 68 71 78 78 100 100 100 100	VC-004 1/3 42 57 92 100 100 100 100 100 100	VC-004 2/3 44 58 94 100 100 100 100 100 100 100 100 100 10	VC-004 3/3 43 57 88 93 100 100 100 100 100 100 100 100	VC-005 2/3 48 61 99 100 100 100 100 100 100 100 100 100	C-005 2/3 REI 22 33 73 83 85 96 98 98 98 98 98 100	VC-005 3/3 26 39 76 81 83 86 91 96 100 100	G-109-03 14 21 44 70 100 100 100 100 100 100 100 100 100	G-500-03 24 35 98 100 100 100 100 100 100 100 100 100 10	G-501-01 36 46 68 100 100 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75	VC-001A 1/3 23 33 68 80 91 94 97 97 100	VC-001A 2/3 25 34 71 81 87 96 97 100 100	VC-001A 3/3 26 37 72 82 89 97 97 100 100	VC-002B 1/2 30 42 76 87 90 93 96 100 100	VC-002B 2/2 31 43 80 89 97 100 100 100 100 100	VC-003 1/2 24 35 69 77 91 97 97 100 100	VC-003 2/2 32 45 80 89 95 97 100 100 100	VC-004 1/3 26 37 80 88 93 94 100 100	VC-004 2/3 21 32 80 88 94 98 100 100 100	VC-004 3/3 20 31 70 84 90 92 92 92 95 100	VC-005 2/3 17 26 62 73 83 87 93 96 100	C-005 2/3 REI 26 37 70 77 80 88 88 92 100	VC-005 3/3 25 35 70 79 85 96 100 100 100	G-109-03 27 41 85 95 96 100 100 100	G-500-03 14 25 60 71 74 74 74 80 100	G-501-01 15 22 57 70 78 87 100 100 100
Sieve Size in Micron/ Cumulative Passing	Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106	VC-001A 1/3 9 16 33 40 53 85 100 100 100 100	VC-001A 2/3 5 7 22 28 45 68 83 95 100 100	VC-001A 3/3 7 10 26 40 53 77 98 100 100 100	VC-002B 1/2 5 8 18 21 29 46 69 89 100 100	VC-002B 2/2 4 6 18 22 29 37 60 73 88 100	VC-003 1/2 3 6 15 22 33 59 88 100 100 100	VC-003 2/2 4 6 15 22 34 55 72 84 100 100	VC-004 1/3 6 9 22 36 45 75 93 100 100 100	VC-004 2/3 7 12 30 37 51 78 92 100 100 100	VC-004 3/3 4 8 18 28 44 61 92 100 100 100	VC-005 2/3 9 14 40 52 66 72 80 82 100 100	C-005 2/3 REI 5 8 18 20 24 45 71 71 100 100	VC-005 3/3 7 10 28 36 40 54 77 100 100 100	G-109-03 15 20 63 75 82 82 100 100 100 100 100	G-500-03 8 13 92 100 100 100 100 100 100 100 100 100 10	G-501-01 3 4 11 19 33 49 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Titanite S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150	VC-001A 1/3 1 1 3 4 7 10 22 43 80 100 100	VC-001A 2/3 1 1 4 7 9 13 25 54 94 100 100	VC-001A 3/3 0 1 3 4 6 12 19 42 72 89 100	VC-002B 1/2 1 3 5 8 12 25 49 66 100 100	VC-002B 2/2 0 1 2 3 4 8 18 41 65 89 100	VC-003 1/2 1 3 5 7 10 23 42 83 89 100	VC-003 2/2 1 1 3 6 8 11 17 43 81 100 100	VC-004 1/3 0 1 3 4 9 14 25 48 71 96 100	VC-004 2/3 1 1 3 5 7 12 21 43 84 99 100	VC-004 3/3 1 1 4 5 9 13 22 47 86 100 100	VC-005 2/3 1 1 4 6 10 15 27 52 88 97 100	C-005 2/3 REI 1 4 8 10 11 18 43 88 100 100	VC-005 3/3 1 3 4 9 13 19 45 67 91 100	G-109-03 1 2 5 8 13 13 13 15 57 70 70 100	G-500-03 1 2 7 9 12 17 17 36 81 81 100	G-501-01 1 1 5 7 10 12 14 53 91 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Zircon S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 S<=300	VC-001A 1/3 0 0 1 1 1 4 7 11 42 80 100 100 100 100 100	VC-001A 2/3 0 1 1 2 9 25 66 97 100 100 100 100 100	VC-001A 3/3 0 0 1 1 4 17 43 67 90 100 100 100 100	VC-002B 1/2 0 0 0 1 2 4 10 26 60 96 100 100	VC-002B 2/2 0 0 0 1 1 4 12 35 76 96 100 100	VC-003 1/2 0 0 0 1 4 6 10 47 81 88 100 100 100	VC-003 2/2 0 0 0 1 3 7 17 54 83 96 100 100	VC-004 1/3 0 1 1 2 7 12 49 91 100 100 100 100	VC-004 2/3 0 0 0 0 1 6 18 76 100 100 100 100 100	VC-004 3/3 0 0 0 2 3 10 25 60 84 100 100 100 100	VC-005 2/3 0 0 1 2 3 16 54 94 100 100 100 100	C-005 2/3 REI 0 0 0 0 0 1 7 29 58 96 100 100	VC-005 3/3 0 0 0 0 0 0 0 0 4 22 63 100 100 100 100	G-109-03 0 1 1 2 2 3 3 3 3 3 8 38 38 38 38 38	G-500-03 1 2 8 14 14 55 100 100 100 100 100 100 100 100 100	G-501-01 0 1 1 1 3 3 3 3 3 17 17 17 17 17 17

Titanite Mag/Hema Goethite Chromite Spinel

Sample 23-Sorted to Area% of Ilmenite Background Ilmenite Ilmenite-Lower Ti
 Image: Solution of the soluti

Sample 17-Sorted to Area% of Ilmenite 11101/1-2+2-0=03041/04 100000 Jan - 4100 / - 49000
 Image: Second Leucoxene Ilmenite-Silicate Mixed Rutile-Qz Texture REE Phosphate │ 🌭 🧲 🌮 🔍 🤍 🤍 🤍 🍼 🌏 🏈 🌭 🖉 🌭 🖉 🌑 🥌 🍼 🔺 🧶 |

Hematite-Ti

Chromite 📃

Others

Mag/Hema

Silicate Gangue

Leucoxene Ilmenite-Silicate Mixed Ilmenite-Or Texture

~ @ 🗞 🖉 🔌 🖉 📥 🤌 👓 🗢 💋 🍁 🥨 🍢 🎉 🌭 🧇 🤗 🖉 ▘**▕** ◇ ∽ **È ∛ ◇ ° ﴿** *◇* **[~] ∕ ◇ S A** ∕ ∕ ?

Sample 24-Sorted to Area% of Ilmenite

------6-7-96+8votl-prose Rutile-Altered(Leucoxene)

Sample 18-Sorted to Area% of Ilmenite

Mag/Hema Goethite

 Image: Second control in the second control in th

Rutile-Qz Texture

~**&** + ~ / 0 0. ----Sample 27-Sorted to Area% of Ilmenite

Sample 22-Sorted to Area% of Ilmenite 1011-1WAD1200000-9~~10~~00~~00~~100<u>~</u>~3~ Mag/Hem Spiner Spiner Zircon REE Phosphate Image: Silicate Gangue Sample 28-Sorted to Area% of Ilmenite -1-8-60 A. 792

Ilmenite-Silicate Mixed Mag/Hema Goethite REE Phosphate ~~~~~~~~~~~~~~~~~ 81103-8-1100-91 112004199230800

Samala	Mass (g)								
Sample	Floats	Sinks	% Sinks						
VC-001A 1/3	34.31	26.99	44%						
VC-001A 2/3	24.84	20.62	45%						
VC-001A 3/3	13.59	31.84	70%						
VC-002B 1/2	26.05	27.34	51%						
VC-002B 2/2	32.43	11.16	26%						
VC-003 1/2	24.23	39.03	62%						
VC-003 2/2	24.13	24.14	50%						
VC-004 1/3	32.42	17.29	35%						
VC-004 2/3	31.66	15.57	33%						
VC-004 3/3	42.08	6.82	14%						
VC-005 2/3	35.39	6.12	15%						
VC-005 2/3 RED	14.47	1.27	8%						
VC-005 3/3	13.75	1.10	7%						
GS-109-03	16.37	0.83	5%						
GS-500-03	45	3.41	7%						
GS-501-01	58.15	3.45	6%						

Actlabs Code: A17-11430 Date: December, 2017

Report and Analysis:

Mahdi Ghobadi, PhD; MahdiGhobadi@Actlabs.com Rino Bindi, BSc

Objective:

To charcaterize the mineralogy of the sink fraction of the samples.

Samples:

Sixteen samples were submitted for HLS. The results for concentrating the sink portion of the samples are presented in the corrosponding sheet. Around 2 grams materials from each sink portion was split using Rotary Micro Riffle Splitter, to prepare 30 mm transverse polished section.

Mineralogy Methods:

The mineralogical analysis was done using FEI FEG QEMSCAN.

The QEMSCAN instrument at Actlabs is based on the scanning electron microscope FEI QUANTA 650F, that is equipped with a field-emission gun (FEG) as an electron source. FEG enables high spatial resolution and sensitivity by decreasing the spot size of the focused electron beam to values as small as 0.3 µm and providing significant target currents, in the range of tens of nA. For imaging and X-ray based micro-chemical analysis the instrument is equipped with a four-quadrant, solid state back-scattered electron (BSE) detector and two Bruker XFlash 5030 detectors. For enhanced mineral identification capabilities, energy dispersive spectroscopy (EDS) spectra with a larger than standard number of photon counts per pixel were used in this project (3000 counts per pixel vs. the standard 1000 counts per pixel). The raw X-Ray data were evaluated using a customized SIP file for this project. The modal mineralogy data as well as particle data were generated using iDiscover software.

The data for this project were produced using two modes of measurements:

1. BMA or line scan which produced modal mineralogy data.

2. PMA or particle mapping which was used to determine size distribution.

Results:

For this report modal mineralogy data and size distribution for Ti minerals are provided. Also representative mapped particle are provided, demonstrating major Ti mineral, as well as representative BSE images.

Note:

Particle Definition: A particle is a piece of material, and can contain one or more minerals.

Grain Definition: A grain is a piece of mineral matter contained within a particle.

This report is subject to the following terms and conditions: 1. This report relates only to the specimen provided and there is no representation or warranty that it applies to similar substances or materials or the bulk which this specimen is a part of 2. The contents of this report is for the information of the customer identified above only and it shall not be represented or published in whole or in part or disclosed to any other party without prior consent of ACTLABS 3.The name ACTLABS shall not be used in connection with the specimens reported or any substance or materials similar to that specimen without prior written consent of ACTLABS 3b. Any tests outsourced to an accredited subcontractor are identified as follows: (*) 4. Neither ACTLABS nor its employees shall be responsible for any claims, loss or damages arising in consequence of reliance on this report or any error or omissions in its preparation or the test conducted 5.Specimens are retained for 90 days. Samples which are critical or the subject of litigation should be retrieved as soon as possible. Actlabs will not be responsible for loss or damage however caused. Test reports and test data are retained 10 years from date of final test report and then disposed of, unless instructed otherwise in writing <u>6</u>. Micrograph megnification

disposed of, unless instructed otherwise in writing. 6. Micrograph magnification based on a photo size of approximately 3.5"x5" unless otherwise noted. QA Forms Revision 4.2 Effective Date: March 22, 2006.

Actlab ID	Client ID
A17-1143017	R-11355 Sinks
A17-1143018	R-11356 Sinks
A17-1143019	R-11357 Sinks
A17-1143020	R-11358 Sinks
A17-1143021	R-11359 Sinks
A17-1143022	R-11360 Sinks
A17-1143023	R-11361 Sinks
A17-1143024	R-11362 Sinks
A17-1143025	R-11363 Sinks
A17-1143026	R-11364 Sinks
A17-1143027	R-11365 Sinks
A17-1143028	R-11366 Sinks
A17-1143029	R-11367 Sinks
A17-1143030	R-11368 Sinks
A17-1143031	R-11372 Sinks
A17-1143032	R-11375 Sinks

	Actlabd ID: A16-11430-	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	Client ID	R-11355 Sinks	R-11356 Sinks	R-11357 Sinks	R-11358 Sinks	R-11359 Sinks	R-11360 Sinks	R-11361 Sinks	R-11362 Sinks	R-11363 Sinks	R-11364 Sinks	R-11365 Sinks	R-11366 Sinks	R-11367 Sinks	R-11368 Sinks	R-11372 Sinks	R-11375 Sinks
	MASS %																
	Ilmenite	33.40	20.66	23.52	15.30	12.41	14.02	17.10	12.89	15.24	12.29	12.16	13.40	38.75	23.39	4.70	17.47
	Ilmenite lower Ti	1.67	0.82	1.21	1.11	1.02	1.13	1.10	0.83	1.04	0.98	0.76	0.58	1.76	0.99	0.54	1.09
	Pseudobrookite	0.19	0.10	0.06	0.18	0.17	0.11	0.10	0.09	0.11	0.08	0.09	0.03	0.13	0.05	0.05	0.10
	Rutile	1.55	1.57	1.99	1.29	1.67	1.47	1.87	1.88	1.94	2.12	1.94	1.48	2.40	1.97	1.10	2.42
	Rutile-Altered(Leucoxene)	8.14	7.49	8.83	4.16	4.15	3.94	5.47	4.95	5.35	6.15	6.15	9.52	7.68	10.31	3.45	5.79
Ti Minerals	Pseudorutile	2.15	1.38	1.21	0.58	0.44	0.59	0.92	0.43	0.54	0.38	0.56	1.12	1.93	1.43	0.12	0.62
	Leucoxene	0.91	1.15	1.10	1.06	1.24	0.59	1.11	1.54	1.56	1.63	1.52	1.04	0.73	0.84	1.35	2.53
	Ilmenite-Silicate Mixed	0.03	0.03	0.03	0.04	0.03	0.03	0.04	0.03	0.04	0.04	0.02	0.02	0.02	0.01	0.04	0.05
	Rutile-Qz Texture	0.05	0.10	0.07	0.11	0.15	0.06	0.10	0.16	0.16	0.15	0.13	0.14	0.06	0.04	0.27	0.26
	Hematite-Ti	0.91	0.43	0.21	0.95	0.94	0.57	0.44	0.40	0.57	0.45	0.36	0.12	0.32	0.08	0.29	0.68
	Titanite	0.65	1.33	1.07	1.84	1.77	1.80	1.57	1.29	1.55	1.59	1.62	1.23	0.32	0.81	2.03	1.44
	Mag/Hema	0.11	0.10	0.02	0.56	0.58	1.15	0.19	0.08	0.18	0.10	0.19	0.03	0.02	<0.01	0.37	0.32
	Goethite	0.06	0.05	<0.01	0.27	0.35	0.48	0.08	0.06	0.08	0.05	0.06	0.02	0.01	0.01	0.35	0.28
Oxides/Hvdroxides	Boehmite	0.08	0.05	<0.01	0.04	0.02	0.02	0.01	0.01	0.03	<0.01	n.d.	0.08	0.07	0.05	0.03	<0.01
	Chromite	<0.01	0.03	0.02	<0.01	0.01	0.02	0.05	0.02	0.02	<0.01	<0.01	<0.01	0.15	0.03	<0.01	0.02
	Chromite with AI-Mg	0.01	0.06	0.02	0.05	0.05	0.01	0.05	0.09	n.d.	0.02	0.01	0.02	0.11	0.06	<0.01	0.03
	Spinel	0.18	0.11	0.07	0.03	0.06	0.07	0.07	0.01	0.03	0.07	0.02	0.11	0.11	0.13	<0.01	0.04
	Zircon	5.42	3.65	4.19	3.31	2.66	2.64	3.34	2.17	2.81	2.25	1.80	2.00	8.86	3.67	0.59	2.06
	Xenotime	n.d.	<0.01	<0.01	0.02	0.07	0.02	0.05	n.d.	<0.01	0.03	<0.01	<0.01	n.d.	<0.01	n.d.	0.01
REE Minerals	Monazite	0.06	0.25	0.23	0.15	0.25	0.18	0.24	0.14	0.22	0.13	0.13	0.14	0.22	0.23	0.04	0.14
	Florencite	n.d.	n.d.	n.d.	<0.01	<0.01	0.02	<0.01	n.d.	0.03	<0.01	0.02	0.02	<0.01	<0.01	0.09	0.13
	Apatite	0.14	1.00	0.25	2.13	2.07	1.80	1.65	1.55	1.50	1.52	1.23	0.36	0.10	0.15	4.25	1.96
	Kyanite	1.86	2.05	1.48	1.20	1.38	1.46	1.67	1.84	1.18	1.37	1.34	2.25	1.36	2.14	1.47	2.45
	Quartz	2.53	3.26	4.38	2.13	1.67	1.35	1.22	2.97	1.95	1.81	1.87	1.80	2.88	0.94	2.25	2.70
	K-Feldspar	0.33	0.33	0.61	0.05	0.10	0.09	0.05	0.11	0.09	0.06	0.22	0.16	0.38	0.04	0.10	0.18
	Plagioclase	0.44	1.14	1.42	0.69	0.46	0.53	0.29	0.62	0.51	0.42	0.40	0.36	0.90	0.22	0.73	0.51
	Pyroxene	1.19	1.90	1.50	3.59	3.65	3.18	3.18	4.73	4.55	4.34	5.42	3.16	0.84	1.64	6.42	3.84
C111	Garnet	11.37	13.38	11.65	13.62	13.06	13.91	13.61	11.26	11.85	11.14	9.63	11.61	8.57	12.74	11.04	12.69
Silicates	Amphibole	17.71	29.35	28.40	39.27	43.63	41.99	37.93	43.71	40.96	44.17	46.81	41.94	15.39	29.34	51.56	33.56
		0.19	0.28	0.28	0.28	0.38	0.32	0.28	0.47	0.40	0.48	0.49	0.24	0.19	0.15	0.72	0.44
	Staurolite	3.71	2.47	1.35	0.86	0.65	0.78	1.07	0.94	0.79	1.01	0.90	1.86	1.70	2.68	0.46	1.18
		0.08	0.10	0.09	0.23	0.23	0.27	0.25	0.31	0.24	0.30	0.31	0.16	0.03	0.08	0.58	0.31
	Schori- i ourmaiine	2.31	2.61	2.35	2.54	2.64	2.28	2.79	2.58	2.58	2.50	2.05	2.59	1.69	3.04	2.53	2.11
		1.66	1.52	1.28	1.05	0.73	1.26	1.00	0.68	0.69	0.83	0.65	1.22	1.45	1.66	0.50	0.44
		0.14	0.31	0.34	0.38	0.36	0.28	0.32	0.34	0.32	0.41	0.43	0.26	0.16	0.25	0.59	0.77
		<0.01	<0.01	<0.01	0.03	0.05	0.02	<0.01	0.07	0.04	0.05	0.02	n.a.	<0.01	<0.01	0.35	0.23
Missod		<0.01	0.12	0.03	<0.01	0.07	0.70	0.01	0.05	0.08	0.08	<0.01	0.27	0.07	0.11	0.02	0.08
IVIIXE0-	Silicates-Altered to Clays	0.13	0.21	0.22	0.23	0.21	0.21	0.18	0.19	0.23	0.22	0.20	0.16	0.13	0.10	0.34	0.27
Spectra	Courtis	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.04	0.03	0.02	0.03
Spectra	Sum	0.60	0.59	0.49	0.63	0.57	0.65	0.57	0.48	0.54	0.75	0.46	0.49	0.47	0.52	0.69	υ./δ
	Sulfi	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

27	28	29	30	31	32
365 Sink	R-11366 Sink	R-11367 Sink	२-11368 Sink	२-11372 Sink	R-11375 Sinks

S

		17 VC-001A 1/3	18 VC-001A 2/3	19 VC-001A 3/3	20 VC-002B 1/2	21 VC-002B 2/2	22 VC-003 1/2	23 VC-003 2/2	24 VC-004 1/3	25 VC-004 2/3	26 VC-004 3/3	27 VC-005 2/3	28 VC-005 2/3 RED	29 VC-005 3/3	30 G-109-03	31 G-500-03	32 G-501-01
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Ilmenite S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 S<=300 Size Distribution of Ilmenite	1 2 7 8 10 14 17 26 42 65 86 98 100	2 4 9 12 17 21 30 39 61 80 93 100 100	2 3 7 10 12 15 21 38 60 84 98 100 100	1 2 6 8 12 17 30 49 84 100 100 100 100	1 2 6 8 12 19 36 63 89 99 100 100 100	1 2 5 6 9 14 24 50 83 97 100 100 100	1 2 6 7 10 15 28 49 73 97 98 100 100	1 2 6 9 13 18 30 51 74 95 100 100 100	1 2 7 9 15 21 32 50 77 96 99 100 100	1 2 7 9 14 20 32 55 81 99 100 100 100	1 2 7 9 14 19 27 51 85 99 100 100 100	3 4 12 15 18 22 30 43 61 83 96 100 100	1 1 4 5 7 9 11 17 33 66 90 99 100	1 2 7 8 11 14 21 34 57 77 95 99 100	2 3 9 14 20 29 48 73 89 100 100 100 100	1 1 5 7 10 17 26 42 70 89 94 100 100
Sieve Size in Micron/ Cumulative Passing	Iower Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75	56 72 96 99 100 100 100 100 100	56 71 93 96 97 97 98 98 98 100	58 74 98 99 100 100 100 100	55 72 98 99 100 100 100 100	56 70 97 99 100 100 100 100	49 67 96 98 98 100 100 100	54 71 97 98 100 100 100 100	53 70 96 100 100 100 100 100 100	52 67 97 98 99 100 100 100 100	53 67 95 97 100 100 100 100	51 65 93 94 95 95 95 100 100	49 60 91 94 96 100 100 100 100	51 66 95 96 97 97 97 97 97 100	54 70 98 99 100 100 100 100 100	43 59 89 100 100 100 100 100	55 69 93 97 97 97 97 100 100
Sieve Size in Micron/ Cumulative Passing	Pseudobrookite S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53	57 76 99 100 100 100 100 100	56 76 99 100 100 100 100	60 76 99 100 100 100 100	43 59 83 87 93 100 100 100	43 60 86 88 89 100 100 100	44 55 69 69 70 70 70 100	52 72 98 100 100 100 100	55 72 98 100 100 100 100	48 63 96 99 99 100 100 100	51 69 97 99 100 100 100	58 73 97 98 100 100 100 100	41 47 93 98 100 100 100 100	54 74 99 100 100 100 100 100	46 57 84 96 100 100 100 100	66 81 99 100 100 100 100	57 77 98 99 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Rutile S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 Size Distribution of Rutile-	3 5 18 21 23 23 23 37 53 83 100 100	4 6 22 32 40 53 60 74 88 100 100 100	3 4 13 17 21 25 41 48 73 89 100 100	4 7 21 27 32 40 55 70 82 100 100 100	4 7 20 26 34 49 73 81 93 100 100 100	3 6 15 23 38 38 63 70 88 88 100 100	3 6 18 24 28 35 42 50 67 76 83 100	4 8 25 34 41 44 54 80 87 100 100 100	4 7 19 27 35 44 60 80 94 100 100 100	3 6 18 24 32 41 48 65 82 100 100 100	3 5 16 21 31 37 53 61 84 100 100 100	5 9 24 30 36 45 53 67 91 92 100 100	1 2 6 7 7 9 13 15 24 49 100 100	4 6 15 18 24 27 33 55 70 82 100 100	5 9 27 36 48 61 78 92 95 100 100 100	3 4 12 15 22 36 46 73 80 100 100 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=212	6 9 18 23 27 29 39 42 50 61 89 100	6 10 24 29 35 42 48 53 63 88 91 100	5 9 23 28 32 38 45 54 67 83 95 100	5 8 22 27 36 50 57 72 84 97 100 100	5 8 23 32 39 47 54 65 83 93 100 100	6 9 20 25 35 45 53 60 71 95 100 100	5 9 21 30 35 41 47 53 67 81 84 100	6 9 25 34 46 52 58 73 80 91 100 100	5 9 26 33 45 51 58 69 84 96 100 100	5 8 23 30 39 47 55 65 80 96 100 100	5 8 23 30 35 43 51 61 75 87 97 100	3 5 14 17 22 28 38 48 61 76 89 100	5 8 18 21 25 31 38 46 59 76 88 100	5 8 18 23 27 33 40 48 60 73 95 100	5 8 28 37 46 52 66 87 97 100 100 100	6 10 27 33 44 50 64 76 88 94 97 100
Sieve Size in Micron/ Cumulative Passing	Pseudorutile S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53	28 42 83 85 90 94 97 100	30 43 80 87 95 100 100 100	32 47 88 91 93 93 100 100	38 52 87 92 100 100 100 100	47 65 98 100 100 100 100	41 56 91 99 100 100 100 100	33 48 92 97 100 100 100 100	37 52 84 89 100 100 100 100	43 58 96 100 100 100 100 100	38 55 98 100 100 100 100	42 58 91 94 94 100 100 100	39 52 90 93 93 93 100 100	34 49 97 99 100 100 100 100	34 51 97 99 100 100 100	56 71 97 100 100 100 100	40 54 97 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Leucoxene S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 Size Distribution of Hematite-	32 43 88 95 97 99 99 100 100 100 100	25 34 66 74 84 94 94 100 100 100 100	21 30 67 85 98 100 100 100 100 100	21 31 65 76 79 85 89 92 100 100 100	17 25 62 74 85 91 92 93 100 100 100	30 44 82 90 99 99 100 100 100 100 100	16 24 54 59 63 71 82 96 100 100 100	16 25 62 75 91 95 98 100 100 100 100	17 25 61 71 84 91 98 99 100 100 100	16 25 65 75 83 88 93 93 100 100 100	14 22 55 64 77 84 93 100 100 100 100	13 18 43 53 59 67 71 72 92 100 100	6 8 14 16 20 24 29 40 51 68 93 100	29 40 72 78 83 86 89 89 89 89 89 89 100	17 28 69 83 92 98 98 100 100 100 100	19 29 65 81 92 94 94 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106	3 4 15 19 21 34 54 100 100	2 3 9 11 46 71 73 73 100	7 10 19 38 61 66 75 75 100	3 5 13 18 27 39 70 96 100	4 6 21 31 49 65 87 100 100	5 8 23 35 49 73 93 100 100	1 2 6 7 16 44 58 76 100	4 5 16 20 39 45 66 82 100	6 10 24 34 56 67 100 100 100	4 7 20 27 48 60 74 100 100	4 6 26 40 55 74 93 93 100	6 10 24 29 36 71 100 100 100	4 6 12 14 34 85 85 100 100	8 12 16 16 16 24 63 100 100	8 12 38 51 65 92 100 100 100	5 7 18 22 32 36 48 91 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212	0 0 2 3 3 4 6 12 23 23 23 23 100	0 1 4 8 11 19 28 54 89 100 100	0 0 2 3 6 10 10 15 30 71 78 100	0 0 2 2 3 7 10 14 33 75 100 100	1 1 4 6 7 12 18 39 74 94 100 100	0 1 2 4 6 8 11 24 63 81 100 100	0 0 1 2 3 6 7 13 41 82 100 100	0 1 3 5 7 12 21 42 61 100 100 100	1 1 5 7 8 14 20 39 63 81 100 100	0 1 2 3 7 12 23 29 64 100 100 100	1 1 4 5 7 15 24 33 71 100 100 100	0 1 3 4 5 11 20 45 70 86 100 100	0 1 1 2 4 7 14 28 42 42 42 100 100	0 1 2 3 4 6 8 18 38 53 100 100	0 1 3 5 6 12 21 41 79 100 100 100	0 1 3 4 8 12 24 37 77 93 100 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 S<=300	0 0 0 0 0 0 0 0 1 9 20 61 100 100	0 0 1 1 2 5 19 42 67 100 100 100	0 0 0 0 1 1 1 7 26 63 92 100 100	0 0 1 1 3 5 18 60 85 100 100 100	0 0 1 1 3 10 35 73 97 100 100 100	0 0 0 1 2 6 14 44 89 100 100 100	0 0 0 1 2 4 12 48 78 94 100 100	0 0 0 1 1 5 19 50 84 84 84 100 100	0 0 0 1 2 7 19 43 100 100 100 100	0 0 1 2 2 4 20 70 86 100 100 100	0 0 0 1 3 5 15 49 89 94 100 100	0 0 0 0 1 2 10 28 68 100 100 100	0 0 0 0 0 1 2 5 28 72 100 100	0 0 0 0 0 0 0 0 5 13 35 52 92 100	0 0 1 1 6 23 42 67 100 100 100 100	0 0 0 0 2 5 7 30 80 100 100 100

Sampla		Mass (g)	
Sample	Sinks	Floats	% Sinks
R-11355	19.26	33.31	37%
R-11356	20.2	38.47	34%
R-11357	22.42	31.32	42%
R-11358	25.45	35.73	42%
R-11359	21.2	31.96	40%
R-11360	18.71	25.77	42%
R-11361	13.98	28.85	33%
R-11362	10.42	34.58	23%
R-11363	12.32	32.55	27%
R-11364	11.14	28.28	28%
R-11365	7.15	33.30	18%
R-11366	4.56	40.14	10%
R-11367	18.27	36.06	34%
R-11368	9.04	28.20	24%
R-11372	3.62	37.19	9%
R-11375	5.14	35.61	13%

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 16-Oct-17

 Invoice No.:
 A17-11430 (i)

 Invoice Date:
 07-Dec-17

 Your Reference:
 Image: Comparison of the second second

VA DMME 900 Natural Resources Drives Suite 500 Charlottesville VIRGINIA 22903 United States

ATTN: William Lassetter

CERTIFICATE OF ANALYSIS

48 Heavy Mineral Concentrates samples were submitted for analysis.

The following analytical package(s) were requested:

Code 4LITHORES (11+) Major Elements Fusion ICP(WRA)/Trace Elements Fusion ICP/MS(WRA4B2)

Code MLA Schedule 1 MLA Schedule 1

REPORT A17-11430 (i)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

We recommend using option 4B1 for accurate levels of the base metals Cu, Pb, Zn, Ni and Ag. Option 4B-INAA for As, Sb, high W >100ppm, Cr >1000ppm and Sn >50ppm by Code 5D. Values for these elements provided by Fusion ICP/MS, are order of magnitude only and are provided for general information. Mineralized samples should have the Quant option selected or request assays for values which exceed the range of option 4B1. Total includes all elements in % oxide to the left of total. Zr is now being reported from FUS-ICP instead of FUS-MS.

Note: Cannot report Ag due to interference from Zr.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 16-Oct-17

 Invoice No.:
 A17-11430 (i)

 Invoice Date:
 07-Dec-17

 Your Reference:
 Value Reference:

VA DMME 900 Natural Resources Drives Suite 500 Charlottesville VIRGINIA 22903 United States

ATTN: William Lassetter

CERTIFICATE OF ANALYSIS

48 Heavy Mineral Concentrates samples were submitted for analysis.

The following analytical package(s) were requested: Code Metallurgy Metallurgy

REPORT A17-11430 (i)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

We recommend using option 4B1 for accurate levels of the base metals Cu, Pb, Zn, Ni and Ag. Option 4B-INAA for As, Sb, high W >100ppm, Cr >1000ppm and Sn >50ppm by Code 5D. Values for these elements provided by Fusion ICP/MS, are order of magnitude only and are provided for general information. Mineralized samples should have the Quant option selected or request assays for values which exceed the range of option 4B1. Total includes all elements in % oxide to the left of total. Zr is now being reported from FUS-ICP instead of FUS-MS.

Note: Cannot report Ag due to interference from Zr.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

Analyte Symbol	SiO2	AI2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total	Sc	Be	V	Cr	Со	Ni	Cu	Zn	Ga	Ge	As
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01		0.01	1	1	5	20	1	20	10	30	1	0.5	5
Method Code	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- MS							
R-11355 Sinks	26.47	12.03	28.44	0.855	3.74	4.18	0.47	0.30	21.73	0.15	-0.68	97.68	57	2	508	650	36	100	20	380	31	3.2	10
R-11356 Sinks	30.10	11.89	24.90	0.717	4.43	6.18	0.61	0.38	18.67	0.41	-0.24	98.04	58	2	471	550	37	120	30	340	34	3.6	14
R-11357 Sinks	31.09	9.90	24.49	0.707	4.20	5.72	0.66	0.45	20.00	0.22	-0.33	97.12	55	1	470	560	33	120	10	280	31	3.0	8
R-11358 Sinks	33.84	10.50	23.67	0.624	5.82	8.50	0.67	0.49	12.79	0.73	-0.37	97.25	56	2	401	440	36	70	< 10	260	29	3.8	6
R-11359 Sinks	34.29	10.62	23.50	0.622	6.04	9.51	0.73	0.54	12.20	0.93	-0.21	98.77	58	2	405	420	35	80	< 10	250	29	3.6	7
R-11360 Sinks	32.96	10.77	25.86	0.704	5.88	8.78	0.66	0.46	12.50	0.72	-0.43	98.87	61	2	424	440	36	90	10	260	29	3.6	11
R-11361 Sinks	33.17	10.88	24.12	0.671	5.55	7.88	0.86	0.58	14.64	0.55	-0.46	98.44	56	2	422	460	35	100	10	270	30	3.7	8
R-11362 Sinks	34.83	10.03	22.80	0.600	6.06	8.70	0.75	0.55	13.05	0.64	-0.39	97.61	55	2	406	400	36	90	10	250	28	3.6	6
R-11363 Sinks	35.30	10.78	22.34	0.607	5.90	8.58	0.94	0.65	13.24	0.63	-0.26	98.71	55	2	404	410	34	100	10	260	28	3.5	7
R-11364 Sinks	34.14	10.19	23.52	0.629	6.05	8.72	0.75	0.54	13.51	0.69	-0.43	98.29	56	2	413	430	37	80	30	270	29	3.5	13
R-11365 Sinks	36.04	9.74	22.67	0.573	6.38	9.13	0.78	0.61	12.90	0.62	-0.34	99.11	58	2	422	400	38	110	10	260	29	3.4	7
R-11366 Sinks	32.98	12.13	22.40	0.628	5.61	7.42	0.88	0.58	16.14	0.19	-0.02	98.93	59	2	444	470	36	100	20	290	34	3.4	8
R-11367 Sinks	22.61	7.38	32.05	0.953	2.66	3.23	0.37	0.26	26.51	0.16	-1.19	95.00	51	< 1	579	800	33	150	20	340	26	2.6	10
R-11368 Sinks	26.72	11.05	27.13	0.825	4.46	5.54	0.50	0.35	21.81	0.17	-0.56	97.98	61	2	517	580	37	130	< 10	330	35	3.1	10
R-11372 Sinks	39.75	10.44	19.10	0.433	7.12	11.70	0.96	0.71	8.156	1.13	0.36	99.86	61	3	359	310	36	90	30	240	27	3.7	6
R-11375 Sinks	33.39	10.20	22.97	0.635	4.73	8.29	1.14	0.72	16.36	0.70	-0.19	98.93	53	2	440	390	31	100	20	310	27	3.2	8

Results

Activation Laboratories Ltd.

Analyte Symbol	Rb	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	2	0.5	1	0.2	2		0.1	1	0.2	0.1	2	0.05	0.05	0.01	0.05	0.01	0.005	0.01	0.01	0.01	0.01	0.01
Method Code	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS																
R-11355 Sinks	5	92	183	> 10000	248	8		0.3	16	1.7	0.8	74	140	307	36.8	138	27.5	3.58	22.7	4.05	26.9	6.30	21.7
R-11356 Sinks	5	168	221	> 10000	208	8		0.3	48	9.1	0.1	128	202	449	55.7	213	42.2	6.25	34.2	5.68	35.9	7.64	24.5
R-11357 Sinks	6	166	211	> 10000	240	8		0.3	14	1.1	0.2	100	233	514	62.5	237	45.6	5.91	35.5	5.59	33.5	7.31	24.0
R-11358 Sinks	6	172	267	> 10000	155	5		0.3	14	1.4	0.1	77	274	613	77.2	299	59.5	8.79	47.5	7.62	44.9	9.27	28.8
R-11359 Sinks	7	202	277	8741	130	4		0.3	10	0.7	0.2	73	259	590	74.3	295	60.7	9.33	48.9	7.77	46.1	9.63	29.6
R-11360 Sinks	5	175	242	8994	151	5		0.3	12	1.4	< 0.1	71	211	473	59.6	234	47.3	7.13	41.0	6.59	40.6	8.49	26.5
R-11361 Sinks	8	162	245	> 10000	172	6		0.3	14	1.1	0.2	75	253	570	71.8	281	55.6	8.48	43.5	6.88	39.9	8.45	26.8
R-11362 Sinks	7	173	229	8452	151	5		0.3	12	1.4	0.2	83	223	514	65.5	259	53.4	8.55	42.4	6.81	39.9	8.08	25.3
R-11363 Sinks	9	174	241	9194	155	5		0.3	12	1.3	0.2	80	245	562	71.5	280	57.4	8.80	44.9	6.90	41.2	8.41	26.5
R-11364 Sinks	7	176	246	9287	164	6		0.3	48	12.2	0.1	115	242	560	70.9	277	56.3	8.98	45.4	7.18	41.8	8.52	26.7
R-11365 Sinks	8	170	210	5931	152	5		0.3	13	1.6	0.2	88	214	498	63.8	254	51.9	8.28	41.0	6.32	37.2	7.48	22.9
R-11366 Sinks	7	188	175	9191	170	7		0.3	21	1.2	0.2	91	158	353	44.4	173	34.8	5.20	29.1	4.74	28.4	6.04	19.6
R-11367 Sinks	4	88	212	> 10000	334	10		0.4	23	3.0	< 0.1	85	259	552	66.7	246	44.1	4.24	33.6	4.89	30.3	6.92	24.5
R-11368 Sinks	4	132	197	> 10000	254	9		0.3	17	1.3	< 0.1	82	200	442	53.1	203	38.7	4.99	30.7	4.83	31.2	6.89	22.4
R-11372 Sinks	10	219	195	1424	82.3	3		0.3	8	1.1	0.2	88	152	358	47.4	195	43.5	7.42	38.0	6.39	36.4	7.28	21.1
R-11375 Sinks	10	199	216	8507	195	6		0.2	12	1.4	0.3	80	225	500	62.2	239	48.7	7.26	40.7	6.47	37.6	7.69	23.1

Report: A17-11430

Results

Activation Laboratories Ltd.

Analyte Symbol	Tm	Yb	Lu	Hf	Та	W	TI	Pb	Bi	Th	U
Unit Symbol	ppm										
Lower Limit	0.005	0.01	0.002	0.1	0.01	0.5	0.05	5	0.1	0.05	0.01
Method Code	FUS- MS										
R-11355 Sinks	3.71	28.0	4.79	419	18.7	331	< 0.05	86	0.3	46.0	15.4
R-11356 Sinks	3.95	29.7	5.07	349	14.9	209	< 0.05	280	0.2	55.3	17.7
R-11357 Sinks	3.90	29.6	5.16	476	17.3	176	< 0.05	60	0.3	69.8	21.1
R-11358 Sinks	4.37	31.8	5.40	288	11.2	176	< 0.05	53	0.2	64.4	20.3
R-11359 Sinks	4.51	32.6	5.30	227	9.30	122	< 0.05	30	0.2	55.6	19.5
R-11360 Sinks	4.13	29.5	4.87	252	11.1	179	< 0.05	41	0.2	52.7	16.2
R-11361 Sinks	4.30	30.5	5.18	318	12.2	163	< 0.05	52	0.2	59.8	19.5
R-11362 Sinks	3.93	28.0	4.49	233	11.0	134	< 0.05	41	0.2	45.9	17.0
R-11363 Sinks	4.16	29.2	4.72	255	10.9	183	< 0.05	42	0.2	53.5	18.5
R-11364 Sinks	4.06	29.1	4.79	245	11.9	239	< 0.05	369	0.2	49.4	18.4
R-11365 Sinks	3.53	24.4	3.99	166	11.1	149	< 0.05	42	0.2	41.8	14.0
R-11366 Sinks	3.04	22.5	3.82	252	11.6	189	< 0.05	57	0.3	42.4	13.2
R-11367 Sinks	4.22	33.8	6.26	826	22.6	220	< 0.05	120	0.3	90.4	25.9
R-11368 Sinks	3.69	27.7	4.94	411	18.1	167	< 0.05	61	0.3	63.6	19.3
R-11372 Sinks	3.06	19.8	3.00	31.8	6.81	138	< 0.05	26	0.2	23.6	7.32
R-11375 Sinks	3.59	25.1	4.13	226	14.3	251	< 0.05	40	0.3	61.3	16.9

	0:00	41000	E 000/	14.0		0.0	11.00	1/00	Tion	Deer		TT 1 1					0	N I'		-	<u> </u>		
Analyte Symbol	5102	AI2O3	Fe2O3(T)	MinO	MgO	CaO	Na2O	K20	1102	P205	LOI	Iotal	Sc	ве	ľ	Cr	Co	NI	Cu	Zn	Ga	Ge	AS
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm								
Lower Limit	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01		0.01	1	1	5	20	1	20	10	30	1	0.5	5
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	MS	MS	MS	MS	MS	MS	MS	MS
NIST 694 Meas	11.25	1.90	0.75	0.010	0.34	42.52	0.88	0.55	0.120	32.25					1654								
NIST 694 Cert	11.2	1.80	0.790	0.0116	0.330	43.6	0.860	0.510	0.110	30.2					1740								
DNC-1 Meas	48.15	18.83	10.11	0.150	10.16	11.64	1.93	0.22	0.490	0.07			32		158	260	54	240	90	70	14		
DNC-1 Cert	47.15	18.34	9.97	0.150	10.13	11.49	1,890	0.234	0.480	0.070			31		148	270	57	247	100	70	15		
LKSD-3 Meas													-				29	40	30	150			28
LKSD-3 Cert																	30.0	47.0	35.0	152			27.0
TDB-1 Meas									<u> </u>			+				260		100	350	160			2.10
TDB 1 Cort																251		100	200	155			
W 22 Moas	51.10	15.07	10.27	0.160	6 50	10.09	2.16	0.50	0.000	0.14			25	z 1	262	100	11	52	110	133	10	1.6	
W 2a Cart	51.10	15.07	10.27	0.100	0.39	10.90	2.10	0.09	0.990	0.14				1.00	203	00.0	44		110	00	17.0	1.0	
W-za Cert	52.4	15.4	10.7	0.163	0.37	10.9	2.14	0.626	1.06	0.130			36.0	1.30	202	92.0	43.0		110	80.0	17.0	1.00	
SY-4 Meas	51.11	20.68	6.27	0.110	0.51	8.22	6.97	1.68	0.280	0.12		-	1	3	8								
SY-4 Cert	49.9	20.69	6.21	0.108	0.54	8.05	7.10	1.66	0.287	0.131			1.1	2.6	8.0								
CIA-AC-1 Meas																			60				
CTA-AC-1 Cert																			54.0				
BIR-1a Meas	47.89	14.94	11.43	0.170	9.39	13.63	1.81	0.02	0.970	0.01			44	< 1	336	370	50	160	120	70	15		
BIR-1a Cert	47.96	15.50	11.30	0.175	9.700	13.30	1.82	0.030	0.96	0.021			44	0.58	310	370	52	170	125	70	16		
NCS DC86312																							
Meas																							
NCS DC86312 Cert																							
ZW-C Meas																							
ZW-C Cert																							
NCS DC86316	70.81	14.09	0.38	0.022	0.08	0.65	4.18	3.94	0.698	0.04													
Meas																							
NCS DC86316 Cert	70.73	14.57	0.38	0.021	0.079	0.63	4.20	3.90	0.64	0.040													
NCS DC70009																30	4		890	90	16	10.5	66
(GBW07241)																							
Meas																							
NCS DC70009																30	3.7		960	100	16.5	11.2	69.9
(GBW0/241) Cert																							
UREAS 100a																	18		160				
OPEAS 1000												+					10.1		160				
(Fusion) Cert																	10.1		109				
OBEAS 101a																	46		410				
(Fusion) Meas																	10						
OREAS 101a																	48.8		430				
(Fusion) Cert																							
OREAS 101b																	45		440				
(Fusion) Meas																							
OREAS 101b																	47		420				
(Fusion) Cert		L							L														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		I	1	1	I		

Activation Laboratories Ltd.

Analyte Symbol	SiO2	AI2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total	Sc	Be	V	Cr	Co	Ni	Cu	Zn	Ga	Ge	As
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01		0.01	1	1	5	20	1	20	10	30	1	0.5	5
Method Code	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- MS							
JR-1 Meas																	1	< 20	< 10	30	16	2.0	16
JR-1 Cert																	0.83	1.67	2.68	30.6	16.1	1.88	16.3
NCS DC86318 Meas																							
NCS DC86318 Cert																							
AMIS 0129 Meas	9.60	2.64	62.16	0.349	2.07	0.85			22.82						2747								
AMIS 0129 Cert	9.57	2.75	62.31	0.36	2.07	0.80			22.94						2689								
R-11372 Sinks Orig	39.83	10.33	19.15	0.430	6.96	11.70	0.96	0.71	7.940	1.14	0.36	99.50	61	3	357	320	36	90	20	250	27	3.9	6
R-11372 Sinks Dup	39.66	10.55	19.06	0.436	7.28	11.70	0.96	0.72	8.372	1.12	0.36	100.2	62	3	360	310	36	90	30	240	27	3.5	5
Method Blank	< 0.01	< 0.01	< 0.01	0.002	< 0.01	< 0.01	< 0.01	< 0.01	0.025	< 0.01			< 1	< 1	< 5	< 20	< 1	< 20	< 10	< 30	< 1	< 0.5	< 5

QC

Activation Laboratories Ltd.

					_			_															
Analyte Symbol	Rb	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	2	0.5	1	0.2	2	0.5	0.1	1	0.2	0.1	2	0.05	0.05	0.01	0.05	0.01	0.005	0.01	0.01	0.01	0.01	0.01
Method Code	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS																
NIST 694 Meas				1					1	1	Ì	ĺ	İ	İ									
NIST 694 Cert																							
DNC-1 Meas		150	17.1	41								108	3.60			4.90		0.590					
DNC-1 Cert		144.0	18.0	38								118	3.6			5.20		0.59					
LKSD-3 Meas	75		32.6			< 2			3		2.5		48.0	89.9		44.7	7.80	1.40			4.90		
LKSD-3 Cert	78.0		30.0			2.00			3.00		2.30		52.0	90.0		44.0	8.00	1.50			4.90		
TDB-1 Meas	22		36.3										18.3	42.5		25.2		2.10					
TDB-1 Cert	23		36										17	41		23		2.1					
W-2a Meas	21	188	22.5	82	7.5	< 2					0.9	168	10.9	24.6		13.6	3.60					0.81	2.30
W-2a Cert	21.0	190	24.0	94.0	7.90	0.600					0.990	182	10.0	23.0		13.0	3.30					0.760	2.50
SY-4 Meas		1261		523								356											
SY-4 Cert		1191		517								340											
CTA-AC-1 Meas			280										> 2000	> 3000		1100	159	44.5	123	13.4			
CTA-AC-1 Cert			272										2176	3326		1087	162	46.7	124	13.9			
BIR-1a Meas		107	15.7	12						0.6		8	0.66	1.70		2.50	1.00	0.520	2.00		3.60		
BIR-1a Cert		110	16	18						0.58		6	0.63	1.9		2.5	1.1	0.55	2.0		4		
NCS DC86312 Meas			943										> 2000	176		1560			234	33.5	188	34.4	98.2
NCS DC86312 Cert			976										2360	190		1600			225.0	34.6	183	36	96.2
ZW-C Meas					190																		
ZW-C Cert					198																		
NCS DC86316				> 10000																			
Meas NCS DC86316				34670																			
Cert	500		107	000					1000									0.450	15.0				10.0
(GBW07241) Meas	532		127				1.2	1.0	> 1000	3.3	38.1		23.8	59.0	7.90	32.3	12.4	0.150	15.0	3.30	21.2	4.20	13.2
NCS DC70009 (GBW07241) Cert	500		128				1.8	1.3	1700	3.1	41		23.7	60.3	7.9	32.9	12.5	0.16	14.8	3.3	20.7	4.5	13.4
OREAS 100a (Fusion) Meas			137			22							267	469	46.5	152	23.5	3.61	21.3	3.83	23.4	4.72	14.7
OREAS 100a (Fusion) Cert			142			24.1							260	463	47.1	152	23.6	3.71	23.6	3.80	23.2	4.81	14.9
OREAS 101a (Fusion) Meas			185			21							795	1360	127	382	47.1	7.62	39.3	5.95	31.0	6.16	18.8
OREAS 101a (Fusion) Cert			183			21.9							816	1396	134	403	48.8	8.06	43.4	5.92	33.3	6.46	19.5
OREAS 101b (Fusion) Meas			189			21									136	403	52.0	8.54			33.7	6.62	20.0
OREAS 101b (Fusion) Cert			178			21									127	378	48	7.77			32.1	6.34	18.7
JR-1 Meas	248		47.1		14.7	4		< 0.1	3	1.2	19.4		19.6	46.2	5.70	22.6	5.67	0.270	5.50	0.93		1.05	3.54

QC

Activation Laboratories Ltd.

Analyte Symbol	Rb	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	2	0.5	1	0.2	2	0.5	0.1	1	0.2	0.1	2	0.05	0.05	0.01	0.05	0.01	0.005	0.01	0.01	0.01	0.01	0.01
Method Code	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
JR-1 Cert	257		45.1		15.2	3.25		0.028	2.86	1.19	20.8		19.7	47.2	5.58	23.3	6.03	0.30	5.06	1.01		1.11	3.61
NCS DC86318 Meas	400		> 10000								11.1		> 2000	437	760	> 2000	> 1000	19.6	> 1000	491	> 1000	602	> 1000
NCS DC86318 Cert	369.42		17008								10.28		1960	430	740	3430	1720	18.91	2095	470	3220	560	1750
AMIS 0129 Meas																							
AMIS 0129 Cert																							
R-11372 Sinks Orig	10	217	194	1409	84.0	2		0.3	8	1.1	0.2	87	151	357	47.3	194	43.6	7.30	37.4	6.42	36.7	7.24	21.4
R-11372 Sinks Dup	10	222	196	1439	80.6	3		0.3	8	1.1	0.2	88	152	358	47.5	196	43.5	7.55	38.6	6.36	36.2	7.32	20.9
Method Blank	< 1	< 2	< 0.5	1	< 0.2	< 2	< 0.5	< 0.1	< 1	< 0.2	< 0.1	< 2	< 0.05	< 0.05	< 0.01	< 0.05	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	-	24			-			ы	D'														
-----------------------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------												
Analyte Symbol	Im	Yb	Lu	Ht	la	vv	11	Pb	Ві	Ih	U												
Unit Symbol	ppm																						
Lower Limit	0.005	0.01	0.002	0.1	0.01	0.5	0.05	5	0.1	0.05	0.01												
Method Code	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS												
NIST 694 Meas																							
NIST 694 Cert																							
DNC-1 Meas		1.90																					
DNC-1 Cert		2.0																					
LKSD-3 Meas		2.70	0.400	4.5	0.73					11.2	4.60												
LKSD-3 Cert		2.70	0.400	4.80	0.700					11.4	4.60												
TDB-1 Meas		3.40								2.80													
TDB-1 Cert		3.4								2.7													
W-2a Meas		2.10	0.330	2.4	0.52	1.7		9		2.40	0.55												
W-2a Cert		2.10	0.330	2.60	0.500	0.300		9.30		2.40	0.530												
SY-4 Meas																							
SY-4 Cert																							
CTA-AC-1 Meas		10.5	1.09		2.71					22.2	4.30												
CTA-AC-1 Cert		11.4	1.08		2.65					21.8	4.4												
BIR-1a Meas		1.70	0.300	0.6				< 5															
BIR-1a Cert		1.7	0.3	0.60				3															
NCS DC86312 Meas	13.4	84.7	12.1							23.6													
NCS DC86312 Cert	15.1	87.79	11.96							23.6													
ZW-C Meas					82.2	327	33.5																
ZW-C Cert					82	320	34																
NCS DC86316 Meas																							
NCS DC86316 Cert																							
NCS DC70009 (GBW07241) Meas	2.20	15.4	2.21			2140	1.70			29.5													
NCS DC70009 (GBW07241) Cert	2.2	14.9	2.4			2200	1.8			28.3													
OREAS 100a (Fusion) Meas	2.29	14.6	2.19							54.6	137												
OREAS 100a (Fusion) Cert	2.31	14.9	2.26							51.6	135												
OREAS 101a (Fusion) Meas	2.70	17.4	2.55							36.7	428												
OREAS 101a (Fusion) Cert	2.90	17.5	2.66							36.6	422												
OREAS 101b (Fusion) Meas	2.88	18.9	2.70							39.4	427												
OREAS 101b (Fusion) Cert	2.66	17.6	2.58							37.1	396												
JR-1 Meas	0.660	4.85	0.710	4.3	1.72	1.5		20	0.5	28.7	8.70												

QC

Activation Laboratories Ltd.

Analyte Symbol	Tm	Yb	Lu	Hf	Та	W	TI	Pb	Bi	Th	U
Unit Symbol	ppm										
Lower Limit	0.005	0.01	0.002	0.1	0.01	0.5	0.05	5	0.1	0.05	0.01
Method Code	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
JR-1 Cert	0.67	4.55	0.71	4.51	1.86	1.59		19.3	0.56	26.7	8.88
NCS DC86318 Meas	271	> 1000	251							69.5	
NCS DC86318 Cert	270	1840	260.0							67.0	
AMIS 0129 Meas											
AMIS 0129 Cert											
R-11372 Sinks Orig	3.10	20.0	3.04	32.8	7.26	139	< 0.05	27	0.2	23.7	7.35
R-11372 Sinks Dup	3.03	19.7	2.96	30.8	6.36	137	< 0.05	25	0.2	23.6	7.30
Method Blank	< 0.005	< 0.01	< 0.002	< 0.1	< 0.01	< 0.5	< 0.05	< 5	< 0.1	< 0.05	< 0.01

Actlabs Code: A18-05577 Date: June, 2018

Report and Analysis: Mahdi Ghobadi, PhD; MahdiGhobadi@Actlabs.com Rino Bindi, BSc

Objective:

To characterize the mineralogy of the sink fraction of the samples.

Samples:

Twenty four samples were submitted for mineralogy analysis, from which twenty one samples were required HLS procedure prior to the mineralogy test. The weights of the sinks are presented in the corresponding sheet. A representative portion of the samples was split using Rotary Micro Riffle Splitter, to prepare 30 mm transverse polished section.

Mineralogy Methods:

The mineralogical analysis was done using FEI FEG QEMSCAN.

The QEMSCAN instrument at Actlabs is based on the scanning electron microscope FEI QUANTA 650F, that is equipped with a field-emission gun (FEG) as an electron source. FEG enables high spatial resolution and sensitivity by decreasing the spot size of the focused electron beam to values as small as 0.3 µm and providing significant target currents, in the range of tens of nA. For imaging and X-ray based micro-chemical analysis the instrument is equipped with a four-quadrant, solid state back-scattered electron (BSE) detector and two Bruker XFlash 5030 detectors. For enhanced mineral identification capabilities, energy dispersive spectroscopy (EDS) spectra with a larger than standard number of photon counts per pixel were used in this project (3000 counts per pixel vs. the standard 1000 counts per pixel). The raw X-Ray data were evaluated using a customized SIP file for this project. The modal mineralogy data as well as particle data were generated using iDiscover software.

The data for this project were produced using two modes of measurements:

BMA or line scan which produced modal mineralogy data.
 PMA or particle mapping which was used to determine size distribution.

Results:

For this report modal mineralogy data and size distribution for Ti minerals are provided. Also representative mapped particle are provided, demonstrating major Ti mineral, as well as representative BSE images.

Note:

Particle Definition: A particle is a piece of material, and can contain one or more minerals.

Grain Definition: A grain is a piece of mineral matter contained within a particle.

This report is subject to the following terms and conditions:

1. This report relates only to the specimen provided and there is no representation or warranty that it applies to similar substances or materials or the bulk which this specimen is a part of 2. The contents of this report is for the information of the customer identified above only and it shall not be represented or published in whole or in part or disclosed to any other party without prior consent of ACTLABS 3.The name ACTLABS shall not be used in connection with the specimens reported or any substance or materials similar to that specimen without prior written consent of ACTLABS 3b. Any tests outsourced to an accredited subcontractor are identified as follows: (*) 4. Neither ACTLABS nor its employees shall be responsible for any claims, loss or damages arising in consequence of reliance on this report or any error or omissions in its preparation or the test conducted 5.Specimens are retained for 90 days. Samples which are critical or the subject of litigation should be retrieved as soon as possible. Actlabs will not be responsible for loss or damage however caused. Test reports and test data are retained 10 years from date of final test report and then disposed of, unless instructed otherwise in writing. 6. Micrograph magnification based on a photo size of approximately 3.5"x5" unless otherwise noted. QA Forms Revision 4.2 Effective Date: March 22, 2006.

Actlab ID	Client ID	Actlab ID	Client ID
A18-05577-1	R-11007m	A18-05577-14	R-11462
A18-05577-2	R-11350a	A18-05577-15	R-11466
A18-05577-3	R-11350c	A18-05577-16	R-11470
A18-05577-4	R-11351a	A18-05577-17	R-11474
A18-05577-5	R-11351ab	A18-05577-18	R-11478
A18-05577-6	R-11351am	A18-05577-19	R-11482
A18-05577-7	R-11352a	A18-05577-20	R-11486
A18-05577-8	R-11352b	A18-05577-21	R-11488
A18-05577-9	R-11354a	A18-05577-22	R-11494
A18-05577-10	R-11354b	A18-05577-23	R-11498
A18-05577-11	R-11362m	A18-05577-24	R-11500
A18-05577-12	R-11434		
A18-05577-13	R-11441		
		-	

	Actlabd ID: A18-05577	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	Client ID	R-11007m	R-11350a	R-11350c	R-11351a	R-11351ab	R-11351am	R-11352a	R-11352b	R-11354a	R-11354b	R-11362m	R-11434	R-11441	R-11462	R-11466	R-11470	R-11474	R-11478	R-11482	ļ
	MASS %																				
Ti Minerals	Ilmenite	10.99	56.59	32.06	46.20	44.17	41.02	40.07	3.73	38.15	43.19	76.09	33.69	10.66	18.31	24.19	27.20	16.80	34.62	24.92	
	Ilmenite lower Ti	1.32	1.28	1.27	1.11	1.14	4.48	1.36	0.18	1.44	1.15	4.80	1.48	1.38	2.22	2.08	2.62	2.12	2.26	1.19	
	Pseudobrookite	0.37	0.21	0.05	0.24	0.21	1.39	0.31	0.04	0.35	0.26	0.97	0.22	0.34	0.51	0.52	0.67	0.54	0.34	0.21	
	Rutile	0.37	2.53	5.32	2.78	2.60	0.27	2.92	0.68	2.81	3.36	0.24	2.67	2.14	2.04	2.25	2.01	1.68	2.98	2.72	
	Rutile-Altered(Leucoxen	1.78	5.24	9.75	6.07	6.45	1.78	6.63	1.01	7.28	7.19	2.56	9.56	2.40	2.68	3.10	3.84	2.15	7.35	7.73	
	Pseudorutile	0.65	5.32	2.45	4.43	4.28	1.03	4.18	0.40	3.67	4.23	2.02	2.17	0.37	0.78	0.70	0.87	0.37	1.80	1.43	
	Leucoxene	1.10	0.96	2.28	1.16	1.14	1.40	1.27	0.32	1.91	1.33	0.98	1.42	0.74	1.67	1.22	1.34	1.25	1.98	1.51	
	Ilmenite-Silicate Mixed	0.17	0.07	0.06	0.05	0.03	0.20	0.07	0.01	0.08	0.05	0.08	0.04	0.07	0.13	0.09	0.13	0.10	0.15	0.05	
	Rutile-Qz Texture	0.46	0.05	0.16	0.07	0.05	0.15	0.08	0.02	0.14	0.08	0.07	0.08	0.07	0.17	0.11	0.12	0.15	0.15	0.09	
	Hematite-Ti	1.95	1.02	0.25	1.14	0.96	8.13	1.67	0.21	1.98	1.44	4.68	1.00	2.03	3.63	2.99	3.71	3.43	1.78	1.12	
	Titanite	1.33	0.29	1.70	0.66	0.57	0.47	0.78	0.30	1.10	0.67	0.09	1.78	1.50	1.80	2.40	2.01	2.21	1.02	2.19	
Oxides/Hydroxides	Mag/Hema	4.23	0.53	0.41	0.43	0.36	18.33	1.69	0.45	1.39	0.76	1.31	0.66	4.94	7.75	7.96	7.45	11.28	0.67	0.60	
	Goethite	2.07	0.19	0.16	0.25	0.25	7.69	1.63	0.28	0.65	0.28	0.62	0.39	3.57	4.02	2.84	3.35	4.39	0.31	0.24	
	Boehmite	0.02	0.01	0.03	0.04	0.09	0.01	0.02	0.01	0.02	0.03	n.d.	0.02	n.d.	n.d.	0.01	0.02	0.00	0.05	0.00	
	Brucite	0.04	n.d.	0.00	n.d.	n.d.	0.04	n.d.	n.d.	0.00	n.d.	0.01	n.d.	n.d.	0.02	n.d.	n.d.	0.00	n.d.	n.d.	
	Chromite	0.09	0.10	80.0	0.05	0.14	0.14	0.09	n.d.	0.06	0.08	0.17	0.10	0.04	0.07	0.07	0.10	0.06	0.05	0.00	
	Chromite with AI-Mg	0.01	0.07	0.07	0.02	0.02	0.09	0.06	n.d.	0.02	0.03	0.12	0.03	0.01	0.06	0.07	0.08	0.08	0.06	0.05	
	Spinel	0.18	0.07	0.06	0.09	0.16	0.07	0.15	0.00	0.07	0.06	0.04	0.04	0.04	0.03	0.03	0.06	0.03	0.12	0.23	
REE Minerals	Zircon	0.02	7.08	5.93	4.88	3.73	0.07	5.10	0.62	4.93	6.76	0.04	5.19	2.25	4.41	6.00	5.88	4.20	7.46	5.36	
	Xenotime	n.d.	0.02	0.04	0.01	0.01	0.00	0.02	0.01	0.02	0.01	0.00	0.05	0.01	0.02	0.04	0.02	0.06	0.04	0.04	
	Monazite	0.03	0.21	0.47	0.21	0.21	n.a.	0.32	0.05	0.27	0.29	n.d.	0.48	0.15	0.18	0.26	0.30	0.20	0.61	0.20	
	Apatite	0.11	0.04	0.23	0.01	0.01	0.04	0.08	0.02	0.08	0.04	0.03	0.02	0.41	0.77	0.50	0.29	1.17	0.06	0.12	
Silicates	Kyanite	0.12	1.17	0.80	1.61	2.09	0.02	1.62	0.13	1.36	1.04	0.02	1.20	0.18	0.69	0.53	0.46	0.43	0.64	0.66	
	Quartz	18.52	0.77	1.17	1.16	0.62	1.24	1.22	1.31	1.45	0.74	0.77	0.63	1.73	2.28	1.10	1.38	1.40	1.31	1.28	
	K-Feldspar	2.73	0.05	0.06	0.10	0.04	0.12	0.10	0.18	0.03	0.03	0.04	0.00	0.18	0.12	0.10	0.14	0.12	0.10	0.06	
	Plaglociase	12.37	0.15	0.13	0.12	0.06	0.70	0.18	0.37	0.12	0.06	0.28	0.09	0.54	0.48	0.35	0.44	0.53	0.24	0.18	
	Pyroxene	3.33	0.47	1.23	0.60	0.94	0.00	0.00	0.39	1.20	0.07	0.33	1.97	2.59	3.4Z	2.01	1.70	3.70	0.90	3.43 0.20	
	Gamet	1.01	0.07 0.71	9.27	13.19	10.90	0.70	100	0.00	11.92	12.50	0.11	1.0Z	3.90 10.62	7.10 20.50	7.42	0.00 00 50	7.71	0.09 00.06	0.20	
	Amphibole	24.39	0.71	0.24	0.00	0 12	7.50	0.18	0.27	0.16	0.08	2.02	24.22	19.03	29.09	20.00	23.56	29.55	22.20	0 10	
	Schorl Tourmaling	2.71	0.00	0.24	0.09	0.12	0.33	0.10	0.27	1 21	1.02	0.13	0.09	0.04	2.58	0.34	0.00	2 30	2 48	0.19	
		0.49	0.03	0.04	0.00	0.04	0.27	0.90	0.24	0.02	0.02	0.13	0.00	0.65	2.50	0.21	2.03	2.39	0.15	2.71	
Sulfides	Pyrite/Fram Pyrite	0.14	0.01	2 65	0.01	0.02 n d	0.01	5 17	61.03	0.02	0.01	0.00	0.00	31 70	0.00	0.21	0.15	0.44	0.15	0.01	
Juniues	Pyrite-Altered	0.02	0.01	0.74	0.00	0.00	0.01	1 84	20.27	0.07	0.04	0.03	0.02	1 1 1	0.00	0.10	0.01	0.00	0.04	0.00	
	Pyrite Altered ClayMix	0.01	0.00	0.14	0.00 n d	0.00 n d	0.02	0.21	20.27	0.02	0.00	0.04	0.00 n d	0.64	0.01	0.00	0.02	0.01	0.00	0.01	
Mixed-	Sllicate Ganque	5 15	0.00	0.14	0.08	0 12	0.02	0.21	2.33 0.11	0.01	0.00	0.01	0.16	0.04	0.01	0.02	0.04	0.00	0.03	0.01	
Unclassifiable	Low Counts	0.03	0.04	0.08	0.03	0.08	0.02	0.05	0.13	0.04	0.04	0.01	0.05	0.17	0.02	0.04	0.02	0.03	0.06	0.02	
Spectra	Others	0.87	0.17	0.40	0.23	0.36	0.38	0.33	0.23	0.39	0.23	0.13	0.26	0.62	0.53	0.38	0.49	0.43	0.35	0.27	
	Sum	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	

R-11486R-11488R-11494R-11498R-1150039.9335.1150.3033.1220.102.062.101.781.181.750.150.060.060.180.103.783.702.252.571.719.438.787.149.973.892.312.313.473.040.861.812.361.081.181.690.120.170.040.040.150.110.140.030.060.140.610.190.170.720.511.870.890.351.090.540.201.670.010.400.770.160.880.040.420.660.01n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	20	21	22	23	24
39.93 35.11 50.30 33.12 20.10 2.06 2.10 1.78 1.18 1.75 0.15 0.06 0.06 0.18 0.10 3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$	R-11486	R-11488	R-11494	R-11498	R-11500
39.93 35.11 50.30 33.12 20.10 2.06 2.10 1.78 1.18 1.75 0.15 0.06 0.06 0.18 0.10 3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ $n.d.$ $n.d.$ $n.d.$ $n.d.$ $n.d.$ $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25					
39.93 35.11 50.30 33.12 20.10 2.06 2.10 1.78 1.18 1.75 0.15 0.06 0.06 0.18 0.10 3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.13 0.02 0.06 0.06 0.01 0.13 0.02 0.13 0.07 8.07 5.79 6.04 5.18 </td <td>20.02</td> <td>05 44</td> <td>50.00</td> <td>00.40</td> <td>00.40</td>	20.02	05 44	50.00	00.40	00.40
2.06 2.10 1.78 1.18 1.75 0.15 0.06 0.06 0.18 0.10 3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	39.93	35.11	50.30	33.12	20.10
0.15 0.06 0.06 0.18 0.10 3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13	2.06	2.10	1.78	1.18	1.75
3.78 3.70 2.25 2.57 1.71 9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	0.15	0.06	0.06	0.18	0.10
9.43 8.78 7.14 9.97 3.89 2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	3.78	3.70	2.25	2.57	1.71
2.31 2.31 3.47 3.04 0.86 1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	9.43	8.78	7.14	9.97	3.89
1.81 2.36 1.08 1.18 1.69 0.12 0.17 0.04 0.04 0.15 0.11 0.14 0.03 0.06 0.14 0.61 0.19 0.17 0.72 0.51 1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	2.31	2.31	3.47	3.04	0.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.81	2.36	1.08	1.18	1.69
0.110.140.030.060.140.610.190.170.720.511.870.890.351.090.540.201.670.010.400.770.160.880.040.420.660.01n.d.0.110.09n.d.n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	0.12	0.17	0.04	0.04	0.15
0.610.190.170.720.511.870.890.351.090.540.201.670.010.400.770.160.880.040.420.660.01n.d.0.110.09n.d.n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.250.020.040.040.040.40	0.11	0.14	0.03	0.06	0.14
1.87 0.89 0.35 1.09 0.54 0.20 1.67 0.01 0.40 0.77 0.16 0.88 0.04 0.42 0.66 0.01 $n.d.$ 0.11 0.09 $n.d.$ 0.07 0.03 0.10 0.08 0.00 0.13 0.02 0.06 0.06 0.01 0.14 0.09 0.20 0.13 0.07 8.07 5.79 6.04 5.18 3.02 $n.d.$ $n.d.$ 0.02 0.01 $n.d.$ 0.57 1.32 0.18 0.12 0.25	0.61	0.19	0.17	0.72	0.51
0.201.670.010.400.770.160.880.040.420.660.01n.d.0.110.09n.d.n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	1.87	0.89	0.35	1.09	0.54
0.160.880.040.420.660.01n.d.0.110.09n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	0.20	1.67	0.01	0.40	0.77
0.01n.d.0.110.09n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	0.16	0.88	0.04	0.42	0.66
n.d.n.d.n.d.n.d.n.d.0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	0.01	n.d.	0.11	0.09	n.d.
0.070.030.100.080.000.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	n.d.	n.d.	n.d.	n.d.	n.d.
0.130.020.060.060.010.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.250.020.040.020.040.02	0.07	0.03	0.10	0.08	0.00
0.140.090.200.130.078.075.796.045.183.02n.d.n.d.0.020.01n.d.0.571.320.180.120.25	0.13	0.02	0.06	0.06	0.01
8.07 5.79 6.04 5.18 3.02 n.d. n.d. 0.02 0.01 n.d. 0.57 1.32 0.18 0.12 0.25	0.14	0.09	0.20	0.13	0.07
n.d. n.d. 0.02 0.01 n.d. 0.57 1.32 0.18 0.12 0.25	8.07	5.79	6.04	5.18	3.02
0.57 1.32 0.18 0.12 0.25 0.00 0.01	n.d.	n.d.	0.02	0.01	n.d.
	0.57	1.32	0.18	0.12	0.25
	0.02	0.01	0.01	0.02	0.10
0.78 0.27 1.65 1.22 0.67	0.78	0.27	1 65	1 22	0.67
0.60 3.88 0.94 0.90 4.85	0.60	3.88	0.94	0.90	4 85
0.05 0.61 0.07 0.05 0.49	0.00	0.61	0.07	0.05	0.49
0.16 1.00 0.11 0.11 1.17	0.00	1 00	0.07	0.00	1 17
0.10 1.00 0.11 0.11 $1.170.49$ 0.35 0.17 1.53 0.66	0.10	0.35	0.17	1 53	0.66
1.13 1.03 0.00 1.71 2.10 5.11 8.01 3.00	0. 4 3 171	2 10	5.44	8.01	3 00
1606 13.80 15.47 24.50 16.50	16.06	13.80	15 17	24 50	16 50
0.37 2.00 0.20 0.12 2.02	0.30	2.00	0.20	0 1 2	2 02
0.37 2.00 0.20 0.12 2.02	2.06	2.00	1.20	0.12	2.02
2.00 1.00 1.02 2.44 1.33	2.00	1.00	1.02	2.44	1.55
0.03 0.50 0.00 0.02 0.03	0.03	0.30	0.00 n d	0.02	0.03
1.25 5.84 11.0. 0.00 26.07		5.64	n.a.	0.00	26.07
0.07 0.04 0.00 0.00 2.75	0.07	0.04	0.00	0.00	2.75
	0.05	0.27	0.00	0.00	0.65
0.35 0.96 0.36 0.19 0.83	0.35	0.96	0.36	0.19	0.83
0.07 0.19 0.00 0.03 $0.220.43$ 0.66 0.25 0.20 0.74	0.07	0.19	0.00 0.25	0.03 0.20	0.22
100 100 100 100 100 100	100	100	100	100	100

Actlabd ID: 1

	Actlabd ID: A18-05577 Client ID	1 R-11007m	2 R-11350a	3 R-11350c	4 R-11351a	5 R-11351ab	6 R-11351am	7 R-11352a	8 R-11352b	9 R-11354a	10 R-11354b	11 R-11362m	12 R-11434	13 R-11441	14 R-11462	15 R-11466	16 R-11470	17 R-11474	18 R-11478	19 R-11482	20 R-11486	21 R-11488	22 R-11494	23 R-11498	24 R-11500
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Ilmenite S<=3	1 2 6 9 13 21 33 48 67 81 89 100 100	1 2 6 7 9 11 16 23 36 64 85 99 100	1 3 8 11 15 22 35 54 80 96 99 100 100	1 2 6 7 9 12 17 23 37 59 90 99 90 99	1 2 6 7 9 12 16 25 40 61 92 100 100	1 2 5 7 11 19 36 66 92 100 100 100 100	1 2 5 7 10 15 22 34 52 75 92 100 100	1 2 7 9 13 17 25 45 60 74 87 87 100	1 2 6 8 11 17 25 42 67 90 99 100 100	1 2 8 9 12 17 24 34 60 84 96 100 100	1 1 3 4 5 9 18 38 70 95 99 100 100	1 2 6 7 9 11 16 26 48 80 98 100 100	2 3 8 12 19 38 66 89 99 100 100 100 100 100	1 2 6 10 16 27 51 79 92 98 98 98 100 100	1 2 5 6 9 16 32 60 86 97 100 100 100	1 1 4 5 9 16 28 55 87 98 100 100 100	1 2 5 7 15 27 52 87 99 100 100 100 100	1 2 7 8 11 15 25 43 72 93 97 100 100	2 3 8 11 14 19 26 42 65 90 98 100 100	1 2 6 7 10 14 25 42 70 92 97 100 100	1 2 6 8 12 18 32 56 79 96 100 100 100	1 2 5 7 8 9 15 20 36 69 92 99 100	2 3 7 9 10 13 14 24 37 66 92 100 100	1 2 7 9 14 20 32 60 84 97 100 100 100
Sieve Size in Micron/ Cumulative Passing	Iower Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75	48 64 94 97 99 100 100 100 100	61 76 96 98 100 100 100 100	54 65 89 91 94 95 95 100 100	60 72 97 98 100 100 100 100	63 75 96 98 99 100 100 100 100	51 68 96 99 100 100 100 100	59 74 98 99 100 100 100 100	49 62 83 84 100 100 100 100	59 75 98 99 100 100 100 100 100	63 74 98 99 100 100 100 100 100	59 73 98 99 100 100 100 100 100	63 78 98 100 100 100 100 100 100	49 66 97 100 100 100 100 100 100	52 68 97 99 100 100 100 100 100	55 70 98 99 100 100 100 100	55 70 96 99 100 100 100 100	53 67 96 99 100 100 100 100	57 73 98 100 100 100 100 100 100	58 74 98 99 100 100 100 100 100	59 73 97 99 99 100 100 100	52 68 95 98 100 100 100 100 100	58 74 98 99 100 100 100 100 100	60 73 96 100 100 100 100 100 100	49 68 99 100 100 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Pseudobrookite S<=3	42 56 85 86 91 100 100 100	53 72 93 97 100 100 100 100	58 75 99 100 100 100 100 100	45 63 88 95 98 100 100 100	42 55 73 77 87 100 100 100	46 61 92 96 99 100 100 100	48 64 97 99 100 100 100 100	56 71 98 99 100 100 100 100	47 64 96 99 100 100 100 100	44 59 88 93 98 100 100 100	44 61 93 98 100 100 100 100	56 76 99 100 100 100 100 100	48 62 92 95 98 100 100 100	50 64 95 98 99 100 100 100	45 63 91 94 99 100 100 100	48 61 92 97 100 100 100	45 60 92 97 100 100 100	46 64 93 97 99 100 100 100	44 63 96 99 100 100 100 100	52 67 94 98 99 99 100 100	46 63 97 100 100 100 100 100	61 69 96 99 100 100 100 100	52 69 98 99 100 100 100 100	52 67 97 99 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212	6 11 29 36 50 50 57 100 100 100 100	3 4 12 14 18 27 33 48 55 59 88	3 5 16 21 29 37 48 78 90 100 100	3 4 12 15 17 24 33 38 45 67 85	4 7 21 29 41 47 50 63 74 86 100	12 19 49 60 66 79 88 89 100 100 100	5 8 20 27 36 39 53 60 75 94 100	2 4 13 21 28 43 55 75 84 100 100	4 6 16 20 25 35 49 64 79 96 100	2 4 10 13 18 22 28 45 66 80 100	17 25 60 70 90 97 100 100 100 100 100	3 4 11 14 19 29 32 53 57 92 100	2 4 12 17 30 46 76 97 100 100 100	2 4 11 16 21 34 61 89 100 100 100	3 5 16 22 30 45 57 74 97 100 100	3 4 12 15 21 24 41 67 92 100 100	3 5 14 22 31 42 66 89 100 100 100	3 4 14 20 29 36 47 57 72 84 100	3 5 15 19 28 37 54 64 74 96 100	3 5 14 19 24 35 44 67 84 93 100	3 5 15 19 31 38 51 72 72 92 100	1 2 6 8 13 17 22 41 66 100	4 7 21 27 40 42 49 52 64 86 100	5 8 28 33 39 53 69 78 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Rutile- Altered S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 S<=300	8 14 38 48 56 70 79 90 100 100 100 100 100 100	10 15 40 52 63 71 79 83 86 89 100 100 100	7 11 29 36 45 55 61 68 81 94 98 100 100	7 10 25 31 37 42 54 56 58 80 83 100 100	7 10 28 34 40 49 62 68 75 79 91 96 100	15 24 59 72 83 91 96 99 100 100 100 100 100	6 10 26 31 40 47 52 59 71 76 86 100 100	6 9 23 29 39 47 54 56 83 100 100 100 100	7 11 28 35 41 48 55 64 75 90 98 100 100	7 10 24 31 39 45 52 57 69 82 92 100 100	10 16 41 55 68 79 88 93 93 98 98 98 100 100 100	5 8 21 26 31 35 37 42 51 73 83 100 100	11 18 45 54 63 73 81 90 98 100 100 100 100 100	10 15 38 46 53 61 68 87 98 100 100 100 100	9 14 38 47 53 59 66 71 80 87 90 100 100	9 15 35 43 51 59 67 73 78 100 100 100 100	12 19 49 63 70 80 85 94 100 100 100 100 100	6 9 23 28 35 42 50 60 78 89 100 100 100	5 8 20 27 34 37 43 47 59 77 97 100 100	5 8 20 26 32 37 42 49 64 80 95 100 100	7 11 30 37 46 58 61 68 75 82 100 100 100	6 10 25 31 37 42 45 55 63 76 94 94 94 100	4 7 16 19 24 29 33 37 46 65 85 94 100	7 12 32 39 43 51 58 71 77 90 90 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Pseudorutile S<=3	43 59 89 94 100 100 100 100 100 100	21 31 66 74 79 84 90 92 100 100	25 37 79 87 91 96 97 100 100 100	23 35 71 77 83 89 90 91 96 100	25 36 71 78 81 86 93 93 93 95 100	47 62 95 99 100 100 100 100 100	30 44 83 89 91 98 100 100 100 100	27 39 71 77 92 100 100 100 100	27 40 74 79 82 90 95 97 100 100	22 33 72 83 89 99 99 99 100 100 100	39 53 85 90 96 97 98 100 100 100	26 37 74 79 82 85 91 94 100 100	40 57 97 99 100 100 100 100 100 100	28 37 58 59 61 61 61 61 100 100	37 52 82 89 93 96 100 100 100 100	40 55 91 95 100 100 100 100 100	46 61 93 95 95 100 100 100 100	22 32 55 57 60 68 81 90 94 100	26 38 80 83 91 91 100 100 100 100	31 45 83 87 92 95 100 100 100 100	31 45 84 92 99 100 100 100 100 100	23 33 72 79 85 87 91 94 96 100	23 35 72 79 81 86 89 94 100 100	26 38 83 92 97 97 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212	30 42 83 95 100 100 100 100 100 100 100 100 100	28 38 63 68 72 73 81 100 100 100 100 100 100	20 30 66 77 85 94 94 96 100 100 100 100	31 45 88 95 100 100 100 100 100 100 100 100	26 35 72 88 96 98 99 100 100 100 100 100	37 48 81 89 96 97 100 100 100 100 100 100	32 42 74 85 93 100 100 100 100 100 100 100	20 30 59 71 76 81 81 81 100 100 100 100	21 29 62 72 81 84 84 85 100 100 100 100 100	25 34 62 71 81 87 87 93 100 100 100 100	45 57 83 87 88 95 97 100 100 100 100 100 100	21 28 52 56 59 59 73 90 90 100 100 100 100	29 41 75 81 86 88 100 100 100 100 100 100 100	26 38 80 90 92 96 100 100 100 100 100 100 100	29 40 80 89 97 97 100 100 100 100 100 100	35 49 87 93 98 98 100 100 100 100 100 100	26 39 77 85 92 100 100 100 100 100 100 100	31 43 81 88 96 97 97 97 100 100 100 100 100 100	23 33 61 71 81 83 83 83 83 92 100 100	32 44 78 84 95 96 98 100 100 100 100 100 100	31 46 80 88 89 93 93 93 95 95 100 100 100	43 57 88 97 100 100 100 100 100 100 100 100	15 21 44 47 54 56 56 56 56 66 82 82 82 100	23 35 78 89 97 100 100 100 100 100 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Hematite- Ti S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150	8 13 32 45 62 77 93 100 100 100 100	2 4 7 8 10 30 46 53 66 79 100	7 11 36 57 81 89 100 100 100 100 100	1 2 5 7 8 15 58 87 97 100 100	3 5 8 13 13 29 57 78 100 100 100	5 9 23 31 47 68 84 98 99 100 100	3 4 11 15 25 42 60 79 98 100 100	9 15 30 41 62 69 81 81 100 100 100	2 3 9 11 19 28 46 68 93 100 100	1 2 5 8 20 50 57 76 83 100 100	3 5 13 20 33 51 73 90 98 100 100	2 3 7 9 18 38 59 82 100 100 100	7 10 26 36 58 84 99 100 100 100 100	6 9 24 31 45 72 89 97 100 100 100	6 10 26 32 46 63 78 93 100 100 100	5 8 21 27 42 65 86 97 100 100 100	7 11 29 40 53 68 87 97 100 100 100	3 4 10 12 26 46 64 89 92 100 100	2 3 10 12 30 43 66 85 100 100 100	2 3 7 11 32 44 57 78 78 78 100 100	12 16 34 53 63 71 100 100 100 100 100	34 43 51 100 100 100 100 100 100 100 100	4 5 10 24 49 49 59 59 59 100 100 100	4 5 11 19 38 57 69 95 100 100 100 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Titanite S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212	2 4 17 25 42 54 67 89 100 100 100 100	0 1 1 2 2 4 9 15 15 15 15 41 100	0 1 4 5 7 11 14 27 73 100 100 100	0 1 3 4 7 8 14 18 18 37 61 100	2 3 8 11 11 11 11 31 48 48 48 100 100	3 7 23 32 53 62 70 78 100 100 100 100	1 1 3 5 6 9 13 26 51 78 78 78 100	1 1 6 9 12 14 26 45 81 100 100 100	1 1 4 7 10 14 25 52 72 100 100 100 100	1 1 3 4 5 9 10 16 42 55 76 100	8 12 41 53 70 83 83 100 100 100 100 100 100	0 0 1 2 2 3 4 6 16 49 100 100	1 1 5 7 10 16 30 72 96 100 100 100	1 1 4 5 10 16 26 49 81 96 100 100	0 1 3 4 6 9 15 28 55 91 100 100	0 1 2 2 3 6 11 27 59 83 95 100	1 1 4 6 8 14 22 55 88 100 100 100	0 0 2 3 4 7 12 22 39 75 100 100	1 1 3 4 5 6 8 13 38 79 100 100	1 1 4 5 6 8 16 34 81 100 100	1 2 7 10 13 17 30 38 84 100 100 100	0 0 1 1 1 1 1 1 1 36 100 100	0 0 1 1 1 1 2 2 2 2 7 21 100	0 1 4 5 7 8 11 39 52 69 69 69 100
Sieve Size in Micron/ Cumulative Passing	Size Distribution of Zircon S<=3 S<=5 S<=10 S<=13.25 S<=18.75 S<=26.5 S<=37.5 S<=53 S<=75 S<=106 S<=150 S<=212 S<=300	1 9 36 61 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 3 8 29 61 88 100	0 0 0 1 2 6 19 60 96 100 100 100	0 0 0 0 0 1 3 8 29 52 91 100	0 0 0 0 0 1 2 4 21 72 100 100	0 1 4 12 12 31 31 31 31 100 100 100 100 100	0 0 1 1 3 10 17 41 71 100 100 100	0 0 0 1 1 5 11 54 66 75 100 100	0 0 1 1 2 5 16 44 85 100 100 100	0 0 0 1 1 2 7 24 55 96 100 100	2 2 33 56 100 100 100 100 100 100 100 100 100 10	0 0 0 1 1 2 8 23 69 100 100 100 100	0 0 1 1 3 9 42 78 95 100 100 100 100 100	0 0 1 2 5 21 65 95 98 100 100 100	0 0 1 1 2 8 33 71 95 100 100 100	0 0 0 1 2 8 26 69 96 100 100 100	0 0 0 2 6 23 61 96 100 100 100 100	0 0 0 1 2 4 17 52 81 96 100 100	0 0 0 1 1 3 9 34 70 87 100 100	0 0 0 1 1 5 18 50 88 96 100 100	0 0 1 1 2 5 10 31 60 85 100 100 100	0 0 0 0 1 2 5 16 37 71 91 100	0 0 0 1 1 1 2 15 34 72 100 100	0 0 0 0 0 2 6 13 43 84 100 100 100

Sample 1; sorted to Ilmenite Background Ilmenite Ilmenite Imenite-Lower Ti Seudorookite
Pseudorookite
Pseudoroutile
Pseudorutile
P Titanite Mag/Hema Goethite Chromite Spinel Spinel Zircon REE Phosphate Apatite Pyrite Pyrite Others N CAL ∽ V D D A CAL A C * A < < < </p>

Silicate Gangue

Sample 13; sorted to Ilmenite Background Ilmenite-Lower Ti
 Pseudobrookite
 Rutile

 Image: Control of the second secon Leucoxene Ilmenite-Silicate Mixed Rutile-Qz Texture J Titanite Mag/Hema Goethite

Spinel Zircon REE Phosphate Silicate Gangue

Sample 20; sorted to limenite

r-draba / Doda dod 1212022420800000000000000

Sample 14; sorted to Ilmenite

\$~~**```**

ackground Imenite -K2

> Image: Constraint of the second se ╡╲┍╿┇╡**╴╔╱╱**╽┇_┢╺╝╺</sub>╗*╝*╝ Hematite-Ti Hematite-Ti Titanite Mag/Hema Chromite Spinel Zircon REE Phosphat Silicate Gangue Pyrite Others

Leucoxene Leucoxene Ilmenite-Silicate Mixed Rutile-Qz Texture Hematice II Hemat Chromite Spinel Zircon REE Phosphate
Apatite
Silicate Gangue
Pyrite

Sample 9; sorted to Ilmenite Pseudobrookite Rutile Rutile-Altered(Leucoxene) Pseudorutile Ilmenite-Silicate Mixed Rutile-Qz Texture Hematite-Ti
 Image: Construction
 Image: Construction
 Image: Construction
 Image: Construction

 Image: Construction
 Image: Construction
 Image: Construction
 Image: Construction Pyrite Others

Sample 15; sorted to Ilmenite

Background Ilmenite Ilmenite-Lowe

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production
 Image: Second production

 Image: Second production
 Image: Second production</t Ilmenite-Silicate Mixed Rutile-Qz Texture Hematite-Ti Titanite Mag/Hema Goethite Spinel Construction Const

Sample 3; sorted to limenite

Sample 10; sorted to Ilmenite

╱<u></u>҈҉҈*҈*҂҂҂҂҂*⋟*ѽ҉҈

Sample 16; sorted to Ilmenite ▘▙▝▘◢▝▖ᇒૹ▝》ᢍᢪᅀᅀ▘₰₻ᢍ▖▏ r 🙈 🔝 🦚 🖉 🖉 🖚

> Sample 23; sorted to Ilmenite Image: Second second

Sample 17; sorted to Ilmenite 1742-4-2-4-2000-0-0 Ilmenite Ilmenite-Lower Ti The second secon Chromite Spinel Spinel

 Image: Silicate Gangue

 Image: Silicate Gang | 🖏 🔞 A 🛞 🕫 🐧 🤻 🛸 🦾 🍆 💽 🖉 🔌 🗠 🍐 🛩 🖉 🖉 🕨 🖛

<u>~~~0~~~</u>

 Imenite

 Imenite

Sample 11; sorted to Ilmenite

Sample 5; sorted to Ilmenite

Goethite
Chromite
Spinel

Silicate Gangue

TYPERON Ilmenite-Silicate Mixed
 Rutile-Qz Texture
 Hematite-Ti
 Titanite

Sample 12; sorted to Ilmenite Pseudobrookite Rutile Rutile-Altered(Leucoxene) Ilmenite-Silicate Mixed Rutile-Qz Texture Hematite-Ti

Background
Ilmenite
Ilmenite-Lower Ti
Pseudobrookite
Rutile ed 🛹 🐡 🌑 🖉 🥎 🕘 🖉 🍥 🖉 🔍 🛹 🔨 🌒 🖉 REE Phosphate
Apatite
Silicate Gangue
Pyrite
Others

Sample 6; sorted to Ilmenite

	Weight of -0.	25 mm Table Co	oncentrate (g)		
			Heavy Liquid	Separation at	
				HMC	
	Sample Number	Total	Lights S.G <3.2	Total	
A18-05577-2	R-11350a	57.2	42.3	14.9	
A18-05577-3	R-11350c	98.3	95.0	3.3	
A18-05577-4	R-11351a	98.0	80.0	18.0	
A18-05577-5	R-11351ab	202.2	201.4	0.8	
A18-05577-7	R-11352a	204.4	203.2	1.2	
A18-05577-8	R-11352b	200.1	200.0	0.1	
A18-05577-9	R-11354a	109.2	85.7	23.5	
A18-05577-10	R-11354b	100.4	83.1	17.3	
A18-05577-12	R-11434	204.2	203.1	1.1	0.54%
A18-05577-13	R-11441	171.9	171.8	0.1	0.06%
A18-05577-14	R-11462	197.6	197.0	0.6	0.30%
A18-05577-15	R-11466	206.7	205.0	1.7	0.82%
A18-05577-16	R-11470	199.4	198.6	0.8	0.40%
A18-05577-17	R-11474	195.3	193.1	2.2	1.13%
A18-05577-18	R-11478	205.2	204.3	0.9	0.44%
A18-05577-19	R-11482	195.1	193.7	1.4	0.72%
A18-05577-20	R-11486	204.5	203.5	1.0	0.49%
A18-05577-21	R-11488	189.1	189.1	0.01	0.01%
A18-05577-22	R-11494	215.9	214.3	1.6	0.74%
A18-05577-23	R-11498	157.5	154.6	2.9	1.84%
A18-05577-24	R-11500	192.8	192.8	0.02	0.01%

Heavy Mineral Processing Weights

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 30-Apr-18

 Invoice No.:
 A18-05577

 Invoice Date:
 15-Jun-18

 Your Reference:
 EP2747577

VA DMME 900 Natural Resources Drives Suite 500 Charlottesville VIRGINIA 22903 United States

ATTN: William Lassetter

CERTIFICATE OF ANALYSIS

24 Heavy Mineral Concentrates samples were submitted for analysis.

The following analytical package(s) were requested:

Code 4LITHORES (11+) Major Elements Fusion ICP(WRA)/Trace Elements Fusion ICP/MS(WRA4B2)

Code MLA Schedule 1 MLA Schedule 1

REPORT A18-05577

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

We recommend using option 4B1 for accurate levels of the base metals Cu, Pb, Zn, Ni and Ag. Option 4B-INAA for As, Sb, high W >100ppm, Cr >1000ppm and Sn >50ppm by Code 5D. Values for these elements provided by Fusion ICP/MS, are order of magnitude only and are provided for general information. Mineralized samples should have the Quant option selected or request assays for values which exceed the range of option 4B1. Total includes all elements in % oxide to the left of total. Zr is now being reported from FUS-ICP instead of FUS-MS.

CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Results

Activation Laboratories Ltd.

Report: A18-05577

Analyte Symbol	SiO2	AI2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total	Sc	Be	V	Cr	Co	Ni	Cu	Zn	Ga	Ge	As
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01		0.01	1	1	5	20	1	20	10	30	1	0.5	5
Method Code	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
R-11007m																							
R-11350a	12.81	5.89	34.26	1.147	1.29	2.15	0.06	0.07	36.69	0.14	-0.63	93.88	45	< 1	651	730	34	80	< 10	380	16	1.9	15
R-11350c	21.17	8.30	27.72	0.984	2.50	4.51	0.17	0.20	28.47	0.30	0.00	94.33	55	< 1	495	730	30	60	< 10	320	23	2.4	14
R-11351a	15.49	8.26	32.65	1.146	1.43	3.38	0.06	0.08	33.25	0.13	-0.32	95.55	51	< 1	623	440	27	80	< 10	340	18	2.3	16
R-11351ab																							
R-11351am																							
R-11352a	16.25	7.26	34.53	1.008	1.64	3.02	0.10	0.14	30.84	0.19	0.00	94.99	47	< 1	604	610	67	70	20	320	19	1.9	38
R-11352b																							
R-11354a	19.46	8.50	30.74	0.959	2.24	4.80	0.14	0.16	28.61	0.22	-0.28	95.56	56	< 1	591	620	30	60	50	350	23	2.8	15
R-11354b	17.05	8.46	30.36	1.014	1.74	4.00	0.08	0.10	32.54	0.13	-0.34	95.14	53	< 1	612	580	31	60	< 10	370	23	2.6	15
R-11362m																							
R-11434	21.64	9.59	29.21	0.958	3.39	4.10	0.26	0.13	26.25	0.13	0.00	95.65	55	3	501	740	36	60	< 10	290	28	3.0	15
R-11441																							
R-11462																							
R-11466	23.38	7.89	36.76	0.784	3.26	5.57	0.43	0.27	17.19	0.25	0.00	95.78	47	< 1	487	520	30	70	< 10	240	25	3.2	7
R-11470																							
R-11474	25.78	8.41	37.58	0.669	3.92	7.15	0.53	0.34	12.94	0.34	0.00	97.66	47	< 1	491	620	29	80	< 10	200	23	3.2	7
R-11478																							
R-11482	24.45	9.55	31.04	0.920	3.73	4.93	0.35	0.18	21.50	0.13	0.00	96.79	54	< 1	452	670	32	60	< 10	290	22	2.8	6
R-11486																							
R-11488																							
R-11494	15.05	8.68	33.15	1.066	1.70	1.77	0.21	0.09	33.95	0.14	0.00	95.82	49	< 1	575	700	32	70	< 10	340	23	2.1	8
R-11498																							
R-11500																							

Results

Activation Laboratories Ltd.

Report: A18-05577

Analyte Symbol	Rb	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	2	0.5	1	0.2	2	0.5	0.1	1	0.2	0.1	2	0.05	0.05	0.01	0.05	0.01	0.005	0.01	0.01	0.01	0.01	0.01
Method Code	FUS- MS	FUS- ICP	FUS- MS	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
R-11007m																							
R-11350a	2	97	197	> 10000	653	16	> 100	0.3	20	0.5	< 0.1	44	267	571	65.5	239	46.2	4.20	32.8	5.04	30.7	6.60	22.8
R-11350c	5	201	475	> 10000	524	10	97.6	0.3	27	1.0	0.2	84	579	1280	152	570	112	15.9	80.6	12.5	78.4	16.3	52.4
R-11351a	2	154	172	> 10000	563	10	69.9	0.3	13	0.5	< 0.1	43	241	522	59.3	216	40.7	4.35	28.4	4.35	27.0	5.71	19.6
R-11351ab																							
R-11351am																							
R-11352a	4	144	237	> 10000	505	19	89.3	0.3	11	0.3	0.2	59	384	820	93.7	342	62.8	6.01	43.3	6.53	38.7	8.15	26.8
R-11352b																							
R-11354a	4	200	300	> 10000	506	10	98.0	0.4	16	0.5	0.1	53	414	891	103	386	73.8	8.93	54.5	8.39	50.6	10.7	34.2
R-11354b	3	193	257	> 10000	581	12	> 100	0.4	16	0.9	0.1	53	332	709	82.0	302	57.6	6.83	43.5	6.76	41.5	8.90	29.9
R-11362m																							
R-11434	2	145	310	> 10000	467	11	88.7	0.4	17	0.4	< 0.1	51	312	728	89.3	345	69.5	9.74	50.8	7.94	49.6	10.6	35.3
R-11441																							
R-11462																							
R-11466	5	135	368	> 10000	296	8	90.6	0.3	15	0.2	0.2	46	443	961	113	425	82.0	11.0	61.3	9.74	59.9	12.5	40.9
R-11470																							
R-11474	6	155	302	> 10000	178	6	45.1	0.2	10	< 0.2	0.2	51	236	519	62.6	240	50.0	8.00	43.7	7.60	50.0	10.6	34.5
R-11478																							
R-11482	3	104	303	> 10000	332	8	77.7	0.3	14	0.4	0.1	46	294	635	77.2	294	59.6	8.85	45.8	7.56	49.6	10.7	34.9
R-11486																							
R-11488																							
R-11494	3	66	264	> 10000	543	11	89.8	0.4	16	< 0.2	0.1	54	282	597	67.5	244	45.8	4.38	35.8	6.04	39.7	8.92	30.1
R-11498																							
R-11500																							

Results

Activation Laboratories Ltd.

Analyte Symbol	Tm	Yb	Lu	Hf	Та	W	TI	Pb	Bi	Th	U	Mineral Separat ion
Unit Symbol	ppm	g										
Lower Limit	0.005	0.01	0.002	0.1	0.01	0.5	0.05	5	0.1	0.05	0.01	
Method Code	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	TIMS
R-11007m												
R-11350a	3.87	30.6	5.89	795	31.5	13.2	0.11	58	0.3	105	28.5	
R-11350c	8.54	62.9	11.2	735	32.2	15.7	0.07	52	0.3	143	48.8	
R-11351a	3.29	26.2	4.89	526	27.9	11.5	< 0.05	52	0.5	92.6	23.9	
R-11351ab												
R-11351am												
R-11352a	4.54	35.1	6.64	635	26.3	10.8	0.06	44	0.2	135	34.3	
R-11352b												
R-11354a	5.78	43.5	8.11	720	27.7	14.8	< 0.05	77	0.5	133	40.6	
R-11354b	5.07	38.6	7.19	741	30.1	22.5	< 0.05	64	0.6	109	36.3	
R-11362m												
R-11434	5.78	44.5	8.19	654	24.3	15.0	< 0.05	64	0.2	82.5	32.6	
R-11441												
R-11462												
R-11466	6.72	50.3	9.53	679	16.4	7.4	< 0.05	35	0.2	119	43.5	
R-11470												
R-11474	5.50	40.1	7.03	343	10.1	4.2	< 0.05	22	0.1	51.2	24.5	
R-11478												
R-11482	5.86	44.2	8.10	576	19.0	10.0	< 0.05	41	0.1	78.7	32.0	
R-11486												
R-11488												
R-11494	5.14	40.0	7.48	657	26.3	10.3	< 0.05	53	0.2	90.6	30.9	
R-11498												
R-11500												

Analyte Symbol	SiO2	AI2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total	Sc	Be	V	Cr	Со	Ni	Cu	Zn	Ga	Ge	As
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01		0.01	1	1	5	20	1	20	10	30	1	0.5	5
Method Code	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- ICP	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
NIST 694 Meas	11.41	1.90	0.75	0.010	0.33	42.38	0.86	0.54	0.120	30.23					1642								
NIST 694 Cert	11.2	1.80	0.790	0.0116	0.330	43.6	0.860	0.510	0.110	30.2					1740								
DNC-1 Meas	47.45	19.34	10.13	0.150	10.07	11.60	1.97	0.23	0.490	0.07			32		153	280	62	260	110	80	14		
DNC-1 Cert	47.15	18.34	9.97	0.150	10.13	11.49	1.890	0.234	0.480	0.070			31		148	270	57	247	100	70	15		
LKSD-3 Meas																90	32	50	40	140			26
LKSD-3 Cert																87.0	30.0	47.0	35.0	152			27.0
W-2a Meas	52.19	15.23	10.65	0.160	6.10	11.09	2.23	0.62	1.090	0.12			35	< 1	271	100	45	80	110	80	19	1.5	
W-2a Cert	52.4	15.4	10.7	0.163	6.37	10.9	2.14	0.626	1.06	0.140			36.0	1.30	262	92.0	43.0	70.0	110	80.0	17.0	1.00	
SY-4 Meas	50.10	20.81	6.21	0.110	0.52	8.21	6.95	1.66	0.290	0.12			< 1	3	7								
SY-4 Cert	49.9	20.69	6.21	0.108	0.54	8.05	7.10	1.66	0.287	0.131			1.1	2.6	8.0								
CTA-AC-1 Meas																			60				
CTA-AC-1 Cert																			54.0				
BIR-1a Meas	47.99	16.06	11.33	0.170	9.39	13.64	1.82	0.02	0.990	0.02			43	< 1	333	390	56	180	130	70	16		
BIR-1a Cert	47.96	15.50	11.30	0.175	9.700	13.30	1.82	0.030	0.96	0.021			44	0.58	310	370	52	170	125	70	16		
NCS DC86312 Meas																							
NCS DC86312 Cert																							
NCS DC70009 (GBW07241) Meas																	3		1040	90	16	10.5	64
NCS DC70009 (GBW07241) Cert																	3.7		960	100	16.5	11.2	69.9
OREAS 100a (Fusion) Meas																	18		180				
OREAS 100a (Fusion) Cert																	18.1		169				
OREAS 101a (Fusion) Meas																	51		450				
OREAS 101a (Fusion) Cert																	48.8		430				
JR-1 Meas																	1	< 20	< 10		17	2.1	16
JR-1 Cert																	0.83	1.67	2.68		16.1	1.88	16.3
NCS DC86318 Meas																							
NCS DC86318 Cert																							
R-11354b Oria	17.20	8.37	30.40	1.020	1.72	4.01	0.08	0.10	32.33	0.14	-0.34	95.04	54	< 1	607	630	31	60	< 10	370	23	2.2	16
R-11354b Dup	16.91	8.55	30.32	1.008	1.76	3.98	0.08	0.09	32.74	0.13	-0.34	95.23	53	< 1	617	520	30	70	< 10	360	23	2.9	14
Method Blank	0.01	0.01	0.02	0.002	< 0.01	< 0.01	< 0.01	< 0.01	0.001	< 0.01			< 1	< 1	< 5							-	
Method Blank	0.01	< 0.01	< 0.01	0.002	0.01	< 0.01	< 0.01	< 0.01	< 0.001	< 0.01			< 1	< 1	< 5	< 20	< 1	< 20	< 10	< 30	< 1	< 0.5	< 5

QC

Activation Laboratories Ltd.

Report: A18-05577

						-					-			-									
Analyte Symbol	Rb	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	1	2	0.5	1	0.2	2	0.5	0.1	1	0.2	0.1	2	0.05	0.05	0.01	0.05	0.01	0.005	0.01	0.01	0.01	0.01	0.01
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	MS	ICP	MS	ICP	MS	MS	MS	MS	MS	MS	MS	ICP	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS
NIST 694 Meas																							
NIST 694 Cert																						'	
DNC-1 Meas	5	153	16.6	36						1.0		108	3.70			5.00		0.620					
DNC-1 Cert	5	144.0	18.0	38						0.96		118	3.6			5.20		0.59					
LKSD-3 Meas	71		27.7			< 2	2.8		2		2.4		48.0	89.2		44.6	7.90	1.50		0.90	5.10		
LKSD-3 Cert	78.0		30.0			2.00	2.70		3.00		2.30		52.0	90.0		44.0	8.00	1.50		1.00	4.90		
W-2a Meas	20	198	22.2	90	7.4	< 2					0.8	174	10.5	25.1		13.7	3.50	1.10		0.66	3.80	0.80	2.30
W-2a Cert	21.0	190	24.0	94.0	7.90	0.600					0.990	182	10.0	23.0		13.0	3.30	1.00		0.630	3.60	0.760	2.50
SY-4 Meas		1179		522								347											
SY-4 Cert		1191		517								340											
CTA-AC-1 Meas			296										> 2000	> 3000		1140	165	46.1	131	14.4			
CTA-AC-1 Cert			272										2176	3326		1087	162	46.7	124	13.9			
BIR-1a Meas		113	15.1	15								7	0.60	1.90		2.50	1.10	0.520	1.90		3.80		
BIR-1a Cert		110	16	18								6	0.63	1.9		2.5	1.1	0.55	2.0		4		
NCS DC86312			1010										> 2000	174		1550			231	31.2	190	35.2	101
Meas																							1
NCS DC86312 Cert			976										2360	190		1600			225.0	34.6	183	36	96.2
NCS DC70009 (GBW07241) Meas	503						1.9	1.0	> 1000	2.9	43.8		24.0	61.4	8.20	33.5	12.5	0.160	15.4	3.10	22.1	4.30	13.9
NCS DC70009 (GBW07241) Cert	500						1.8	1.3	1700	3.1	41		23.7	60.3	7.9	32.9	12.5	0.16	14.8	3.3	20.7	4.5	13.4
OREAS 100a (Fusion) Meas			137			23							260	468	46.4	149	23.3	3.67	22.8	3.80	23.6	4.85	15.0
OREAS 100a (Fusion) Cert			142			24.1							260	463	47.1	152	23.6	3.71	23.6	3.80	23.2	4.81	14.9
OREAS 101a (Fusion) Meas			176			21							803	1380	128	389	48.7	8.04	44.9	5.71	33.0	6.34	19.8
OREAS 101a (Fusion) Cert			183			21.9							816	1396	134	403	48.8	8.06	43.4	5.92	33.3	6.46	19.5
JR-1 Meas	243		40.7		15.0	3		< 0.1	3		20.7		20.2	47.6	6.10	23.7	5.69	0.280		0.97	5.54	1.15	
JR-1 Cert	257		45.1		15.2	3.25		0.028	2.86		20.8		19.7	47.2	5.58	23.3	6.03	0.30		1.01	5.69	1.11	
NCS DC86318 Meas	387		> 10000								11.1		1900	405	720	> 2000	> 1000	18.8	> 1000	478	> 1000	574	> 1000
NCS DC86318 Cert	369.42		17008								10.28		1960	430	740	3430	1720	18.91	2095	470	3220	560	1750
R-11354b Orig	3	193	253	> 10000	575	13	> 100	0.4	16	1.0	0.1	54	347	735	85.0	314	59.3	7.13	44.6	6.98	42.3	9.17	31.0
R-11354b Dup	3	194	261	> 10000	588	11	96.8	0.4	16	0.9	0.1	53	318	682	79.0	289	56.0	6.53	42.3	6.53	40.7	8.63	28.9
Method Blank		< 2	1	3					İ	1		< 2	İ					1					
Method Blank	< 1	< 2	< 0.5	2	< 0.2	< 2	< 0.5	< 0.1	< 1	< 0.2	< 0.1	< 2	< 0.05	< 0.05	< 0.01	< 0.05	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Report:	A18-0)5577
---------	-------	-------

Analyte Symbol	Tm	Yb	Lu	Hf	Та	W	TI	Pb	Bi	Th	U
Unit Symbol	ppm										
Lower Limit	0.005	0.01	0.002	0.1	0.01	0.5	0.05	5	0.1	0.05	0.01
Method Code	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS	FUS- MS
NIST 694 Meas											
NIST 694 Cert											
DNC-1 Meas		2.10						6			
DNC-1 Cert		2.0						6.3			
LKSD-3 Meas		2.70	0.420	4.5						11.4	4.70
LKSD-3 Cert		2.70	0.400	4.80						11.4	4.60
W-2a Meas		2.10	0.330	2.6	0.51	< 0.5	0.59	10	< 0.1	2.40	0.54
W-2a Cert		2.10	0.330	2.60	0.500	0.300	0.200	9.30	0.0300	2.40	0.530
SY-4 Meas											
SY-4 Cert											
CTA-AC-1 Meas		11.3			2.81						4.50
CTA-AC-1 Cert		11.4			2.65						4.4
BIR-1a Meas		1.70		0.6				< 5			
BIR-1a Cert		1.7		0.60				3			
NCS DC86312 Meas	13.8	88.5	12.6								
NCS DC86312 Cert	15.1	87.79	11.96								
NCS DC70009 (GBW07241) Meas	2.30	16.1	2.33			2300	1.94			30.9	
NCS DC70009 (GBW07241) Cert	2.2	14.9	2.4			2200	1.8			28.3	
OREAS 100a (Fusion) Meas	2.32	15.7	2.29							54.3	139
OREAS 100a (Fusion) Cert	2.31	14.9	2.26							51.6	135
OREAS 101a (Fusion) Meas	2.80	18.3	2.63							37.2	452
OREAS 101a (Fusion) Cert	2.90	17.5	2.66							36.6	422
JR-1 Meas	0.670	4.72	0.670	4.1			1.55	20	0.5	28.9	8.90
JR-1 Cert	0.67	4.55	0.71	4.51			1.56	19.3	0.56	26.7	8.88
NCS DC86318 Meas	260	> 1000	238							65.9	
NCS DC86318 Cert	270	1840	260.0							67.0	
R-11354b Orig	5.28	40.0	7.50	786	30.6	28.0	< 0.05	67	0.6	114	38.1
R-11354b Dup	4.85	37.3	6.89	697	29.5	17.1	< 0.05	60	0.5	103	34.5
Method Blank											
Method Blank	< 0.005	< 0.01	< 0.002	< 0.1	< 0.01	< 0.5	< 0.05	< 5	< 0.1	< 0.05	< 0.01