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FORWARD

The Coastal Erosion Abatement Commission, in its report to the

General Assembly (1979), recommended that "there is a need to locate

sources of sand supplies for rebuilding public beaches." The Sand

Resources Inventory, completed in 1982 by the College of William and
Mary, Virginia Institute of Marine Science, was initiated in response

to this directive. The Sand Resources Inventory, however, focused on
the Chesapeake Bay. The City of Virginia Beach, facing a chronic need

to renourish beaches facing the Atlantic Ocean, elected to develop an
inventory of beach-quality sand reserves existing on the inner shelf of

the Atlantic coast. This report details the results of the exploration

program to delineate reserves containing sufficient quantities of sand

suitable for emplacement on public recreational beaches in the City of
Virginia Beach. Volume I contains the Summary Report and Appendices A
and B, which depict interpretations of seismic data. Volume II

contains Appendices C through E, which detail the sediment analyses.

This study was funded by the City of Virginia Beach, Virginia.

Correlative sediment data were provided through the Study of Economic

Heavy Minerals of the Virginia Inner Continental Shelf, funded in part

by the Virginia Subaqueous Minerals and Materials Study Commission and,
in part, by the Minerals Management Service, United States Department

of the Interior, through a subagreement between the Texas Bureau of
Economic Geology and the Virginia Division of Mineral Resources.

The work described herein could not have been accomplished without

the dedication and expertise of the captain and crew of the R/V Bay

Eagle, L. Durand Ward and Steven H. George. Robert A. Gammisch, M.

Patricia Barthle, George R. Thomas, and Frank Farmer provided

invaluable assistance in the field. Sediment analysis was completed by
Cindy T. Fischler; assistance with the reduction of seismic data was

provided by Angela Bryant. The authors thank each of these individuals

for hisfher dedicated efforts, without which this project could not
have been completed. The authors especially thank C.H. Hobbs, III, for
his hours of assistance with, and numerous discussions about, the

interpretations of the seismic and sediment data.

The use of trade names within this document is for descriptive

purposes only and does not imply endorsement of the products by the

Commonwealth of Virginia or its agencies.
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GEOTECHNICALEVALUATIONOF SAND RESOURCES
ON THE INNER SHELF OF SOUTHERNVIRGINIA

I. INTRODUCTION

Statement of the Problem.

The City of Virginia Beach, Virginia, is facing an increasing

threat from erosion of its ocean-side beaches. It is becoming more

difficult to locate sufficient material to restore beaches economically

as upland sand pits are closed due to development. In order to provide

a means to implement long-term beach development strategies and develop

backup measures in the event of a catastrophic storm, it is necessary

to pursue aggressively the location of alternate sources of beach

quality material.

Shoreline erosion is a result of natural long-term processes,

including (1) wave action and tidal flooding due to storms; (2)

reduction in the amount of sand being supplied to the nearshore system

by upland and/or updrift sources; and (3) elevation of relative sea

level due to global warming and subsidence of coastal areas (Williams,

1987). Demographic shifts toward the coastline increase the hazard

potential of the natural processes. Increased economic pressures

require that the maintenance of beach width be a management priority in

coastal communities. Resort areas use sand as fill material on their

eroding beaches for both preventive and remedial purposes. Moreover,

these localities can augment their appeal to tourists by maintaining a

sizable beach.
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Several engineering alternatives are available to mitigate the

effects of shoreline recession. Beach renourishment is gaining

attention because it is perceived to be less disruptive to the natural

ecological system than are hard-structure alternatives. Williams

(1986) reports that more than 40 beach restoration projects had been

completed in the United States between 1950 and the publication date

through joint funding among federal, state, and local governments. The

federal projects alone used over 59 million cubic meters of sand for

the initial work, and approximately half these projects have required

additional, periodic maintenance (U.S. Army Corps of Engineers, 1984).

Recent activities by the City of Ocean City, Maryland, associated

with the restoration of its resort beach, indicate that there is the

potential to locate large volumes of beach quality sand stored in the

linear shoal fields that dominate the seabed surface in the mid-

Atlantic Bight. These shoals, many of them shoreface-connected, are

located in 6.01 meters (20 feet) to 18.28 meters (60 feet) of water

with local elevations of 3.05 meters (10 feet) to 9.14 meters (30

feet) .

In the particular case of the Atlantic Coast of Virginia, linear

shoals are shoreface-connected at False Cape and trend offshore to the

northeast. In addition, there is a large shoal feature associated with

the mouth of the Chesapeake Bay and located along the northern half of

the Virginia Beach Atlantic Coast. Surface samples collected in these

areas document widespread deposits of coarse sand, with median grain

sizes as large or larger than the beach sand on Virginia Beach (>0.2

rom). The vertical extent of these deposits has not been documented in

5
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the literature and there is no detailed map of their distribution.

However, the body of existing data suggests that sufficient sand of

beach or near beach-quality is stored offshore of the Virginia Beach

area at distances short enough to render sand mining for beach

renourishment an economically viable alternative.

Objectives.

The objectives of this study are to identify, locate and describe

sources of beach quality material on the inner shelf that are within

economical transport distances to the City of Virginia Beach.

Specifically, the study includes (1) identification of potential

offshore sources of beach quality sand; (2) mapping the aerial and

vertical extent of suitable deposits; (3) determination of the

characteristics of source and destination material.

II. GEOLOGIC SETTING

Limits of the Study Area.

The study area, shown in Figure 1, is a section of the inner shelf

of Virginia generally bounded by Cape Henry to the north, the Virginia-

North Carolina state line to the south, the ocean shoreline of the City

of Virginia Beach on the west, and a line parallel to the shoreline and

approximately three nautical miles offshore on the east.

6
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Figure 1. Site map showing location of the study area.
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Re~ional Strati~raphy.

The study area delineated in Figure 1 is part of the inner

continental shelf which is a submerged extension of the Virginia

Coastal Plain Province. No fewer than six stratigraphic units have

been identified that form the substrate in this region (Williams,

1987). These units, ranging from late Miocene (11.2 - 5.3 million

years before present (ybp)) to late Pleistocene (10,000 ybp) in age,

are overlain by a veneer of modern Holocene sediments transported into

the area from the Chesapeake Bay and from shoreface sources.

The continental shelf is believed to have experienced multiple

episodes of marine transgression and regression driven by Pleistocene

glacial and interglacial variability in global sea level (Shideler and

Swift, 1972). The resulting shelf morphology is a complex palimpsest

surface where features have been modified by subsequent shelf processes

(Swift et a1., 1972). In addition to morphologic features formed by

long-term and large-scale processes, there exists a secondary set of

features created by modern flow and transport regimes through and

around the mouth of the Chesapeake Bay.

During the last major marine lowstand (>15,000 ybp), sea level was

as much as 120 meters below the present level and the continental shelf

was subaerially exposed with a shoreline near the modern slope break

(Belknap and Kraft, 1977). Fluvial processes were the predominant

factors in morphologic development. The ancestral Susquehanna River,

located along the axis of the present-day Chesapeake Bay, and its

tributaries, including the James River system, were responsible for

creating channels and resultant sedimentary deposits many miles east of
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the modern shoreline. These deposits reflect the upland areas that the

rivers drained.

Between 15,000 ybp and 7,000 ybp, a period of intricate, short-term

climatic fluctuations resulted in a rapid net rise in eustatic sea

level (Curray, 1964). Finkelstein and Ferland (1987) demonstrated that

rates of sea level rise in the mid-Atlantic Bight during that period

were as much as six millimeters per year (mm/yr). Other research

suggests that rates of as much as 10-12 mm/yr may have occurred

(Nummedal, 1987). During the past 6,000 years the rate of global rise

has slowed and is now estimated at 1.2 mm/yr, with local rates of

relative rise estimated between 2.7 mm/yr and 4.4 mm/yr (Froomer,

1980) .

The rapid fluctuations of sea level are evident in the stratigraphy

and subbottom structure of the inner shelf, which are as complex as the

climatic history. Downcutting by ancestral fluvial systems during

regressive periods resulted in widespread erosional surfaces and

fluvial channel deposits (Shideler and Swift, 1972). During subsequent

periods of rapid transgression, many of the subaerial topographic

features were modified by marine processes, creating the present

configuration of filled channels, shoals, remnant barriers and relict

shorelines (Stubblefield and Duane, 1988).

The broad scale stratigraphy of the Virginia inner continental

shelf has been well documented through the analysis of seismic records

and sediment core logs (Shideler and Swift, 1972; Shideler et al.,

1972; Meisburger, 1972; and Swift et a1., 1977). These studies

indicate four distinct sedimentary sequences that can be dated to the

9



late Pliocene (1.6 million ybp). The sequences are named Unit A

(oldest) through Unit D (youngest), by convention (Shideler and Swift,

1972). The oldest, Unit A, correlates with the Yorktown Formation

(Fm), a widespread shelly marine sequence whose erosional surface

underlies much of the southeastern coastal plain in Virginia. The

altered surface of the Yorktown Fm generally is seen as a clear

reflector in seismic records. Williams (1987), however, was able to

locate only a faint and discontinuous seismic trace that could be

ascribed to the Yorktown Fm in the area between Cape Henry and Virginia

Beach.

Radiocarbon dating and stratigraphic position are indicators that

the next younger sequence, Unit B, represents a regressive assemblage

formed during early Pleistocene low stands of sea level. It consists

of fluvial and nearshore deposits characterized by lenticular to planar

stratification within well-developed local channels that trend

southeast and exhibit considerable local relief (Shideler and Swift,

1972). This unit is correlated with the Great Bridge Fm/Sandbridge Fm

sequence of the adjacent coastal plain (Shideler et al., 1972).

Unit C, which overlies Unit B, is composed of homogeneous,

horizontal layers of silt and clay that thicken slightly in an eastward

direction. The deposit was formed in a low-energy environment, such as

an estuary or back-barrier lagoon during a late Pleistocene highstand

of sea level (Williams, 1987). No onshore correlative sequence has

been identified.

The youngest and, hence, shallowest sequence, Unit D, composes the

majority of modern surficial inner shelf deposits. This sequence

10



represents a discontinuous Holocene (recent to modern) transgressive

sand sheet (Swift et a1., 1977). It is composed of fine to medium sand

or muddy sand with shell remains of modern fauna. Little internal

stratification is visible (Williams, 1987). This deposit is forming as

the result of rising sea level over an eroding shoreface, with

substantial redistribution of material by shelf currents.

Re~ional Bathymetry.

Figure 2 is a three-dimensional view of the bathymetry within the

study area, from which several distinct morphological features can be

described that are imposed on an otherwise gently seaward-dipping

surface. A well-defined shelf valley extends southeastward from the

mouth of the Chesapeake Bay. This valley is believed to be a modern

topographic representation of a relict fluvial channel dating to the

last major glacial advance (Meisburger, 1972). The Atlantic Ocean

Navigation Channel, which is the major shipping approach to the

Chesapeake Bay, lies within this topographic depression. To the west

of the channel, extending landward to the shoreline, is the broad,

shallow Cape Henry Shoal. This shoal is attached to the shoreface at

the bay mouth and projects southward approximately 16 kilometers (10

miles), paralleling the present shoreline. Williams (1987) defines the

Cape Henry Shoal as a modern depositional feature that is the product

of ebb-tidal sedimentation processes occurring at the Chesapeake Bay

Mouth.

Duane et a1. (1972) defines shoal retreat "massifs" as large

constructional sand features that are remnants of retreat paths of

11
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Fig~re 2. Bathymetry of the Virginia inner shelf between Cape Henry
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version of water depths digitized from recent navigation charts.
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littoral drift convergences at estuary mouths or cuspate forelands

during transgressive periods. Williams (1987) describes the broad

Virginia Beach platform at the northern boundary of the study area and

east of the Atlantic Ocean Navigation Channel as a portion of the

Virginia Beach Massif. The presence of the two broad shoals offshore

the Virginia Beach resort area results in a broad dissipative platform

that provides a wave-damping mechanism.

Field (1979) described a series of sub-parallel sand ridges in the

mid-Atlantic Bight along the Virginia and Maryland coasts. The shoals

vary in length from six kilometers to 60 kilometers, are spaced between

one and six kilometers, and have amplitudes ranging as high as ten

meters (Duane et al., 1972; Field, 1979). All sources note that the

nearshore shoal fields are aligned on a northeast strike at a

reasonably constant 200 to 300 from the present trend of the coastline.

In some cases, the offshore shoal merges with the nearshore bar system

and becomes shoreface connected. Such a case exists in the region

offshore of False Cape, Virginia (see Figure 2), and accounts for the

relatively wide shoreface platform in that area. The amplitudes of the

ridges in the False Cape area exceed seven meters less than one

kilometer from the shoreline; sidescan data across the ridge field show

small amplitude sand waves indicating an active sediment transport

regime (VIMS, unpublished data).

If one assumes that the linear shoal fields are the result of

ridges associated with a previous retreating estuary system, one would

expect to see cross-cutting sequences of fluvial systems in the

intershoal areas. Payne (1970) discusses one such case, the Virginia

13



Beach Valley, which trends northwest between the False Cape ridge field

and a linear shoal field located approximately eight kilometers to the

northeast in 20 meters of water. Recent high-resolution seismic

profile data substantiate the existence of this system. Channel depths

in excess of 30 meters and widths of several kilometers have been

mapped (VIMS, unpublished data). Several episodes of channel infilling

can be documented, with evidence of differential compaction of the

channel sediments.

Seaward of the reach between Dam Neck and False Cape, the shelf

surface is a gently sloping plain, broken by a moderately-sized, non-

linear shoal situated approximately 5 kilometers offshore of Sandbridge

Beach (Figure 2).

III . METHODS

Geophysical Methods.

Field data were acquired through three instrumentation systems:

acoustic subbottom profiler; side-scan sonar; and a pneumatic coring

rig. Seismic data were obtained using a Datasonics SBP-5000 subbottom

profiler. This system consists of a two-channel, dual-frequency

transceiver connected to a towfish carrying the transducers. The

primary channel can operate at 3.5, 5.0, or 7.5 kilohertz (kHz). Most

of the surveying in this area was conducted at 3.5 kHz; 5.0 kHz was

used when greater depth of signal penetration was desired, or when a

very strong surface reflector obscured deeper horizons. The second

14



channel operates at 200 kHz and was used to provide an accurate record

of the bottom surface and water depth beneath the towfish.

Hard copies of the seismic data were recorded on electrostatic

paper by both an EPC Model 3200 dual-channel graphics recorder and an

EPC Model 4800 three-channel graphics recorder. The sweep rate of the

recorders, which sets the scale of the hard copy, was set at 1/8 second

and 1/16 second respectively. General interpretations of the data were

made from the EPC 3200 hard copy, while the EPC 4800 record was used to

resolve complicated records.

Side-scan sonar records were acquired with an EG&G Model 960

Seafloor Mapping System. A 105 kHz acoustic signal is transmitted in

an arc variably set to scan a fixed distance on each side of the track

line (100 meters, in this study). This system produces a planimetric

image of the seafloor corrected with respect to the vessel speed. The

intensity of the recorded signal is a representation of the character

of the seafloor. Dark areas on the record are the result of hard

bottoms, coarse material, or areas of relief that reflect most of the

acoustic signal. Light areas indicate soft or fine-grained sediments,

or shadow zones behind areas of positive relief and are the result of

absorption of acoustic energy. Side-scan records of the study area

show little surface variation and contribute little new information to

the interpretation of the regional conditions. Thus, these records are

not discussed in detail in this report. Hard copies of all geophysical

data are archived at the College of William and Mary, Virginia

Institute of Marine Science and can be retrieved for more detailed

analysis.
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The geophysical surveys were carried out aboard the Virginia

Institute of Marine Science R/V Bay Eagle. Navigation was controlled

by a shipboard microprocessor Loran-C system, augmented by a Del Norte

positioning system for accurate location of track lines. The lines

were laid out relative to the 27/41 Loran net and fix marks recorded

every five minutes on long lines and two minutes on short lines. A

total of 534 kilometers (332 miles) of track line were surveyed, as

depicted On Figure 3.

Sediment Sample Collection.

Vibracores were obtained during a correlative study that assessed

economic heavy mineral distributions on the inner shelf (Berquist and

Hobbs, 1988). Cores were retrieved by Alpine Ocean Seismic Survey

Inc., using a pneumatic rig aboard the R/V Atlantic Twin. The inside

diameter of the cores is a standard 8.9 centimeters (3.5 inches).

Recoverable lengths reached a maximum of 6.1 meters (20 feet); however,

jetting was required to reach this limit in coarse sand. Sample

locations pertaining to this study are shown on Figure 4.

Cores were labeled, capped, sealed, and returned to the laboratory

where they were split, described and logged. Channel samples were

taken from each stratigraphic interval. Logs of each of the cores used

in this study are included as Appendix C.

All samples were processed in the laboratory to remove and weigh

the silt and clay fraction «0.063 mm or >4.0 phi) and calculate the

size distribution of the sand fraction ( 0.063 mm to 2.0 mm or between

4.0 and -1.0 phi). Samples that contained more than 25% silt and clay

16
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were assumed to be unsuitable for beach nourishment and were not

processed further. The sand fractions were processed using a Rapid

Sediment Analyzer (!SA) which detects the sediment size distributions

based on the hydraulic equivalent radius of the particles. The RSA is

a computerized settling tube filled with de-ionized water and

containing an electrobalance connected to a per~onal computer. This

technique is preferable to mechanical sieving when the transport

characteristics of a material are important, because grain shape and

density are considered when particles are grouped in a size

classification.

Appendix D contains graphic representations of grain size

statistics for each sample used in this study, including tables of

graphic (Folk) statistics, methods of moments statistics, cumulative

frequency curves, and probability curves. Appendix E contains tables

of RSA velocities and calculations for each sample. Detailed

mineralogic analyses of the samples can be found in Berquist and Hobbs

(1988). All samples are archived at the College of William and Mary,

Virginia Institute of Marine Science.

IV. RESULTS

General Characteristics.

With the exception of several discrete isolated shoals, the inner

shelf of Virginia is uniformly covered by a layer of fine to very fine,

angular, gray micaceous sand typified by core sample #19. This layer

varies from less than one meter to five meters thick throughout the
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region. The thickest deposits are concentrated on the inner shelf

north of Rudee Inlet and result from the Chesapeake Bay plume.

Locally, patches of coarse shelly sand or mud may occur at the surface.

Areas dominated by muds may carry a suspended load of flocculates

ranging a few centimeters to approximately one meter above the

seafloor. These areas are typical on the shoreface adjacent to

Sandbridge Beach and Back Bay.

The fine sand cover carries a high percentage of silts and clays

(hereafter termed "fines"), ranging from 16% to greater than 20%, a

mean grain size of 0.125 rom (3.0 phi), and has an unaesthetic

appearance in terms of color and a characteristic odor from organic

components. Because these characteristics are less desirable for

recreational beach nourishment projects, these areas are not discussed

in further detail. Should protective beach strategies be considered,

these data should be re-evaluated.

The region offshore of False Cape is dominated by a twin-ridge

linear shoal complex. The sediments in this complex are represented by

cores #26 through #36. There is a clear distinction between sediments

contained in the shoals and the surrounding inter shoal and swale areas.

Within the swales, typified by core #33, a fine to silty fine sand

overlies interbedded layers of clay, silty clay, and silty sand with

lenses of coarse shell fragments and gravel. The shoals, represented

by core #34, are medium to coarse sand with a mean grain size of 0.3 rom

(1.75 phi) containing occasional laminae of silt, clay, and/or shell

hash. The shoals contain large amounts of beach-quality sand.

However, the distance between the source area and potential

20



destinations within the limits of the City of Virginia Beach are such

that mining the area would not be economical except in response to a

catastrophic event. Consequently, discussion is limited to those areas

that are potential sites for long-term sand mining.

Rudee Inlet Deposits.

It has been suggested that a deep channel consisting of sand runs

east-southeast from Rudee Inlet (Holton, 1987). A detailed geophysical

sampling grid was developed to investigate the possibility of large

sand reserves in the vicinity of the Resort Strip and Rudee Inlet

(Figure 5). Reproductions of the original acoustic subbottom records

and their detailed interpretations are contained in Appendix A.

The characteristics of the sediments are represented by cores #19,

and #37-#42. Table 1 lists the salient characteristics of these

sediments; detailed statistical analyses are contained in Volume II,

Appendices C-E, and in Berquist and Hobbs (1988).

The surface sediments overlying this region are uniform gray to

olive gray, fine to very fine sand with a consistent mean grain size of

0.125 mm (2.96-3.17 phi). The percentage of fines is high, reaching as

much as 65% (core #42), but averaging 12% over the entire sand body.

Three cores (#38, #41, and #42) show thin (0.1 meter; 0.3 feet) layers

of quartz gravels and gravel-sized shell. Sand layers underlying the

surface deposit have mean grain diameters between 0.25 mm (2.0 phi) and

0.125 mm (3.0 phi). Average grain size for the entire sand fraction

underlying the very fine to fine sand at the surface is 0.2 mm (2.25

phi).

21
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TABLE1

Sediment Characteristics -- Rudee Inlet

Sample X X X Sand Mean
Number Sand Gravel Fines tEh!2
19-1.1 91.5 0.0 8.5 3.02
19-1.2 72.3 8.6 19.1 2.66
19-1.3 59.1 35.3 5.6 0.73
19-2.1 90.4 0.1 9.5 3.05
19-2.2 94.9 0.3 4.8 1.81
19-3.1 95.8 0.5 3.7 1.89
19-3.2 92.2 0.1 7.7 2.41

37-1.1 88.6 0.4 11.0 3.05
37-1.2 91.4 0.2 8.4 2.55
37-1.3 88.3 0.6 11.1 1.90
37-1.4 82.8 0.1 17.1 2.29
37-1.5 84.6 0.1 15.3 2.42

38-1.1 86.1 0.0 13.9 3.17
38-1.2 71.6 24.8 3.6 0.72
38 -1. 3 80.3 0.6 19.1 1.74
38-1.4 90.4 1.0 8.6 1.14
38 -1. 5 88.8 0.3 10.9 2.12
38-1.6 73.3 1.0 25.7 2.68
38-1.8 57.2 26.8 16.0 0.99

39-1.1 91.7 0.1 8.2 3.09
39-1.2 92.6 4.1 3.3 1.63
39-1.3 88.6 2.0 9.4 2.58
39 -1. 4 88.3 1.9 9.8 2.51

40-1.1 91.5 0.1 8.4 3.14
40-1.2 84.0 0.8 15.2 2.82
40 -1. 3 89.0 0.1 10.9 2.67

41-1.1 90.9 0.6 8.5 3.07
41-1.2 80.7 1.6 17.7 2.94
41-1.3 70.7 27.2 2.1 0.61
41-1.4 96.6 0.0 3.4 2.07

42 -1. 1 88.2 1.8 10.0 2.96
42 -1. 2 64.0 26.9 9.1 0.96
42 -1. 3 87.7 3.7 8.6 2.22
42-1.4 34.7 0.3 65.0 2.56
42 -1. 5 63.8 22.3 13.9 1.81
42 -1. 6 90.0 0.0 10.0 2.33
42-1.7 92.1 0.1 7.8 2.08
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Figure 6 shows the minimum thickness, based on recoverable core

length and correlated to seismic data, of the surficial fine sands.

Thickness varies from two meters to as much as six meters (maximum

recoverable core length). Surface sediments become slightly more

coarse in the southwest corner of the area. Figure 7 is a cross-

section across Transect B-B'. Subbottom records indicate a strong

reflector that probably represents a PleistocenejPliocene(?) erosional

surface. Incised channels are evident on this surface. Above the

contact are massive fine sands (Unit IV), representing recent

deposition. Moving eastward, surficial sediments become finer, grading

to a silty clay (Unit V) approximately five kilometers (three miles)

offshore. Although there are lenses of gravel and coarse shell hash

locally throughout the region, there is no indication of large-scale,

sand-filled channel features.

Sandbrid~e Deposits.

Initial geophysical surveys showed the presence of a large,

amorphous shoal located approximately five kilometers (three miles)

offshore of Sandbridge Beach. Although a shoal feature does appear in

this location on nautical charts, neither its extent nor its

composition has been documented in the literature. Because of its

topography as seen on the seismic records (see Appendix B), which

resembled remnant beach ridge or barrier morphologies, it was

anticipated that the shoal may be largely composed of shallow marine

sands. A high-density geophysical sampling program was initiated

(Figure 8). The sedimentary characteristics of the shoal are defined
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Figure 6. Isopach map showing the distribution and minimum thickness of the surface layer
of very fine gray sand in the vicinity of Rudee Inlet. The contour interval is one meter.
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Figure 7. Cross-section along Transect B-B' (Track Line #10), showing the vertical and
lateral distributions of very fine sand and sandy clay in the vicinity of Rudee Inlet.
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by cores #48 and #49. Cores #45, #46, and #47 show the presence of

other discrete sand bodies at depth, whereas core #50 effectively

limits the extent of sand reserves. Table 2 lists summary sediment

characteristics for each of these cores. Detailed information is

contained in Volume II, Appendices C-E, and in Berquist and Hobbs

(1988).

Figure 9 shows a cross-section along Transect A-A', which

corresponds to seismic track line 20 (Figure 8). Topographically, the

shoal's western and southern flanks rise from a swa1e to a terrace

located two to three meters (6.56-9.84 feet) above the surrounding

shelf surface. Several terrace levels are evident on the southern

perimeter (Lines 25 and 79, Appendix B), while the eastern and northern

flanks slope gently offshore. The mid-section contains the highest

relief (>3.0 meters; 9.84 feet), which is characterized by a series of

ridges and troughs oriented N35°E. Planimetric dimensions of the shoal

are approximately 2.75 kilometers by 4.5 kilometers (1.7 miles by 2.8

miles) within the study area (Figure 10). However, the shoal continues

in a northeasterly direction for an unknown distance beyond the limits

imposed for this study.

The shoal is composed of clean medium to coarse sand (0.3 mm; 1.5

phi mean grain size) separated from the underlying material by a

pervasive, sharp horizontal reflector. Analyses of cores #48 and #49

(Table 2; Appendices D and E) show an overall coarsening upwards trend.

Stratification within the shoal generally follows the surficial

topography, becoming more horizontal towards the basal reflector.
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TABLE 2

Sediment Characteristics -- Sandbridge .

29

Sample % % % Sand Mean
Number Sand Gravel Fines (phi

45-1.1 85.3 1.4 13.3 2.31
45 -1. 4 84.7 7.4 7.9 2.00
45 -1. 5 76.1 17.8 6.1 1.11
45 -1. 6 97.1 0.0 2.9 2.44
45 -1. 7 94.1 0.6 5.3 2.48
45-1. 8 68.1 26.1 5.8 0.99
45-1.9 94.5 0.0 5.5 2.05

46 -1. 1 80.7 1.5 17.8 3.02
46 -1. 2 73.1 6.3 20.6 1.93
46 -1. 4 80.2 0.4 19.4 1.85
46-1.5 76.6 2.1 21.3 1.87
46 -1. 7 47.1 0.4 52.5 2.01
46-1.9 84.2 0.2 15.6 2.11
46-1.10 78.7 1.3 20.0 1.,36
46-1.11 95.6 0.1 4.3 2.18

47-1.1 85.2 1.0 13.8 3.16
47-1.4 59.7 14.9 25.4 0.72
47-1.5 96.6 1.5 1.9 1.36

48-1.1 97.4 1.3 1.3 1.48
48 -1. 2 97.4 0.4 2.2 1.59
48-2.1 97.8 0.3 1.9 1.64
48-2.2 96.1 1.4 2.5 1.48
48-3.1 95.3 2.5 2.2 1.71
48-3.2 95.7 1.0 3.3 2.13

49-1.1 98.8 0.0 1.2 1.46
49 -1. 2 92.3 3.2 4.5 1.57
49-1.3 95.1 0.2 4.7 1.94
49-1.6 87.3 0.1 12.6 2.72
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With the exception of the extreme northeast section, the underlying

material is silty to sandy clay. The silty clay found in cores #49 and

#50 is correlative to the sandy clay found in cores #45, #46, and #47.

,

I

~ -

I

~

The clay horizon also outcrops and borders the western and southern

margins of the shoal. The extent of the underlying clay beds (defined

as Unit V) and their relationship to the sand shoal (Unit I) is

depicted in Figure 9, which shows a very sharp contact zone between the

two deposits. Figure 11 illustrates the thickness and areal

distribution of the clay. Where the clay outcrops at the surface, a

heavy layer of suspended flocculates extends approximately one meter

(3.28 feet) above the sea floor. In the northeast, the presence of

steeply dipping beds beneath the shoal prevent a clear definition of

the underlying material (Line 25; Appendix B).

West of the shoal and covered by approximately three to five meters

(9.84-16.4 feet) of overburden is a layer of medium to coarse sand

(Unit II, Figure 9; Figure 10). The overburden is composed of fine

sand with similar characteristics to the Rudee Inlet deposits discussed

above, overlying silty clay (Unit V, above). Total thickness and

distribution of the overburden is depicted in Figure 12. Unit II has

sedimentary characteristics, including composition and grain size

distribution, similar to Unit I. Thickness varies between 1.5 meters

(4.9 feet) and 3.5 meters (11.5 feet). The similarity between Units I

and II strongly suggests a single feature that has been subsequently

bisected.
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A third sand body, Unit III (Figures 9, 10), lies on the Sandbridge

shoreface under two meters (6.56 feet) of silty clay (Unit V). This

unit is composed of medium sand with a mean grain size of 0.19 mm (2.4

phi) .

V. DISCUSSION

In response to increasing pressures from economic development in

the coastal zone, it has become incumbent upon local governments to

provide maintenance and development of public recreational facilities,

including beaches. The same development pressures affect the

availability of upland sources of suitable beach nourishment materials,

forcing localities to look for alternate sand reserves.

An intensive geophysical exploration program was instituted to

determine if mineable reserves of beach-quality sand existed on the

inner continental shelf adjacent to the Virginia Beach shoreline. Data

collection included the acquisition of high resolution acoustic

subbottom records, corroborated by a series of sediment cores.

The inner shelf and shoreface within five kilometers of the

shoreline is covered by a veneer of fine to very fine gray micaceous

sand with minor amounts of organic material. Typical concentrations of

silts and clays exceed 20% by weight. This material lacks the texture

and aesthetic values that are identified as important for nourishment

of recreational beaches. However, the mean grain size, 0.125 mm (3.0

phi) is consistent with surface sediments in depths of water exceeding

three meters (9.8 feet). Although the material is inconsistent with

35



recreational beach use, its characteristics are similar to seafloor

sedimentology in the nearshore zone. Consequently, these materials

could be used to develop dissipative configurations on eroding

shorefaces.

Three areas were identified with potential for providing beach-

quality sands. The first, in the vicinity of False Cape, consists of a

series of sub-parallel linear shoals trending northeast and connected

to the shoreface through the nearshore bar system. The shoals extend

as much as 2.5 km (1.6 miles) with a surface relief exceeding three

meters (9.8 feet). The shoals contain medium to coarse sand with a

mean grain size of 0.3 mm (1.75 phi). A conservative estimate of the

volume of sand in the shoals is 2.5 x 106 m3 (3.1 x 106 yd3). The

False Cape linear shoal field represents a significant reserve of beach

quality sand. However, its distance from developed areas in Virginia

Beach reduces its economic value to the City. This material should be

considered as a possible emergency reserve in the event of a

catastrophic storm.

The area east of the Rudee InletjCroatan shoreface appears to be

undesirable in terms of reserves of beach quality sand. Surface

sediments, to depths exceeding one meter (3.28 feet), are very fine

sands and silts as described above. Although these deposits initially

appear to be massive, homogeneous beds to depths exceeding maximum core

retrieval, detailed sedimentary analysis reveals that a series of

slightly coarser fine sand stratigraphic units exists with depth.

These sands vary in texture between 0.25 mm (2.0 phi) and 0.125 mm (3.0

phi), with a regional average of 0.2 mm (2.25 phi) and an average of
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10% fines by weight. The quality of these materials approximates that

of sediment in the Cape Henry Navigation Channel which was placed on

the Virginia Beach Resort Strip as part of the navigation channel

enhancement project in 1989. Although these sediments are not optimal

recreational beach quality, they can provide short-term relief to an

eroding beach.

The third, and most promising, site is a large sand shoal located

five kilometers (three miles) east of Sandbridge Beach in 12 meters (40

feet) of water. The shoal, as mapped, has an areal extent of 12.38 km2

(4.76 mi2). The northeastern limits of the shoal were not mapped as

part of this project and remain undefined. The shoal is composed of

clean, medium to coarse sand (0.3 mm; 1.5 phi) that tends to coarsen

upwards in the section. Thickness of the shoal varies from one meter

(3.28 feet) to five meters (16.4 feet). Using an average thickness of

2.5 meters (8.2 feet), a conservative estimate of the volume of beach-

quality sand contained within the study area exceeds 17 million m3

(39.8 million yd3). Total reserves could double that amount.

Beach Sediments and Overfill Ratios.

Goldsmith et al. (1977) describes the importance of cyclic glacial

activity and concomitant variability in sea level in creating the

character of sediment sources in the area. The Traverse Group, Inc.

(1980) attribute the textural variation of beach materials in the

Virginia Beach area to inherited traits from heterogeneous Pleistocene

sediments in the substrate. In addition, modern sediments distributed

37



by tidal flow in and around the Chesapeake Bay entrance contribute an

important component to the northern Virginia Beach sedimentology.

Beach sediment data from various sources have been collated and

,

t

summarized in Wright et al. (1987). Although there is considerable

variation in mean grain size both along the coast and across the

profile, the following regional averages apply:

Resort Strip

Foreshore mean -- 2.0 phi

Foreshore standard deviation -- 0.8 phi

Sandbrid~e

Foreshore mean -- 1.75 phi

Foreshore standard deviation -- 0.4 phi

Similar average values can be calculated for each of the potential sand

reserve sites:

Rudee Inlet

Surfacemean -- 3.05 phi
Surface standard deviation -- 0.5 phi

Subsurface mean -- 2.25 phi

Subsurface standard deviation -- 0.6 phi

Sandbrid~e Site

Mean -- 1.48 phi
Standard deviation -- 0.5 phi

One measure of the suitability of a given borrow material for a

beach nourishment project is the Overfill Factor (RA). This measure

was developed by James (1975) and is used widely by the U.S. Army Corps

of Engineers. The assumption behind the overfill factor is that the

distribution of grain sizes on a stable beach is representative of a

dynamic equilibrium between the supply of material to the beach and the

rate of transport that removes it (U.S. Army Corps of Engineers, 1984).
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The most suitable renourishment sediments would have a grain size

distribution similar to the native material. In areas that are

receding, it is necessary to compensate for differences in the size

distributions of native and borrow sediments by putting an initial

amount of material on the beach that exceeds the desired design. This

allows for readjustment of the sediment following placement.

RA is calculated by comparing the phi-scale mean grain size of the

borrow material with that of the native sand, and plotting those values

against the ratio of the standard deviations of the borrow and native

material. These values are plotted on a nomograph provided by the U.S.

Army Corps of Engineers Shore Protection Manual (1984), from which RA

is read.

The Periodic Renourishment Factor (RJ) is a similar calculation

that compares the rate at which the borrow material will erode with the

rate at which the native material erodes. The phi mean difference and

sorting ratios are calculated in the same manner as for RA, and the

resultant RJ factor read from a nomograph (U.S. Army Corps of

Engineers, 1984).

RA and RJ were calculated for each of the Resort Strip and

Sandbridge beaches relative to potential sand reserves offshore of

Rudee Inlet and Sandbridge. RA for the Resort Strip, relative to the

fine surface sand in the Rudee Inlet area is >10.0, which is in the

unstable quadrant. It would not be advisable to use this material for

renourishment of the Resort Strip. RJ is calculated at 6.0, indicating

a potential for greater erosion rates than the native sediments.

Relative to the subsurface sands offshore of Rudee Inlet, RA for the
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Resort Strip is 3.0, and RJ is 1.75. This material is comparable to

the material dredged during the 1989 deepening of the Cape Henry

Navigation Channel.

The Sandbridge beach sediments, relative to the offshore sand

shoal, have an RA of <1.02, which is stable; and a RJ of 0.14. These

values indicate that the material in the sand shoal offshore Sandbridge

is an excellent source of sand for renourishment of the Ocean-side

beaches in Virginia Beach.

VI. SUMMARY

An geophysical exploration program was undertaken designed to

identify reserves of beach quality sand on the inner shelf. Several

areas containing potential reserves were identified, including the

False Cape reach and the region in the vicinity of Rudee Inlet. The

False Cape reserves are of good quality, but the distance separating

the reserve from potential destinations lessens the economic viability

of the deposit. The sand deposits on the inner shelf fronting Rudee

Inlet are desirable in terms of location, but are less than optimal in

terms of recreational beach material. Recent work by Berquist and

Hobbs (1988) identify each of these areas as having high concentrations

of economic heavy minerals, particularly the titanium suite. The

possibility of dual commodity mining associated with the heavy mineral

deposits may provide a favorable economic climate for extraction.

The most promising reserve is a moderately-sized sand shoal

situated approximately five kilometers (three miles) east of Sandbridge
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Beach. More than 17 million m3 (39.8 million yd3) of clean medium to

coarse sand (0.3 mm; 1.5 phi) is concentrated in a discrete shoal

feature with no overburden. No economic concentrations of heavy

minerals have been identified in samples from this shoal (Berquist and

Hobbs, 1988). However, overfill and renourishment factors relative to

Sandbridge are <1.02 and <0.14, respectively, which indicates stability

relative to the native sediments.

This shoal represents a very valuable sand reserve within

economical transport distance for mining. Benthic resource evaluations

have not been completed for this site. However, the proximity to the

Dam Neck Disposal Site which has been studied extensively will allow

preliminary evaluations of certain resources, including migratory

species. Because of the thickness and areal extent of the shoal,

mining activities should not extract the total volume of available

sand. Sedimentary homogeneity within the shoal ensures that the nature

of the substrate will not change appreciably as a result of sand

extraction.
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